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1. Introduction

Forecasts of future earnings are a necessary input for valuing a risky asset. Researchers in

accounting and finance have primarily relied on two sources of forecasts — sell-side analysts and

forecasts from linear cross-sectional models (e.g., Hou, van Dijk, and Zhang, 2012; Li and Mo-

hanram, 2014). However, analyst forecasts are unavailable for large swathes of firms and tend to

be optimistically biased. The bias in analyst forecasts also renders them relatively less helpful

in estimating the implied cost of capital (ICC), a widely used metric of cost of equity capital in

accounting and finance research (e.g., Easton and Monahan, 2005; Mohanram and Gode, 2013).

While more available and less biased, forecasts from linear models tend to be inaccurate (Gerakos

and Gramacy, 2013).

Moreover, researchers have designed and evaluated existing linear models exclusively focusing

on the United States. Empirical findings based on US data might not translate to an international

setting. For example, Hou, Karolyi, and Kho (2011) and Fama and French (2017) document in the

empirical asset pricing literature that the set of factors which explain the cross-section of returns

in the US and outside the US are not necessarily the same. Variations in product and labor market

competition and in accounting and regulatory standards across countries are likely to affect firms’

underlying economics and the properties of reported profitability (Healy, Serafeim, Srinivasan, and

Yu, 2014). The absence of any international evidence on the efficacy of profitability forecasting

models is particularly relevant because, as Chattopadhyay, Lyle, and Wang (2022) document, a

significant body of research uses the most common forecasting application, Implied Cost of Capital

(ICCs), as a variable of interest in an international setting. Moreover, Chattopadhyay et al. (2022)

also document that ICCs based on the extant models tend to perform inconsistently outside the US.

Therefore, the evaluation of forecasting models outside the US is an important empirical question.

We aim to answer this question by exhaustively reviewing the performance of extant models

and new candidate forecasting models within and outside the US. We further validate the choice

of model by comparing their accuracy in subsets of firms where forecasting is likely to be more
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challenging, or model-based forecasts are likely to be more relevant. Finally, we also evaluate

models based on the performance of ICCs generated using the outputs of the models. In doing so,

we aim to offer researchers guidance on the choice of forecasting models in various settings.

We turn to the machine learning literature for new candidate forecasting models. Machine

learning models are ideally suited for earnings forecasting because of their ability to handle high-

dimensional data while being robust to overfitting. Moreover, machine learning allows us to relax

the assumption of a simple linear relationship between firm characteristics and future profitability.

We, therefore, evaluate the efficacy of two classes of ML models — penalized linear models (Lasso

and Ridge), which can handle high-dimensional data and a decision-tree-based model (Extreme

Gradient Boosting Regression), which relaxes the assumptions of parameterization and linearity.

Our inputs include 56 predictors from the cross-section of accounting data and four predictors

based on macroeconomic data. We examine the accuracy of earnings forecasts from these models

for multiple horizons, ranging from 1-year to 5-years-ahead, and the predictive ability of ICC

estimates based on these forecasts.

We begin our analysis with an initial benchmarking exercise on the cross-section of US firms.

We show that the extreme gradient-boosting regression model (XGBoost) produces forecasts with

the lowest mean absolute error (MAFE) over multiple horizons. The best performing extant model,

the RI model developed by Li and Mohanram (2014), generates forecast errors that are about 7%

higher at the 1-year horizon and about 1.5% higher at the 5-year horizon.

While the initial benchmarking analysis suggests relatively modest gains from using the ML

models in the US, it offers valuable insights. An OLS-based linear model and the Lasso and

Ridge models, using the exhaustive set of predictors used in the XGBoost model, produce less

accurate forecasts than both XGBoost and the parsimonious RI model. This result suggests that

the flexibility of the XGBoost model in accommodating non-linearities, rather than the broader

set of characteristics used, is the source of its higher accuracy. We posit that XGBoost’s ability to

accommodate non-linearities flexibly is likely to be particularly relevant in firms with more complex
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underlying economics, for example, small firms with immature business models or highly volatile

earnings.

Consistent with our intuition, the relative efficacy of the XGBoost model in the US is more

pronounced in sub-samples of firms where the prediction problem is likely to be more complicated

or essential. We partition firms by characteristics commonly shown to be correlated with a firm’s

”information environment” — size, presence of analyst forecasts, and earnings volatility. We find

that for small firms, firms without analyst coverage, and firms with more volatile earnings, i.e., for

firms with ”harder-to-predict” earnings, the XGBoost model produces MAFE that are lower in an

economically meaningful manner at both the shorter and longer horizons. For these sub-samples,

the XGBoost model produces forecasts more accurate than the RI model by 7-8% at the 1-year

horizon to about 2-4% at longer horizons.

We next turn to our question of the suitable forecasting model for an international sample.

We focus on a global (non-US) sample of firms from 35 countries. The relative efficacy of the

ML models outside the US is not obvious ex-ante. The flexible structure of the XGBoost model

might better capture the variation in accounting standards and economic forces across countries

compared to a simple linear model. On the other hand, the noise in data outside the US might

favour parsimony over the extensive data requirements of the ML models.

We document that forecasting is more challenging in a global sample because all models’ ac-

curacy declines. However, the relative efficacy of the ML models is significantly greater in this

global sample. For the overall global sample, XGBoost produces about 12% and 18% more accu-

rate forecasts than the best-performing extant model, RI, at the one-year and the 5-year horizon,

respectively. Consistent with the US evidence, the outperformance of XGBoost is higher in the

harder-to-predict sub-samples. However, notably, in the global sample, the outperformance of XG-

Boost is also economically meaningful in the sub-sample of firms for which the prediction problem

is likely to be less severe. For the sample of larger firms, firms with analyst coverage, and firms

with less volatile earnings, XGBoost produces forecasts that are more than 10% accurate even at
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the 5-year horizon.

We next show that the relative efficacy of the ML models, particularly outside the US, translates

to an alternative evaluatory framework, the ICC framework. As a first step towards examining the

ICCs computed using the forecasting models, we compare the relative unconditional bias of the

outputs of the various models. We find that, on average, model bias is significantly higher in the

global sample relative to the US.1. XGBoost produces the least biased forecast in the global sample

across all horizons. Consistent with this evidence, we find that ICCs produced using the XGBoost

model perform the best in terms of their correlation with realized returns in the global sample.

We make several contributions to the burgeoning literature on the usefulness of machine learn-

ing in accounting and finance. To our knowledge, we are the first to examine the efficacy of ML

forecasting models outside the US. We document that a regression-based tree model outperforms

existing models in a global sample in an economically meaningful manner. Moreover, we validate

our findings in contexts where earnings are likely harder to predict and document further evidence

of the relative efficacy of the XGBoost model. Finally, we also document evidence suggesting that

the incremental predictive power of the XGBoost model stems from its ability to accommodate

non-linearities flexibly rather than feature selection. Our findings complement and build on con-

temporary work on earnings forecasting using machine learning (e.g., Chen, Cho, Dou, and Lev,

2022; Cao and You, 2020; Hansen and Thimsen, 2020), which show the ability of decision-tree-based

models to produce more accurate forecasts but do not focus on specific contexts. Our research also

extends this strand of literature by examining the performance of ML models at longer horizons,

while existing research has an exclusive focus on one-year ahead forecasts.

To our knowledge, we are also the first to examine the predictive ability of ICC estimates gener-

ated using forecasts from ML models. By doing so, we contribute to the emerging literature in asset

pricing examining the role of ML in estimating expected returns (e.g., De Silva and Thesmar, 2021;

1The magnitude of forecasting bias for the XGBoost model is about 40% lower than the best-performing extant
model at the one-year horizon. The superior performance of XGBoost becomes more prominent for longer horizon
forecasts, and it is the only model that produces unbiased forecasts for three- to five-year ahead forecasts. In terms
of the magnitude, XGBoost is about 80% less biased than the best extant model, RI, at the five-year horizon.
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van Binsbergen, Han, and Lopez-Lira, 2020; Gu, Kelly, and Xiu, 2020), as well as methodological

work focusing on estimating profitability and expected returns outside the US (Chattopadhyay

et al., 2022).

On a more technical note, we also highlight the efficacy of the novel XGBoost model. Prior

studies (e.g., Chen et al., 2022; Cao and You, 2020; Gu et al., 2020) use random forests, standard

gradient-boosted regression trees, or neural networks to forecast earnings or stock returns. XGBoost

requires significantly lower computing resources and is multiple times faster than these models while

producing similar or even better forecasting performance in our context.2 We believe these features

of XGBoost significantly enhance the accessibility of ML models for researchers. Overall, based

on our exhaustive evidence, we recommend that future research that requires earnings forecasts,

whether used as measures of expected earnings or to compute ICCs, use the XGBoost model both

for the US and international settings.

We have organized the rest of the paper as follows. Section 2 positions our paper in the

related literature on forecasting, the use of machine learning models, implied cost of capital, and

differences between the US and international context. Section 3 outlines our research methodology

— model description, estimation, and validation. Section 4 presents the results of our estimation

and compares the performance of the different models in the US and international settings. Section

5 concludes.

2. Relation to Literature

Forecasting profitability constitutes a rich literature in accounting. This literature has often

intersected productively with another body of methodological work in accounting — estimating

expected returns using the so-called Implied Cost of Capital (ICC). However, researchers in this

area are only beginning to explore innovations in machine learning for forecasting. Further, while

2In untabulated tests, we verify that XGBoost is at least as accurate, if not more, compared to random forests or
standard gradient-boosting regression trees. However, XGBoost reduces the computing time by nearly 90% in our
research setting. See section 3.1..2 for a more detailed discussion of the XGBoost model.
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a large body of work uses outputs of forecasting models and ICCs in research in an international

context, methodological work remains scarce outside the US context.

2.1. Cross-sectional Models in Forecasting

Forecasts of future earnings are essential inputs for valuing a risky asset. In research on valua-

tion, forecasts have been used in various contexts. For example, Frankel and Lee (1998) use forecasts

to estimate intrinsic value (V) to identify undervalued and overvalued stocks using a value-to-price

ratio. The entire literature on implied cost of capital (e.g., Gebhardt, Lee, and Swaminathan, 2001;

Gode and Mohanram, 2003; Easton, 2004; Botosan and Plumlee, 2002) also relies on forecasts. For

a long time, the only source of forecasts was analyst forecasts from sources such as I/B/E/S or

First Call.

Using analyst forecasts presents researchers with two significant problems. First, analyst fore-

casts are generally optimistic and not very accurate. Easton and Monahan (2005), Easton and

Sommers (2007), and Mohanram and Gode (2013) are among the papers that show that inac-

curate and optimistic forecasts are the leading reasons why ICC models do not perform well in

predicting future returns. Second, analyst forecasts are unavailable for all firms, as analysts tend

to follow larger firms in better information environments. This skewed lack of coverage means that

researchers cannot answer important questions regarding information quality and disclosure in the

subset of firms where the answers to such questions would be particularly insightful. Time series

models also do not offer an appropriate solution in these cases. The lengthy firm-specific time series

of data required to estimate such models renders them ineffective in the subset of younger firms

with shorter histories.

Cross-sectional forecasting, a technique that has emerged in the last decade, attempts to address

these shortcomings. First, it uses the cross-section of data without imposing any firm-specific data

limitation - i.e. a firm need not have existed for the entire estimation period. Consequently, we can

obtain a forecast for the entire cross-section of firms at any point in time. Secondly, the models are
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not subject to the behavioural biases that plague analyst forecasts.

The first notable paper in this area, Hou et al. (2012), builds on models in Fama and French

(2000, 2006) and regresses future earnings on total assets, dividends, earnings and accruals. How-

ever, Gerakos and Gramacy (2013) shows that the HVZ model is less accurate than a näıve random

walk model where future earnings are equal to past earnings. The economic magnitude of the fore-

cast errors of the HVZ model is high — on average, implying an error equal to the earnings estimate.

More importantly, the HVZ model generates larger errors for firms without analyst coverage, where

the need for a forecasting model is crucial.

Li and Mohanram (2014), present two alternative models - the earnings persistence model

(EP) and the residual income model (RI), based on the evidence in (e.g., Dechow, 1994) that

accrual-based measures like earnings have more persistence and predictability than cash flow based

measures, such as the inputs that HVZ use. The EP and RI models outperform the HVZ model

as well as the random walk model. Further, they perform even better in the subset of small firms

and firms without analyst following, where the utility of these models is the most salient. However,

in absolute terms, the average level of forecast error reported in Li and Mohanram (2014) is still

relatively high. In this paper, we will attempt to see if machine learning-based approaches can

generate forecasts with significantly greater accuracy.

2.2. Application of Cross-sectional Forecasts: Implied Cost of Capital

The cost of equity or expected returns plays a central role in valuation, portfolio selection,

and capital budgeting. Estimates of expected returns derived from popular asset pricing models

such as the CAPM or factor models perform poorly in their association with realized returns

(Chattopadhyay et al., 2022). Realized returns are noisy and, thus, unsuitable ex-post measures

of expected returns (Elton, 1999). An important innovation in this area has been the implied cost

of capital (ICC) developed in the accounting literature. An ICC is the discount rate that equates

the current stock price to the present value of expected future dividends. Researchers have used
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variations of the present value model, the residual income model, or the abnormal earnings growth

model to estimate ICCs.3 Mohanram and Gode (2013) validate the current practice in the literature

of using a composite ICC, based on the popular measurement approaches, by showing that such a

metric has lower measurement error than outputs of the individual models.

ICCs are now a widely used measure of the cost of equity in accounting and finance research.

Researchers have used ICCs to study how a firm’s cost of capital responds to changes in its informa-

tion environment through voluntary disclosure (Dhaliwal, Li, Tsang, and Yang, 2011), accounting

standards (Daske, Hail, Leuz, and Verdi, 2008; Li, 2010), securities regulation (Hail and Leuz,

2006), tax laws (Dhaliwal, Krull, Li, and Moser, 2005), etc.. A significant proportion of this body

of work is based in international contexts.

The ICC paradigm is the most direct forecasting application because short-term and long-term

earnings forecasts are crucial in estimating ICCs. Early research on ICCs relied on analyst forecasts

as inputs, despite the problems of limited coverage and bias in the forecasts. Easton and Monahan

(2005) and Easton and Sommers (2007)) demonstrate issues with analyst-forecast-based ICCs.

Optimistic analyst forecasts give rise to ICCs that are biased upwards and have poor predictability

for future returns. While Mohanram and Gode (2013) show that if researchers adjust analyst

forecasts for predictable error and bias, the ICCs generated from these forecasts perform better,

currently, most researchers use forecasts from the cross-sectional models (HVZ or EP and RI) to

estimate ICCs. Consequently, ICCs are a natural tool to validate an earnings forecasting model

— for a model to supersede predecessors, ICCs based on that model should perform better. In

this paper, we analyze the performance of the ICCs generated from ML-based forecasting models

relative to estimates from extant models.

3Gebhardt et al. (2001) and Claus and Thomas (2001) use variants of the residual income model to solve for the
discount rate that equates price to the sum of book value and the present value of future abnormal earnings. Gode
and Mohanram (2003) and Easton (2004) develop proxies based on the abnormal earnings growth model of Ohlson
and Juettner-Nauroth (2005).
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2.3. Emergence of Machine Learning in Forecasting

Machine Learning (ML) as a tool to solve the two canonical prediction problems in accounting

and finance research — predicting profitability and returns — is receiving considerable attention

because of the ability of ML models to handle correlated, high-dimensional data and unspecified

non-linearities within the data.

This growing literature has primarily focused on predicting asset returns (e.g., Freyberger,

Neuhierl, and Weber, 2020; Gu et al., 2020). A key motivation behind this work has been to solve

the dimensionality problem created by the proliferation of return-predictive signals. This literature

suggests that machine learning models successfully identify the return predictors with independent

information and generate significant improvement over existing models in terms of the quality of

predictions. Moreover, this literature suggests that the advantage of machine learning models is

realized in methods that allow for nonlinear predictor interactions.

The literature focusing on the utility of ML in forecasting the other key input of equity valuation

— profitability — is relatively nascent (e.g., Chen et al., 2022; Cao and You, 2020; van Binsbergen

et al., 2020; De Silva and Thesmar, 2021). While the overarching goal of this literature has been

to evaluate the efficacy of ML models in forecasting future firm profitability, the key focus of the

individual papers differs. van Binsbergen et al. (2020) and De Silva and Thesmar (2021) focus

on using ML to create an optimal earnings benchmark to precisely identify expectation errors by

analysts. In work related to ours, Cao and You (2020) focus on the entire cross-section of US

firms to identify the optimal forecast of future profitability. Consistent with the findings from

the literature using ML to predict returns, ML models incorporating non-linearities yield the best

results in forecasting profitability. More specifically, Cao and You (2020) find that the nonlinear

ML models (Random Forest, Gradient Boosting Regressions, and Artificial Neural Networks) yield

predictions that outperform those from a naive benchmark from the RW model. In contrast, those

from the extant linear models (HVZ, RI, and EP) do not. Chen et al. (2022) also use random forests

and gradient boosting-based models, but they include various financial items collected from XBRL
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filings as input variables. They show that ML models perform better when predicting the direction

of future earnings changes than logistic regressions and random guesses. To our knowledge, we

are the first to evaluate ML models’ efficacy in accommodating various information environments

within and outside the US.

2.4. US vs International Evidence on Forecasting and ICCs

The body of methodological work described above almost exclusively focuses on the US context.

There is little evidence on the efficacy of the various linear cross-sectional models in forecasting

profitability and serving as inputs to ICC models outside the US. The performance of the extant

models outside the US is not obvious ex-ante. First, at a general level, the US and other global

markets vary on economic, political, legal, and institutional dimensions (Ball, 2016) which should

motivate examination of economic models outside the US. Secondly, empirical evidence suggests

that institutional and economic differences across countries also affect the earnings process, the

critical outcome of interest in this literature (Healy et al., 2014). Consequently, it is plausible that

findings based on linear parameterized earnings forecasting models estimated on US data might

not extend internationally.

The question of identifying earnings forecasting models that perform robustly internationally is

an important one because a burgeoning body of work in accounting and finance uses ICCs to study

the influence of various policies on firms’ cost of capital in an international context (Chattopadhyay

et al., 2022). As Chattopadhyay et al. (2022) document, the performance of ICCs using forecasts

from the extant cross-sectional models is relatively inconsistent outside the US, while the availability

of analyst forecasts is sparse. Moreover, as Fang, Hope, Huang, and Moldovan (2020) document,

the availability of analyst forecasts in Europe is declining following the enactment of MiFID II.

We fill this gap and build on the literature described above by examining the efficacy of the

ML models outside the US context, as well as the validity of the ICC estimates generated using

the outputs of these models. The latter analysis differs from the literature on using ML to predict

10



returns in one key way. Instead of fitting a wide set of accounting characteristics to a noisy outcome

variable (returns), we use ML to generate optimal forecasts of a less noisy accounting variable

(earnings). We map these earnings to returns by using the theoretically motivated present-value

approach to estimate ICCs.

3. Research Methodology

In this section, we briefly discuss the conceptual underpinnings of the various forecasting models

and ICC measures we consider and detail their estimation processes. We also discuss our empirical

framework for evaluating the forecasting models and the ICCs.

3.1. Forecasting Profitability

We evaluate three candidate machine learning models — two from the class of linear penalized

models (Lasso and Ridge) and a tree-based model incorporating non-linearities (Extreme Gradient

Boosting) — against the extant models described in Section 2.1..

3.1..1 Traditional Models

The three traditional cross-sectional forecasting models we consider are the HVZ model devel-

oped by Hou et al. (2012) and the RI and EP models are based on the work by Li and Mohanram

(2014). We use a naive random-walk model (RW) prediction as a benchmark. All three cross-

sectional models produce earnings forecasts by estimating the following general model:

E[Ei,t+τ ] = β0 + β1Xi,t + ϵi,t (1)

where E[Ei,t+τ ] represents expectation of earnings τ periods away and Xi represents firm-level

characteristics measured at time t. The Appendix describes each model in terms of the firm

characteristics involved. One difference between the HVZ model and the RI and EP models is
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that HVZ estimates earnings while RI and EP estimate earnings per share. We follow the extant

literature in estimating the HVZ, EP,and RI models (Hou et al., 2012; Li and Mohanram, 2014).

Specifically, for each year t in our sample, we use the previous 10 years’ of observations (t − 1

to t − 10) as the training sample to estimate the parameters of each model, and then we use the

parameters and the financial information in year t to generate the forecasts for year t + 1 to year

t + 3.4 When estimating the models for the international setting, we use a pooled sample with

observations across all countries in our sample to increase the size of the training sample. 5

3.1..2 ML Models: Background and Estimation

We briefly discuss the machine learning models we evaluate and detail our estimation process.

Readers should refer to Hastie, Tibshirani, and Friedman (2009) for a significantly more technical

description of these models.

The first class of models we evaluate is the so-called penalized class of models. The advantage

of these models over linear regression is their lesser susceptibility to overfitting, even as the number

of parameters to be estimated increases. OLS estimates parameters to minimize a standard least

squares objective function :

βOLS = argmin
β

∑N
i=1(yi − β0 −

∑p
j=1 xijβj)

2 (2)

with p predictors and N observations. With an increase in the number of parameters to be

4To mitigate look-ahead bias, we follow Li and Mohanram (2014) and assume that firms with fiscal year ending
in April to June do not have their financial information available by end of June. We only include firms with fiscal
year ending in April of year t-1 to March of year t when estimating the models for year t.

5There is a trade-off in the international setting between the size and the relevance of the training sample. Using a
pooled sample across countries increases the size of the training sample, while countries with heterogeneous business
environments are designed to have the same model parameters. On the other hand, estimating the models by country
will allow each country to have different parameters, but it decreases the training sample sizes. In untabulated
analyses, we estimate the models by country in the international setting and our inferences regarding the superior
performance of machine learning models remain unchanged. However, the performance of each model generally
becomes worse because of the smaller training samples. Similarly, estimating the models in subsamples based on firm
size, analyst coverage, volatility, and industry also leads to worse performance due to the smaller training sample
size.
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estimated, OLS is prone to overfitting the model in-sample, leading to poor predictive performance

out-of-sample. Moreover, coefficient estimates in linear regressions can be poorly determined and

harder to interpret with many correlated predictors. Penalized models, also referred to as Shrinkage

methods, are constrained to place the greatest weight on the subset of predictors with the highest

predictive content. Penalized models thus allow for bias in the parameter estimates to minimize

expected prediction error. By shrinking coefficients, penalized models also avoid the problem of

overfitting for high-dimensional models. We examine two popular candidates from this class of

estimators, Ridge Regression and Lasso. Ridge Regression minimizes a penalized sum of squares:

βRidge = argmin
β

{∑N
i=1(yi − β0 −

∑p
j=1 xijβj)

2 + λ
∑p

j=1 β
2
j

}
(3)

where λ is the shrinkage parameter which scales coefficient values lower. Lasso minimizes the

following penalized sum of squares:

βLasso = argmin
β

{∑N
i=1(yi − β0 −

∑p
j=1 xijβj)

2 + λ
∑p

j=1 |βj |
}

(4)

where λ is the corresponding shrinkage parameter for Lasso. We can describe the key difference

between Ridge and Lasso in a simplified manner by saying that Ridge shrinks all coefficients pro-

portionally, and Lasso shifts coefficients by a constant, truncating at zero. Thus, in Ridge, all

predictors will technically get a non-zero coefficient, while Lasso will altogether discard some pre-

dictors. Moreover, while the Ridge estimate has a closed-form solution, Lasso requires numerical

estimation.

We estimate all machine learning models with 60 predictors — 56 are 28 financial statement

line items obtained from Compustat, and their changes relative to the previous year. The other

four predictors are macroeconomic variables: GDP growth rate, unemployment rate, industrial
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production growth rate, and consumption growth rate .6 Similar to the estimation process for the

traditional models, we use the previous ten years of data when estimating the ML models. For

the international sample, we pool data across all countries to increase the training sample size.

Following extant literature, (Hastie et al., 2009), we use five-fold cross-validation to identify the

optimal hyperparameter values for each year. 7

Finally, we consider a non-parametric decision-tree-based model — Extreme Gradient Boosting

(XGBoost). XGBoost is a recent implementation of Gradient Boosting Machines (GBM) by Chen

and Guestrin (2016). Like Random Forest (RF) and GBM, XGBoost is an ensemble learning model

consisting of a set of decision trees. The fundamental model in each ensemble is a regression tree,

which partitions the data into a set of regions where the predicted value in each region is a constant

that minimizes a loss function. So, for a dataset partitioned into M regions R1, R2, ...., Rm, a

decision tree can be represented as:

f(x) =
M∑

m=1

cm1(x ∈ Rm) (5)

The predicted value in each region is simply the average outcome variable for that region. A

decision tree is modelled using a greedy algorithm which starts with the entire data and splits it

6Detailed definitions of the predictors are available in the Appendix. We use 58 predictors for the international
sample because XAD is unavailable in Compustat Global. Similar to Cao and You (2020), we set the following
variables to zero if they are missing: accounts payable, advertising expenses(only for the US setting), current assets,
current liabilities, dividends per share, income taxes payable, intangible assets, interest and related expenses, invest-
ments and advances-other, SGA expenses, short-term investments, research and development expense, and special
items.

7The K-fold cross-validation process is a popular way to reduce potential over-fitting of the estimated models.
The process starts with randomly dividing the training sample into K groups without replacement and then using
one group as testing data and the other K-1 groups as training data. This process repeats K times, so each group
will be used as test data once. We use each group as test data and calculate the average performance of the model
for a particular parameter value. After iterating over candidate values for the parameter (ranging from 0.0001 to 0.1
in steps of a thousandth of the interval), we use the average model performance to determine the optimal shrinkage
parameter for the Lasso and Ridge models.
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using a predictor j and a split point s into regions R1 and R2 that solves:

min
j,s

 ∑
xi∈R1(j,s)

(yi − c1)
2 +

∑
xi∈R2(j,s)

(yi − c2)
2

 (6)

where c1 and c2 are the predictions in each region. For any j and s, the average of the outcome

variable in each region solves the minimization problem. Thus, a splitting point s can be found for

each predictor. As the first split, the algorithm chooses the predictor which produces the lowest

value of the sum of squared errors as described in Equation 6. The algorithm repeats the process

for each subsequent resulting region. Since a few iterations of this process are likely to result in

a very complex tree, one of the critical parameters for designing a regression tree is the depth of

the tree. The tree depth is usually chosen by pruning a large tree. The pruned tree is selected

by minimizing a loss function which includes a penalty for the number of terminal nodes in the

smaller tree. The critical advantage of regression trees is their conceptual simplicity and flexibility

to accommodate non-linearities and interactions in the data. However, the high variance of an

individual tree undermines its flexibility. A small change in the data can lead to a tree of a very

different structure. Therefore, an ensemble approach is preferred to produce more robust models.

XGBoost is an implementation approach that offers two distinct advantages over traditional

GBM models used in prior finance or accounting studies (e.g., Chen et al. 2022). Like traditional

GBM models, XGBoost starts from a simple tree that produces errors that are not significantly

lower than the sample average as the predictor. Then the model fits a regression tree to the

residuals from the first tree in the next iteration. It keeps repeating this process for a set number

of iterations, with the final output being an addition of the individual regression trees. However,

XGBoost introduces a new regularized learning objective, which penalizes the complexity of the

model and better deals with data overfitting problems. Secondly, XGBoost better accommodates

parallel and out-of-core computing, significantly reducing the time required to train the model.8

8Our tests suggest that XGBoost runs at least ten times as fast as traditional GBM models in our research
setting. XGBoost takes about one to two minutes for each round of training, while RF and GBM take about 20 to
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Our estimation process of the XGBoost model is similar to that for the Lasso and Ridge models.

We estimate the model each year using the same set of 60 predictors and the previous ten years’ data.

We also use the five-fold cross-validation process to search for the optimal choice of hyperparameters

for the model for each year.9.

3.2. Proxying for the Information Environment

One of the motivations of this paper is to improve forecasting accuracy for firms lacking quality

forecasts or when the forecasting exercise is more complex, i.e., for firms with arguably weaker

information environments. We consider three proxies for information environment. Prior research

has long used firm size as a proxy for the quality of the information environment (e.g., Brown,

Richardson, and Schwager, 1987; Wiedman, 1996) because small firms have lower disclosure quality,

auditing quality, media coverage, institutional investment, and analyst following. Our first proxy is

hence firm size, measured by market capitalization. We classify firms into Small Firms and Large

Firms based on whether a firm’s market capitalization is above or below the cross-sectional median.

Our second proxy is a binary variable indicating whether the firm has any analyst following

or not. Earlier researchers would ignore such firms in their analysis. Cross-sectional forecasting

allows researchers to generate estimates of future earnings for these firms. Given the lack of other

alternatives, forecast accuracy is essential for this subgroup.

Our third proxy is the volatility of earnings. Volatile earnings make forecasting more difficult.

Prior research (e.g., Bhushan, 1989; O’Brien and Bhushan, 1990) shows that analysts often eschew

firms with volatile earnings. In addition, the volatility also makes cross-sectional forecasting poten-

tially less effective, as extrapolating from the past to the present is more complicated. We measure

30 minutes. For our forecasting exercise — one-year to five-year ahead forecasts for around 50 years of data for the
US setting (and 25 years for the international setting), XGBoost requires nearly one week less computing time. In
untabulated analyses, we find that this lower computation time does not involve any trade-offs in performance —
XGBoost produces lower errors than RF or GBM.

9We set the number of trees in the forest to be 500 and the learning rate to be 0.01. The hyperparameter to
fine-tune is the tree’s maximum depth, which ranges from 1 to 7 with a step of 2. We use the Huber loss function to
make the model more robust to potential outliers.
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earnings volatility as the standard deviation of the firm’s quarterly return on assets (ROA) in the

previous 5 years.

3.3. Estimating Implied Cost of Capital (ICC)

We evaluate the various earnings forecasting models by also examining the predictive content of

ICCs calculated using their ouputs. We compute four ICC variants commonly used in the literature.

Two are based on the residual income valuation model from Ohlson (1995) and Feltham and Ohlson

(1995) - the GLS model from Gebhardt et al. (2001) and the CT model from Claus and Thomas

(2001). Two are based on the abnormal earnings growth model from Ohlson and Juettner-Nauroth

(2005) - the OJ model from Gode and Mohanram (2003) and a simplifed PEG model from Easton

(2004). We estimate annual ICCs at the end of June of each year and winsorize each ICC estimate

at the 1% and 99% levels for each cross-section. To further mitigate the effect of outliers, following

Mohanram and Gode (2013), we calculate a composite ICC as the average of the ICCs from the

four approaches mentioned above. If one or more of the four individual ICCs are unavailable, we

follow Hou et al. (2012) and compute the composite ICC as the average of those available.

3.4. Validating Forecasts and ICCs

Following prior research (Li and Mohanram, 2014), we evaluate the earnings forecasting models

by examining the mean absolute forecast error (MAFE) — the absolute value of the difference

between the estimated earnings per share (estimated Net Income in dollars for HVZ) and the

actual realized earnings per share (realized Net Income for HVZ), scaled by price per share (market

capitalization for HVZ) — of the output of each model. More specifically, we compute the cross-

sectional average of the MAFE from each model and then examine the time series of these averages.

We perform this exercise for forecasts up to five years ahead for both the US and our international

sample. We also compare the relative efficacy of the ML models over the traditional models by

examining the difference in the cross-sectional averages of various models.
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We also follow prior research (e.g., Chattopadhyay et al., 2022; Li and Mohanram, 2014;

Lewellen, 2015) in evaluating the ICCs computed using the outputs of the various forecasting

models. We assess the ICCs by examining their association with future realized returns. We use

both a regression-based approach and a non-parametric approach using portfolio sorts to validate

that the cross-sectional differences in ICCs are directionally consistent with the differences in re-

alized returns. For the regression-based method, we estimate Fama-Macbeth (FM) regressions of

one-year-ahead realized returns on the various composite ICC estimates:

Ri,t+1 = β0 + β1ICCi,t+1 + ϵi,t+1 (7)

A positive and significant β1 would validate the predictive ability of an ICC estimate. Ideally,

we would expect β1 to be 1 for an accurate measure of expected returns. Consequently, we also

evaluate ICCs on whether we can statistically distinguish β1 from 1. As Chattopadhyay et al.

(2022) discuss, this is a minimally sufficient criterion for evaluating a proxy of expected returns.

We also examine the equal-weight predicted and realized returns of decile portfolios based on each

ICC measure.

3.5. Data Sources

We obtain annual financial information for US firms from Compustat and stock returns from

CRSP, and we collect financial and stock price information for the international sample from Com-

pustat Global. We obtain analyst coverage information from I/B/E/S. Our macroeconomic data

comes from the Federal Reserve Bank of St. Louis for the US sample and the OECD for inter-

national firms. Our US sample covers the period from 1969 to 2020. We require each firm to

have common shares listed on the NYSE, AMEX, and NASDAQ, and the stock price at the end

of June to be higher than 1 USD. We exclude financial and utility firms from our sample. After

further dropping observations with missing values for our predictors, we have 106,459 firm-year

observations in the final sample. We impose similar data requirements for our international sample
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and convert all variables to US dollars before applying the filters. We further require each country

in the sample to have at least 100 observations, which leaves us with a final sample of 132,160

firm-year observations from 35 countries.

4. Empirical Findings

4.1. Model Performance in the US: Absolute Forecast Error

4.1..1 Overall Sample

We begin our analyses by analyzing the forecast errors of our candidate models in the sample

of US firms. In addition to the models described in ??, we consider two benchmark models — RW

and Linear. RW is a naive random walk model, while Linear is a simple linear model with the same

60 predictors used by the ML models. We present the results of this analysis in Table 1.

The overall results in Table 1 document that XGBoost produces the lowest MAFE across short

and long horizons. At the one-year-ahead level, reported in column 1, XGBoost’s MAFE of 0.056

is 7% lower than the MAFE of 0.060 of the best-performing cross-sectional models, EP and RI.

As the last three rows of Table 1 document, these differences are statistically significant at the 1%

level. The MAFEs of the penalized ML models, Lasso and Ridge, at 0.059 each, are comparable

to that of EP and RI, suggesting that simply including many predictors without incorporating

non-linearities does not improve model performance. At the one-year horizon, HVZ produces the

highest MAFE at 0.081.

The results in columns 2–5 suggest that the general patterns observed in the one-year-ahead

results extend to longer horizons. Although the MAFE for all models, including XGBoost, goes

up as the horizon lengthens, XGBoost continues to produce the lowest MAFE across all models.

However, the relative outperformance of XGBoost diminishes as the horizon lengthens, culminat-

ing in a statistically significant 1.5% improvement over RI at the 5-year horizon. Interestingly, RI

outperforms Lasso and Ridge at longer horizons, suggesting that adding predictors without incor-
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porating non-linearities is detrimental. Consistent with this inference, the OLS-based model using

the complete set of predictors, Linear, produces MAFEs that are about 10% higher than RI.

4.1..2 Partitions based on the Information Environment

In our following analyses, we examine whether the non-linear and flexible nature of the XGBoost

model lends it more advantages relative to the parsimonious and linear models in samples of firms

where forecasting is likely to be more challenging. We consider the following three partitions,

discussed in section xxx - firm size, analyst following and earnings volatility.

Panel A of Table xxx suggests that XGBoosts outperformance is more persistently and eco-

nomically significant in smaller firms compared to the overall sample. We split our sample with

forecasts each year into two groups (Small Firms and Large Firms) based on the median market

capitalization. Columns (1) – (5) present the time-series averages of the average cross-sectional

MAFE of the individual models over a one-year to a five-year horizon. Columns (6) – (10) present

the corresponding results for firms with above-median market capitalization. Consistent with the

results in Table 1, XGBoost and RI are the two standout models for the sample of smaller firms.

Between them, XGBoost produces errors lower than RI’s by about 7.2% at the one-year horizon.

The magnitude of the outperformance dissipates marginally at longer horizons, ranging from 6.3

The results in columns (6) – (10) of Panel A suggest that, on average, all models are significantly

more accurate for larger firms (MAFEs are more than 50% lower for larger firms) and that there

is little to choose between XGBoost and RI for this sample. While XGBoost is generally the best-

performing model and outperforms EP and RI by about 5% in year 1, the outperformance is not

statistically significant for three of the five years in our forecasting horizon. Overall, the results in

Panel A are consistent with our hypothesis that predicting earnings is inherently more difficult for

smaller firms and that non-linearities and flexibility in the prediction model are essential for such

firms.

Panel B examines the forecast accuracy of the models in samples with and without analyst
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coverage and documents that XGBoost produces economically and statistically significant out-

performance in both samples, including the crucial subsample of firms lacking analyst forecasts.

Columns (1) — (5) present results for this sub-sample. Like previous analyses, XGBoost produces

the lowest MAFE at all horizons, with RI being the next best-performing model at most horizons.

Between the two, XGBoost produces MAFE that are about 7% lower at the 1-year horizon and 4%

lower at a longer horizon. Columns (6) — (10) report results for firms with analyst coverage. As

in Panel A, the overall magnitude of errors for all models is significantly lower in the subsample

we earmark as having the better information environment. Model errors are more than 30% lower

for all models for the subsample of firms with analyst coverage. XGBoost continues to be the

best-performing model, with forecast errors about 8% to 2% lower than the RI model.

In our final subsample analysis, we document that the flexible nature of the XGBoost model

continues to outperform in firms where the forecasting exercise is likely to be complicated by the

volatility of underlying performance, i.e., firms with high earnings volatility. We compute earnings

volatility as the standard deviation of the firm’s quarterly ROA for the previous five years. We

use the median to partition each cross-section into high and low-volatility firms. The results of

this subsample analysis are comparable to that in Panel A. Columns (1) — (5) document about

an 8% to 5% lower MAFE for the XGBoost model, relative to RI, at shorter and longer horizons,

respectively. Consistent with the analysis of large firms, overall forecast errors diminish significantly

(by about 50% for all models) for firms with lower earnings volatility. This overall improvement

also diminishes the differences between the performance of the models.

Overall, our analysis of US firms suggests that XGBoost yields economically meaningful im-

provement in forecast accuracy over extant models, particularly in samples of firms with “harder-

to-predict” earnings where forecast errors tend to be larger. Moreover, the choice of characteristics

matters less than the choice of model in improving forecast accuracy. Finally, the relative differences

between the models diminish in firms with a likely better information environment.
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4.2. Model Performance Internationally: Absolute Forecast Error

We next focus on our question of identifying forecasting models for international samples. To

our knowledge, we are the first to evaluate the efficacy of forecasting models in an international

setting. Whether our findings related to the relative performance of the forecasting models in

the US will extend to our global sample is an empirical question. A significant body of research

suggests that the information environment weakens as we move outside the US. For instance, a

vast literature on cross-listing suggests that the information environment of international firms

improves after they cross-list in the US (e.g, Lang, Lins, and Miller, 2003; Bailey, Karolyi, and

Salva, 2006). Consequently, our finding that ML models are particularly efficacious for firms with

weaker information environments in the US should point to their utility for international firms.

However, it is also plausible that the noise in international data would mean that the parsimonious

cross-sectional models, which are less susceptible to overfitting, prove to be more helpful outside

the US. We examine this question by pooling observations across 35 countries resulting in about

132,000 observations.

4.2..1 Overall Sample

Table XXX documents significant gains from using XGB and a relative decline in the perfor-

mance of the traditional forecasting models for the international sample. The first insight from

the overall results is that model errors increase across the board, plausibly due to the noisier in-

ternational data. Secondly, consistent with the idea that the performance of models developed

and tested with a focus on the US does not necessarily translate outside the US, we find that all

the traditional forecasting models underperform relative to a naive random-walk model (RW). For

example, the best-performing traditional model, RI, produces MAFE that are about 3% higher at

the 1-year horizon and 10% higher at the 5-year horizon relative to RW. Finally, consistent with

our US results, XGB produces the lowest MAFE at all horizons, with the improvement relative

to RW ranging from about 9-13%. The relative underperformance of the linear models with the
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complete set of characteristics (Linear, Lasso, and Ridge) again suggests that increasing the number

of predictors without allowing interactions leads to noisier estimates.

4.2..2 Partitions based on the Information Environment

We next focus on subsamples of firms where forecasting is likely to be more challenging or rele-

vant to provide further insights into the relative efficacy of the XGBoost model in the international

context. We consider identical partitioning variables as in our analysis for the US sample — size,

analyst following, and earnings volatility.

Table XXX documents that XGB continues to produce the lowest MAFE for both shorter and

longer horizons across sub-samples. In contrast, the linear models (both the traditional and ML

models) continue to underperform relative to the naive RW model. Panel A presents the analysis

of model forecast errors for samples partitioned by size (market capitalization). Columns (1) – (5)

present the results for small firms. The forecast errors for all models are significantly greater for

smaller firms, with all the linear models, including the ML-based ones, producing MAFEs that are

worse than the RW model. The only exception here is that at the 1-year horizon, the RI model

produces a MAFE of 0.134, which is only marginally better than that of the RW model (0.135).

However, XGBoost continues to outperform the RW model by about 12% at the 1-year and 15%

at the 5-year horizon. Columns (6) – (10) of Panel A present the results for larger firms. The

overall pattern of results stays the same, with XGBoost outperforming the traditional models at

all horizons. However, the relative difference between forecast errors for XGBoost and RW is not

statistically significant for larger firms.

Panel B presents the results of forecast analyses for samples partitioned by the absence or

presence of analyst coverage. Columns (1) — (5) focus on the subgroup of firms without analyst

following, where the performance of forecasting models is critical. Consistent with the international

results thus far, none of the linear forecasting models are able to improve on the naive RW bench-

mark at any horizon. XGBoost outperforms all models across all horizons. XGBoost produces
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MAFE lower than RW by about 8% at the 1-year horizon and 13% at the 5-year horizon. Columns

(6) — (10) present the results of the analyses of the sample of firms with analyst coverage. Partly

reflecting the likely variation in forecasting complexity of this broad sample, XGBoost continues to

outperform the RW model, unlike the sub-sample of larger firms. The magnitude of outperformance

also remains significant, with MAFEs of XGBoost being lower than RW’s by about 9-10% at all

horizons.

Finally, Panel C presents the results of forecast analyses of samples partitioned by lagged

earnings volatility which largely mirrors the results in Panel B. Columns (1) — (5) present results

for the subsample of firms with higher earnings volatility. For this subsample, only XGBoost delivers

earnings forecasts with significantly lower errors than the RW benchmark. All other cross-sectional

models fare worse across all five horizons. The improvement in forecast errors of XGBoost relative

to RW range from about 10% at the 1-year horizon to For one-year-ahead forecasts, XGBoost

generates MAFE of 0.093, which is around 10% better than the MAFE of 0.103 for the RW model.

We see similar strong reduction in MAFE for XGBoost over the two-year to five-year forecast

horizons. We obtain similar results for the sample of firms with lower earnings volatility, reported

in Columns (6) – (10). XGB is the only model to outperform relative to the RW benchmark at any

horizon. XGB’s outperformance is lower in this sample of firms with plausibly easier-to-forecast

earnings, ranging from 4.5% at shorter horizons to about 6% at longer horizons.

Overall, our partition analysis in the international setting again validates the usefulness of the

XGBoost model in contexts where the forecasting problem is likely to be more complex (small firms

or volatile firms) or forecasts are critical (firms without analyst coverage).

4.3. Model Bias

Our tests thus far have focused on forecasting accuracy measured by unsigned forecast error

(MAFE). We now turn our attention to forecast bias. Bias and forecast accuracy are fundamentally

different concepts - bias is a measure of signed error, while forecast accuracy is a measure of unsigned
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error. It is possible for a model with higher MAFE to have lower bias, if the errors ”cancel out”.

Conversely, a model can have a high degree of accuracy and yet be biased. Why might researchers

care about bias? Bias may not be that important if the focus is on the firm-level. However, if the

focus is on the aggregate, e.g. estimating the aggregate market premium as in Claus and Thomas

(2001) or estimating aggregate implied cost of capital as in Li, Ng, and Swaminathan (2013), then

it is important to have unbiased forecasts. Easton and Sommers (2007)) show that ICC estimates

derived from analyst forecasts are systematically biased upwards because the forecasts used to

generate them are optimistically biased.

In our next set of tests, we examine the bias of the forecasts generated by the cross-sectional as

well as the ML models. We define bias as the difference between the predicted earnings forecasts

minus actual earnings , scaled by either price per share (for models that forecast EPS) or market

capitalization (for models that forecast unscaled total earnings). A positive bias indicates that the

forecast is higher than the actual,i.e. optimistic forecasts. Conversely, a negative bias on the other

hand indicates that forecasts are pessimistic. The results are presented in Table 5.

Panel A presents the results for the international sample. Unsurprisingly, the RW model per-

forms poorly, especially as the horizon gets longer. The mean bias increases in magnitude from

-0.016 for one-year-ahead to -0.083 for three-year-ahead forecasts. This is because the static RW

model is inherently pessimistic, as it does not incorporate any growth into its forecasts. Among

the cross-sectional forecasts, the HVZ shows a high level of optimistic bias - i.e. the actual earnings

are considerably less than the forecasted earnings. The EP model also produces optimistically

biased forecasts, but the bias is far less than that of the HVZ model. The cross-sectional model

that performs the best is the RI model for which the mean bias across the three-years are insignifi-

cantly different from zero. The linear model has a high level of bias compared with RI. Among the

ML models, the bias of Lasso and Ridge models is generally comparable to that of the RI model.

XGBoost produce slightly biased forecasts, but the level of bias is relatively low, especially for

one-year and two-year-ahead forecasts. The mean bias for XGBoost is 0.002, -0.002, -0.008, -0.019,
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and -0.034 for the five horizons, respectively. What the bias results indicate is that researchers may

have a trade-off to make with model selection in the US context. The models that produce the least

biased forecasts are not the same as the models that produce the most accurate forecasts. Among

the cross-sectional models, the RI model produces forecasts that are reasonably accurate (Tables

1 and 2) as well as unbiased. Among the ML models, the XGBoost model produces forecasts that

are the most accurate (Tables 1 and 2) and have, what might be considered, an acceptable level of

bias.

Panel B presents the results for the international sample. Here too, the static RW model

performs poorly, especially as the horizon gets longer. The mean bias increases from -0.013 to

-0.054 for one- and five-year-ahead forecasts respectively. Among the cross-sectional forecasts,

the RI model dominates with the least biased forecasts for all three horizons. As for the linear

model, the level bias is also higher than the RI model in the international setting. Among the

ML models, the bias results are very different compared to the US sample. The Lasso and Ridge

models produce extremely biased (optimistic) forecasts. The XGBoost model performs the best,

with unbiased forecasts for all horizons, except for one-year-ahead forecasts. Combining these bias

results with the earlier results for forecast accuracy produces a clear winner in the international

context. The XGBoost model produces the most accurate forecasts (Tables 3 and 4) which are also

mostly unbiased. Among the cross-sectional models, the RI model produces unbiased forecasts, but

the forecast error can often be higher than that of the naive RW model.

4.4. Performance of Model-Based ICCs

Our final set of tests uses the Implied cost of capital (ICC) paradigm to test the quality of

the forecasts. As Mohanram and Gode (2013) show, the poor performance of ICC metrics can

be largely attributed to the poor quality of the forecasts. When forecasts are accurate, the ICCs

generated from them ”perform well” - i.e. they are a reliable measure of expected returns. Li

and Mohanram (2014) test their proposed cross-sectional models (EP and RI) and show that these

26



models generate better ICCs than those from the HVZ model.

Using forecasts from each of the cross-sectional (HVZ, EP and RI) as well as ML models (Lasso,

Ridge, and XGBoost), we generate measures of ICC, which is defined as the average of the ICC

from the GLS,CT, PEG and OJ models. Note that the naive RW model cannot be used to compute

ICC, as it does not provide any estimate of earnings growth which is a prerequisite for two of the

ICC models (PEG and OJ). We test the performance of the ICCs generated from the different

forecasting models using two sets of tests. First, we run univariate regressions of realized returns

on the measure of ICC and test how close the coefficient on the ICC is to the theoretical benchmark

of ”1”. Second, we create portfolios based on the level of ICC and examine the pattern of returns

to see if there is a monotonic relationship between ICC and future returns.

4.4..1 US results

Table 6 presents the results for the sample of US firms. Panel A presents the results of the

univariate regression of ICC on realized returns. Each of the seven models produces ICCs that are

significantly positively correlated with future returns. Among all models, HVZ performs the worst

with the smallest coefficient of 0.493, while the regression coefficients are close to the benchmark

of one for all other models,

Panel B of Table 6 presents the portfolio results for the US sample across deciles of ICC generated

using each of the seven measures. In this table, a model can be deemed to perform well if we find

a significant spread in returns across extreme ICC deciles, and if the spread in realized returns

is comparable to the spread in the ICC. For all seven models, we find significant return spreads

between the lowest and highest ICC deciles. The return spread for HVZ (11.08%) is far lower than

the spread in ICC (28.47%). The performance for all other models are similar and no model stands

out from the crowd. The XGBoost model performs well with a return spread of 14.1% and a spread

in ICC of 10.40%.

Overall, the results from Table 6 highlight the importance of forecast quality for the estimation
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of ICCs. It is not surprising that the models that performs reasonably well in ICC tests (e.g., RI

and XGBoost) also perform well in forecasting errors and bias (Tables 2 and 5).

4.4..2 International results

Table 7 presents the results for the international sample. Panel A presents the results of the

univariate regression of ICC on realized returns. XGBoost is the only model that has a coefficient

indistinguishable from one. RI also has good performance, with the coefficent being only margianlly

different from one. All other models perform poorly. Lasso and Ridge actually show statistically

insignificant correlation with realized returns, and HVZ, EP, and Linear produce coefficients are

relatively far from one.

Panel B of Table 7 presents the portfolio results for the international sample across deciles of

ICC generated using each of the seven measures. These results also mirror the regression results.

HVZ, Linear, Lasso, and Ridge produce return spreads that are much smaller than the spreads in

ICCs. EP and RI models perform moderately with return spreads of 12.21% and 11.02%, though

still smaller than the spreads in ICCs of 16.69% and 19.26%, respectively. XGBoost performs the

best with a return spread of 10.27%, which is comparable to the spread in ICC of 1225%.

The results from Table 7 highlight an important contribution of this paper. One particular

model, the XGBoost model, dominates all other models in its ability to generate the most accurate

and least biased forecasts, in the international setting where information environment is relatively

poor. Unsurprisingly, it also generates ICCs that perform the best.

5. Conclusion

In this paper, we test whether recently developed machine learning (ML) techniques can help

researchers seeking to generate accurate and unbiased forecasts of future earnings, and whether

these forecasts can lead to better estimates of implied cost of capital (ICC). We examine these

questions, not just in US firms like most prior research, but also in an international sample. We
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consider three ML models - Lasso regression, Ridge regression, and Extreme Gradient Boosting

(XGboost). We benchmark the performance of these models against both a naive random walk

(RW) model as well as extant cross-sectional models of forecasting, specifically the HVZ model

from Hou et al. (2012) and the earnings persistence (EP) and residual income (RI) models from Li

and Mohanram (2014). We also benchmark the machine-learning models against a simple linear

model with augmented set of 60 predictors

Within the US sample, we find that the XGBoost Model performs well, generating forecasts

with the greatest ex-post accuracy. The EP and RI models also perform reasonably well, while

the HVZ, Lasso and Ridge models perform poorly. The improvements generated by the XGBoost

model, while not dramatic, are concentrated in the important subgroups of small firms and firms

with volatile earnings. However, it is in the international sample where one ML model, the XGBoost

model, really shines in its ability to generate forecasts with dramatically better forecasting accuracy.

The results from ICC tests mirror the forecast accuracy tests - with the XGBoost model performing

the strongest, especially for international firms.

The results of this paper have important methodological contributions for researchers in finance

and accounting, striving to generate accurate earnings forecasts and reliable measures of expected

risk. We recommend that future research use the XGBoost model to generate estimates of future

earnings as well as ICC. This recommendation is particularly important in the subset of interna-

tional earnings for two reasons. First, our results show that the cross-sectional models that perform

moderately well in the US sample, do not fare as well internationally. Second, the problem of scarce

coverage and volatile earnings is likely to more severe in international settings, and these are some

of the subsamples in which the XGBoost model does extremely well. Moreover, our paper extends

prior studies that use machine-learning based techniques to forecast earnings. Prior research mostly

employs models such as random forest or gradient boosting models, which takes significant amount

of time and computing power to execute. Our paper builds on the recent innovation in the machine

learning field and show that the XGBoost model is able to achieve superior forecasting performance
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with much lower demand for computing resources.

We must mention that ours is only a first attempt at showing that ML models can add a lot of

value in both forecasting space as well as the estimation of ICC. In fact, one can view our results

as a lower bound of what ML models can do. We have used a simple and static (though reasonably

exhaustive) set of potential explanatory variables in our estimation models. Using a wider set of

variables, including non-financial variables as well as market-based signals, might also increase the

accuracy of the forecasts and the performance of the ICCs from these forecasts. We leave this

question for future research to examine.
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Appendix: Description of Models and Variables

This table describes the models used for generating earnings forecasts and computations of ICCS, and defines the
variables used in earnings forecast models, including traditional models (e.g., HVZ, EP, and RI) and machine learning
models. All variables are obtained from Compustat North America or Compustat Global; non-U.S. fundamental data
are converted to U.S. dollars using Compustat’s exchange-rate file.

Variable Description Computation

A1. Earnings Forecasting Models

Models Estimated

HV Z Generate earnings forecasts us-
ing the model of Hou et al.
(2012)

E[Ei,t+τ ] = β0 + β1Ai,t + β2Di,t + β3DDi,t + β4Ei,t

+ β5Neg Ei,t + β6ACCRUALi,t + ϵi,t

EP Generate earnings forecasts us-
ing the model of Li and Mohan-
ram (2014)

E[Ei,t+τ ] = β0 + β1Ei,t + β2Neg Ei,t + β3Neg Ei,t × Ei,t + ϵi,t

RI Generate earnings forecasts us-
ing the model of Li and Mohan-
ram (2014)

E[Ei,t+τ ] = β0 + β1Ei,t + β2Neg Ei,t + β3Neg Ei,t × Ei,t

+ β4Bi,t + β5TACCi,t + ϵi,t

A2. Computation of ICCS

Valuation Models

ICCGLS Re computed using the model in
Gebhardt et al. (2001)

Pi,t = Bi,t +
11∑

τ=1

Et[Ei,t+τ ] − (Re − 1) × Et[Bi,t+τ−1]

(Re)τ

+
Et[Ei,t+12] − (Re − 1) × Et[Bi,t+11]

(Re − 1)(Re)11

ICCCT Re computed using the model in
Claus and Thomas (2001)

Pi,t = Bi,t +
3∑

τ=1

Et[Ei,t+τ ] − (Re − 1) × Et[Bi,t+τ−1]

(Re)τ

+
Et[Ei,t+3] − (Re − 1) × Et[Bi,t+2]

((Re − 1) − g)(Re)3
(1 + g)

ICCPEG Re computed using the “PEG”
model in Easton (2004)

Re = 1 +

√
Ei,t+2 − Ei,t+1

Pi,t

ICCOJ Re computed using the model
in Ohlson and Juettner-Nauroth
(2005)

Pt =
Et+1

(Re − 1)
+

Et+1(Et+2 + (Re − 1)Dt+1 − (Re)Et+1)

(Re − 1)(Re − 1) −
Et+3+(Re−1)Dt+2−ReIt+2
Et+2+(Re−1)Dt+1−ReEt+1

)

A3. Definitions of Variables in the HVZ Model

Ei,t+τ Earnings in year t+τ ib-spi

At Total assets in year t at
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Variable Description Computation

Dt Dividend payment in year t dvc

DDt Dividend Payer Indicator An indicator variable that equals 1 if dividend is
higher than 0

Neg Et Negative earnings indicator An indicator variable that equals 1 for firms with neg-
ative earnings

Accruals Accruals Change in non-cash current assets (act - che) minus
change in current liabilities excluding short-term debt
and taxes payable (lct - dlc - txp) minus depreciation
and amortization (dp)

A4. Definitions of Variables in EP and RI Models

Ei,t+τ Earnings per share in year t+τ ((ib-spi)/csho

Neg Et Negative earnings indicator An indicator variable that equals 1 for firms with neg-
ative earnings

B Book value of equity per share ceq/csho

TACC Total accruals Sum of the change in WC ((act - che) - (lct - dlc)),
change in NCO ((at - act - ivao) - (lt - lct - dltt)), and
change in FIN ((ivst + ivao) - (dltt + dlc + pstk))

A5. Definitions of Variables in Machine Learning Models

Sale Total sales sale/csho

COGS Cost of goods sold cogs/csho

XSGA Selling, general, and adminis-
trative expenses

xsga/csho

XAD Advertising expense xad/csho

XRD Research and development ex-
pense

xrd/csho

DP Depreciation and amortization dp/csho

XINT Interest and related expense xint/csho

NOPIO Non-operating income expense nopio/csho

TXT Income taxes txt/csho

XIDO Extraordinary items and dis-
continued operations

xido/csho

EPS Earnings (ib - spi)/csho

DV C Common dividend dvc/csho

CHE Cash and short-term invest-
ments

che/csho

INV T Inventories invt/csho

RECT Receivables rect/csho

ACT Total current assets act/csho
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Variable Description Computation

PPENT Property, plant, and equipment
(Net)

ppent/csho

IV AO Investments and advances ivao/csho

INTAN Intangible assets intan/csho

AT Total assets at/csho

AP Accounts payable ap/csho

DLC Debt in current liabilities dlc/csho

TXP Income taxes payable txp/csho

LCT Total current liabilities lct/csho

DLTT Long-term debt dltt/csho

LT Total liabilities lt/csho

CEQ CommonOrdinary equity ceq/csho

CFO Cash flow from operating activ-
ities

(oancf - xidoc)/csho

GDP Growth GDP Growth Rate

Unemployment Unemployment Rate

IPT Growth Growth in total industrial pro-
duction

Consumption Growth Consumption Growth Rate
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Table 1. Forecasting Performance for the US Sample

This table presents the time-series average of the mean absolute forecasting errors (MAFE) using the US sample
for both traditional models and machine learning models. Forecasting error for the HVZ model is calculated as the
absolute value of the difference between forecast earnings and actual earnings, scaled by market value of equity at the
fiscal year end. Forecasting error for all other models (RW, EP, RI, Linear, Lasso, Ridge, and XGBoost) is calculated
as the absolute value of the difference between forecast earnings per share and actual earnings per share, scaled by
the stock price at the prior fiscal year end. The t-statistics are reported in the parentheses. ***, **, and * denote
significance at the 1%, 5% and 10% levels, respectively

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5
(1) (2) (3) (4) (5)

Model Mean Mean Mean Mean Mean

HVZ 0.081*** 0.127*** 0.168*** 0.208*** 0.255***
RW 0.065*** 0.093*** 0.116*** 0.139*** 0.163***
EP 0.060*** 0.082*** 0.101*** 0.120*** 0.140***
RI 0.060*** 0.080*** 0.097*** 0.115*** 0.135***
Linear 0.063*** 0.092*** 0.113*** 0.128*** 0.152***
Lasso 0.059*** 0.082*** 0.102*** 0.121*** 0.141***
Ridge 0.059*** 0.081*** 0.101*** 0.120*** 0.140***
XGB 0.056*** 0.076*** 0.094*** 0.112*** 0.133***

Comparison

XGB - RW -0.009*** -0.017*** -0.022*** -0.027*** -0.030***
XGB - EP -0.004*** -0.006*** -0.007*** -0.008*** -0.008***
XGB - RI -0.004*** -0.004*** -0.003*** -0.003*** -0.002*
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Table 2. Forecasting Performance in the US: Sub-sample Analyses

This table presents the time-series average of the mean absolute forecasting errors of the traditional and machine learning models for sub-samples
within the US. Panels A, B, and C reports results of the sample partitioned by firm size, analyst coverage, and earnings volatility, respectively.
Forecasting error for the HVZ model is calculated as the absolute value of the difference between forecast earnings and actual earnings, scaled
by market value of equity at the fiscal year end. Forecasting error for all other models (RW, EP, RI, Lasso, Ridge, and XGBoost) is calculated
as the absolute value of the difference between forecast earnings per share and actual earnings per share, scaled by the stock price at the fiscal
year end. The t-statistics are reported in the parentheses. ***, **, and * denote significance at the 1%, 5% and 10% levels, respectively

Panel A: Partition Analyses by Firm Size

Small Firms Large Firms

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 1 t+ 2 t+ 3 t+ 4 t+ 5
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Model Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

HVZ 0.125*** 0.202*** 0.271*** 0.342*** 0.424*** 0.038*** 0.057*** 0.072*** 0.087*** 0.106***
RW 0.092*** 0.131*** 0.163*** 0.196*** 0.228*** 0.039*** 0.058*** 0.073*** 0.089*** 0.105***
EP 0.084*** 0.114*** 0.141*** 0.169*** 0.198*** 0.037*** 0.052*** 0.064*** 0.077*** 0.090***
RI 0.083*** 0.110*** 0.133*** 0.158*** 0.186*** 0.038*** 0.052*** 0.064*** 0.077*** 0.091***
Linear 0.089*** 0.132*** 0.162*** 0.181*** 0.212*** 0.038*** 0.055*** 0.068*** 0.080*** 0.099***
Lasso 0.081*** 0.112*** 0.140*** 0.167*** 0.194*** 0.037*** 0.054*** 0.067*** 0.080*** 0.094***
Ridge 0.081*** 0.111*** 0.137*** 0.164*** 0.193*** 0.037*** 0.054*** 0.067*** 0.080*** 0.095***
XGB 0.077*** 0.103*** 0.127*** 0.151*** 0.178*** 0.036*** 0.052*** 0.064*** 0.077*** 0.092***

Comparison

XGB - RW -0.015*** -0.028*** -0.036*** -0.045*** -0.050*** -0.003*** -0.006*** -0.010*** -0.012*** -0.013***
XGB - EP -0.007*** -0.011*** -0.014*** -0.018*** -0.019*** -0.001*** -0.001 -0.000 0.001 0.002*
XGB - RI -0.006*** -0.007*** -0.006*** -0.007*** -0.007*** -0.002*** -0.001* -0.001 0.000 0.002*
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Table 2. (Continued)

Panel B: Partition Analyses by Analyst Coverage

No Coverage With Coverage

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 1 t+ 2 t+ 3 t+ 4 t+ 5
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Model Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

HVZ 0.111*** 0.181*** 0.242*** 0.300*** 0.366*** 0.055*** 0.084*** 0.103*** 0.126*** 0.155***
RW 0.079*** 0.112*** 0.139*** 0.166*** 0.193*** 0.054*** 0.078*** 0.098*** 0.112*** 0.134***
EP 0.075*** 0.102*** 0.126*** 0.150*** 0.175*** 0.051*** 0.065*** 0.080*** 0.097*** 0.104***
RI 0.074*** 0.098*** 0.119*** 0.140*** 0.165*** 0.051*** 0.063*** 0.077*** 0.093*** 0.101***
Linear 0.079*** 0.117*** 0.143*** 0.158*** 0.184*** 0.050*** 0.068*** 0.083*** 0.097*** 0.105***
Lasso 0.072*** 0.100*** 0.125*** 0.149*** 0.173*** 0.048*** 0.062*** 0.078*** 0.094*** 0.104***
Ridge 0.072*** 0.099*** 0.123*** 0.147*** 0.172*** 0.048*** 0.063*** 0.077*** 0.093*** 0.104***
XGB 0.069*** 0.092*** 0.113*** 0.134*** 0.159*** 0.047*** 0.060*** 0.073*** 0.088*** 0.098***

Comparison

XGB - RW -0.010*** -0.020*** -0.026*** -0.032*** -0.035*** -0.007*** -0.019*** -0.025*** -0.024*** -0.036**
XGB - EP -0.006*** -0.010*** -0.013*** -0.016*** -0.016*** -0.004*** -0.006*** -0.008** -0.009** -0.006**
XGB - RI -0.005*** -0.006*** -0.006*** -0.006*** -0.006*** -0.004*** -0.004*** -0.004*** -0.005* -0.002**
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Table 2. (Continued)

Panel C: Partition Analyses by Earnings Volatility

High Volatility Low Volatility

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 1 t+ 2 t+ 3 t+ 4 t+ 5
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Model Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

HVZ 0.102*** 0.160*** 0.207*** 0.248*** 0.295*** 0.055*** 0.085*** 0.113*** 0.139*** 0.170***
RW 0.083*** 0.117*** 0.142*** 0.168*** 0.192*** 0.046*** 0.068*** 0.089*** 0.109*** 0.130***
EP 0.081*** 0.108*** 0.129*** 0.151*** 0.171*** 0.042*** 0.058*** 0.073*** 0.088*** 0.104***
RI 0.080*** 0.104*** 0.122*** 0.142*** 0.161*** 0.042*** 0.058*** 0.073*** 0.088*** 0.103***
Linear 0.081*** 0.118*** 0.144*** 0.158*** 0.172*** 0.043*** 0.063*** 0.078*** 0.092*** 0.108***
Lasso 0.076*** 0.103*** 0.126*** 0.148*** 0.168*** 0.041*** 0.059*** 0.075*** 0.091*** 0.107***
Ridge 0.075*** 0.102*** 0.124*** 0.146*** 0.166*** 0.041*** 0.059*** 0.075*** 0.091*** 0.107***
XGB 0.074*** 0.097*** 0.114*** 0.135*** 0.159*** 0.040*** 0.058*** 0.072*** 0.088*** 0.105***

Comparison

XGB - RW -0.009*** -0.020*** -0.028*** -0.033*** -0.034*** -0.006*** -0.011*** -0.017*** -0.021*** -0.024***
XGB - EP -0.006*** -0.011*** -0.015*** -0.016*** -0.012*** -0.002*** -0.001 -0.001** -0.000 0.001
XGB - RI -0.006*** -0.007*** -0.008*** -0.007*** -0.002 -0.002*** -0.001 -0.001*** -0.000 0.002*
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Table 3. Forecasting Performance for the International Sample

This table presents the time-series average of the MAFE in our international sample for both traditional models and
machine learning models. Forecasting error for the HVZ model is calculated as the absolute value of the difference
between forecast earnings and actual earnings, scaled by market value of equity at the fiscal year end. Forecasting
error for all other models (RW, EP, RI, Lasso, Ridge, and XGBoost) is calculated as the absolute value of the
difference between forecast earnings per share and actual earnings per share, scaled by the stock price at the fiscal
year end. The t-statistics are reported in the parentheses. ***, **, and * denote significance at the 1%, 5% and 10%
levels, respectively

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5
(1) (2) (3) (4) (5)

Model Mean Mean Mean Mean Mean

HVZ 0.141*** 0.200*** 0.260*** 0.320*** 0.370***
RW 0.090*** 0.109*** 0.118*** 0.126*** 0.138***
EP 0.100*** 0.127*** 0.139*** 0.152*** 0.168***
RI 0.093*** 0.119*** 0.127*** 0.138*** 0.152***
Linear 0.127*** 0.171*** 0.192*** 0.201*** 0.215***
Lasso 0.144*** 0.186*** 0.216*** 0.226*** 0.221***
Ridge 0.152*** 0.204*** 0.246*** 0.271*** 0.344***
XGB 0.082*** 0.095*** 0.104*** 0.111*** 0.124***

Comparison

XGB - RW -0.008*** -0.014*** -0.014*** -0.015*** -0.014***
XGB - EP -0.019*** -0.032*** -0.033*** -0.036*** -0.044***
XGB - RI -0.011*** -0.024*** -0.021*** -0.023*** -0.028***
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Table 4. Forecasting Performance Internationally: Sub-sample Analyses

This table presents the time-series average of the MAFE of the traditional and machine learning models for sub-samples within the international
data. Panels A, B, and C reports results of the sample partitioned by firm size, analyst coverage, and earnings volatility, respectively. Forecasting
error for the HVZ model is calculated as the absolute value of the difference between forecast earnings and actual earnings, scaled by market
value of equity at the fiscal year end. Forecasting error for all other models (RW, EP, RI, Lasso, Ridge, and XGBoost) is calculated as the
absolute value of the difference between forecast earnings per share and actual earnings per share, scaled by the stock price at the fiscal year
end. The t-statistics are reported in the parentheses. ***, **, and * denote significance at the 1%, 5% and 10% levels, respectively

Panel A: Partition Analyses by Firm Size

Small Firms Large Firms

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 1 t+ 2 t+ 3 t+ 4 t+ 5
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Model Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

HVZ 0.239*** 0.351*** 0.459*** 0.592*** 0.730*** 0.045*** 0.057*** 0.069*** 0.074*** 0.080***
RW 0.135*** 0.163*** 0.174*** 0.196*** 0.214*** 0.045*** 0.058*** 0.066*** 0.070*** 0.079***
EP 0.144*** 0.179*** 0.197*** 0.219*** 0.255*** 0.058*** 0.079*** 0.083*** 0.091*** 0.099***
RI 0.134*** 0.166*** 0.179*** 0.198*** 0.230*** 0.053*** 0.074*** 0.078*** 0.084*** 0.091***
Linear 0.179*** 0.238*** 0.265*** 0.287*** 0.305*** 0.076*** 0.109*** 0.122*** 0.132*** 0.145***
Lasso 0.204*** 0.260*** 0.303*** 0.325*** 0.317*** 0.089*** 0.119*** 0.140*** 0.153*** 0.147***
Ridge 0.212*** 0.283*** 0.341*** 0.386*** 0.494*** 0.096*** 0.133*** 0.162*** 0.186*** 0.235***
XGB 0.120*** 0.136*** 0.146*** 0.164*** 0.183*** 0.045*** 0.057*** 0.065*** 0.069*** 0.078***

Comparison

XGB - RW -0.016*** -0.028*** -0.028*** -0.032*** -0.031*** -0.000 -0.002 -0.002 -0.001 -0.001
XGB - EP -0.024*** -0.043*** -0.050*** -0.055*** -0.072*** -0.013*** -0.022*** -0.017*** -0.019*** -0.021***
XGB - RI -0.014*** -0.031*** -0.031*** -0.034*** -0.047*** -0.009*** -0.017*** -0.011*** -0.012*** -0.013***
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Table 4. (Continued)

Panel B: Partition Analyses by Analyst Coverage

No Coverage With Coverage

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 1 t+ 2 t+ 3 t+ 4 t+ 5
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Model Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

HVZ 0.224*** 0.332*** 0.425*** 0.555*** 0.656*** 0.098*** 0.133*** 0.163*** 0.193*** 0.244***
RW 0.116*** 0.143*** 0.155*** 0.175*** 0.195*** 0.076*** 0.092*** 0.098*** 0.104*** 0.116***
EP 0.127*** 0.157*** 0.176*** 0.198*** 0.226*** 0.087*** 0.113*** 0.117*** 0.128*** 0.144***
RI 0.118*** 0.147*** 0.161*** 0.181*** 0.206*** 0.081*** 0.105*** 0.108*** 0.116*** 0.130***
Linear 0.164*** 0.211*** 0.240*** 0.262*** 0.268*** 0.107*** 0.151*** 0.161*** 0.172*** 0.192***
Lasso 0.179*** 0.226*** 0.270*** 0.289*** 0.277*** 0.128*** 0.167*** 0.182*** 0.200*** 0.197***
Ridge 0.190*** 0.250*** 0.300*** 0.337*** 0.411*** 0.133*** 0.182*** 0.211*** 0.245*** 0.314***
XGB 0.107*** 0.125*** 0.138*** 0.157*** 0.169*** 0.069*** 0.080*** 0.084*** 0.090*** 0.104***

Comparison

XGB - RW -0.009*** -0.018*** -0.017*** -0.018*** -0.026*** -0.007*** -0.012*** -0.014*** -0.014*** -0.012**
XGB - EP -0.020*** -0.032*** -0.037*** -0.040*** -0.057*** -0.018*** -0.033*** -0.030*** -0.034*** -0.040***
XGB - RI -0.011*** -0.022*** -0.022*** -0.023*** -0.037*** -0.012*** -0.025*** -0.020*** -0.022*** -0.026***
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Table 4. (Continued)

Panel C: Partition Analyses by Earnings Volatility

High Volatility Low Volatility

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 1 t+ 2 t+ 3 t+ 4 t+ 5
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Model Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

HVZ 0.182*** 0.264*** 0.329*** 0.392*** 0.507*** 0.090*** 0.127*** 0.159*** 0.198*** 0.240***
RW 0.103*** 0.124*** 0.131*** 0.137*** 0.157*** 0.066*** 0.083*** 0.094*** 0.105*** 0.113***
EP 0.116*** 0.144*** 0.154*** 0.165*** 0.201*** 0.079*** 0.104*** 0.109*** 0.124*** 0.136***
RI 0.106*** 0.133*** 0.140*** 0.149*** 0.181*** 0.074*** 0.097*** 0.101*** 0.114*** 0.124***
Linear 0.151*** 0.194*** 0.204*** 0.218*** 0.257*** 0.104*** 0.146*** 0.158*** 0.178*** 0.187***
Lasso 0.160*** 0.204*** 0.221*** 0.238*** 0.251*** 0.117*** 0.156*** 0.175*** 0.206*** 0.191***
Ridge 0.175*** 0.229*** 0.256*** 0.299*** 0.395*** 0.123*** 0.171*** 0.206*** 0.245*** 0.309***
XGB 0.093*** 0.105*** 0.110*** 0.115*** 0.143*** 0.063*** 0.076*** 0.086*** 0.097*** 0.106***

Comparison

XGB - RW -0.010*** -0.019*** -0.022*** -0.022*** -0.014 -0.003* -0.007** -0.008*** -0.008** -0.007*
XGB - EP -0.023*** -0.039*** -0.040*** -0.046*** -0.058*** -0.016*** -0.028*** -0.024*** -0.027*** -0.031***
XGB - RI -0.013*** -0.028*** -0.026*** -0.029*** -0.039*** -0.011*** -0.021*** -0.016*** -0.017*** -0.019***
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Table 5. Forecasting Bias

This table presents the time-series average of the mean forecasting bias for both the traditional and machine learning
models. Panel A reports results for the US sample while Panel B reports results for the international sample.
Forecasting bias for the HVZ model is calculated as the difference between forecast and actual earnings, scaled by
market value of equity at the fiscal year end. Forecasting bias for all other models (RW, EP, RI, Lasso, Ridge, and
XGBoost) is calculated as the difference between forecast earnings per share and actual earnings per share, scaled
by the stock price at the fiscal year end. The t-statistics are reported in the parentheses. ***, **, and * denote
significance at the 1%, 5% and 10% levels, respectively

Panel A: Forecasting Bias for the US Sample

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5
(1) (2) (3) (4) (5)

Model Mean Mean Mean Mean Mean

HVZ 0.034*** 0.066*** 0.092*** 0.115*** 0.146***
RW -0.016*** -0.032*** -0.048*** -0.065*** -0.083***
EP 0.010*** 0.013*** 0.013*** 0.011** 0.006
RI 0.004** 0.003 -0.002 -0.009 -0.017**
Linear 0.013*** 0.027*** 0.025*** 0.011* -0.024**
Lasso 0.004* 0.002 0.000 -0.005 -0.017**
Ridge 0.005*** 0.002 -0.002 -0.009 -0.020***
XGB 0.002 -0.002 -0.008** -0.019*** -0.034***

Panel B: Forecasting Bias for the International Sample

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5
(1) (2) (3) (4) (5)

Model Mean Mean Mean Mean Mean

HVZ 0.082*** 0.138*** 0.198*** 0.253*** 0.304***
RW -0.013*** -0.027*** -0.036*** -0.042*** -0.054***
EP 0.039*** 0.050*** 0.051*** 0.061*** 0.070***
RI 0.021*** 0.026*** 0.025** 0.032*** 0.040***
Linear 0.047*** 0.088*** 0.089*** 0.068*** 0.064**
Lasso 0.040*** 0.033 0.064*** 0.075*** 0.080***
Ridge 0.033** 0.041* 0.093*** 0.117*** 0.144***
XGB 0.013*** 0.006 0.003 -0.003 -0.007
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Table 6. Performance of Model-Based ICCs for the US Sample

This table presents the performance of model-based ICCs for the US sample. The implied cost of capital is computed
as the average value based on four models, GLS, CT, PEG, and OJ. Panel A presents the univariate Fama-MacBeth
regression results, with one-year-ahead realized return as the dependent variable and the anuual model-based ICC as
the independent variable. Panel B presents the results of firms sorted into deciles by the annual model-based ICCs.
The odd columns in Panel B report the equal-weighted mean anuual ICC of the portfolios, while the even columns
report the equal-weighted mean realized annual returns of the portfolios. The last rows of Panel B report results of
the spread between the highest and lowest decile of firms. The t-statistics are reported in the parentheses. ***, **,
and * denote significance at the 1%, 5% and 10% levels, respectively.

Panel A: Regression Analyses

(1) (2) (3) (4) (5) (6)

Model
Slope
Coeff

t-stat Intercept t-stat R2 F -test for
Slope = 1

HVZ 0.493*** [5.17] 0.028 [1.19] 0.019 28.12***
EP 1.007*** [4.66] 0.005 [0.23] 0.020 0.00
RI 1.054*** [5.19] 0.009 [0.41] 0.018 0.07
Lasso 1.125*** [4.57] 0.013 [0.65] 0.022 0.26
Linear 1.118*** [4.72] 0.013 [0.65] 0.021 0.25
Ridge 1.135*** [4.47] 0.011 [0.57] 0.022 0.28
XGB 1.153*** [4.77] 0.009 [0.43] 0.022 0.40
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Table 6. (Continued)

Panel B: Portfolio Analyses

HVZ RI EP Linear Lasso Ridge XGB
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Decile ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

1 4.57 6.96 4.64 6.76 4.01 5.67 4.05 5.20 4.09 5.13 4.06 4.91 3.97 4.22
2 6.86 6.14 5.75 7.06 5.32 6.26 5.29 8.41 5.18 6.88 5.12 7.25 5.11 7.36
3 8.24 6.73 6.40 7.01 5.98 7.39 5.97 8.38 5.79 8.25 5.74 7.86 5.74 7.66
4 9.45 7.40 6.95 8.43 6.57 8.57 6.60 7.32 6.38 7.91 6.30 8.82 6.34 9.02
5 10.62 8.57 7.53 8.27 7.18 8.37 7.28 10.04 6.98 8.99 6.89 8.81 6.93 8.61
6 12.04 8.84 8.21 9.95 7.87 10.38 8.03 9.77 7.68 12.06 7.58 11.82 7.61 10.01
7 13.79 9.97 9.03 10.77 8.71 12.68 9.00 11.77 8.59 11.28 8.46 11.64 8.39 10.48
8 16.42 12.18 10.13 11.03 9.77 10.79 10.30 12.40 9.83 11.69 9.68 11.95 9.42 11.60
9 20.74 16.13 11.88 12.67 11.36 12.58 12.23 12.89 11.67 14.07 11.53 13.99 10.94 14.05
10 33.03 18.04 16.53 19.01 15.10 18.62 17.01 20.60 15.98 20.50 15.80 19.73 14.36 18.32

Spread 28.47*** 11.08*** 11.89*** 12.25*** 11.09*** 12.95*** 12.96*** 15.40*** 11.89*** 15.37*** 11.74*** 14.82*** 10.40*** 14.10***
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Table 7. Performance of Model-Based ICCs for the International Sample

Panel A: Regression Analyses

This table presents the performance of model-based ICCs for the international sample. The implied cost of capital
is computed as the average value based on four models, GLS, CT, PEG, and OJ. Panel A presents the univariate
Fama-MacBeth regression results, with one-year-ahead realized return as the dependent variable and the anuual
model-based ICC as the independent variable. Panel B presents the results of firms sorted into deciles by the annual
model-based ICCs. The odd columns in Panel B report the equal-weighted mean anuual ICC of the portfolios, while
the even columns report the equal-weighted mean realized annual returns of the portfolios. The last rows of Panel
B report results of the spread between the highest and lowest decile of firms. The t-statistics are reported in the
parentheses. ***, **, and * denote significance at the 1%, 5% and 10% levels, respectively.

(1) (2) (3) (4) (5) (6)

Model
Slope
Coeff

t-stat Intercept t-stat R2 F -test for
Slope = 1

HVZ 0.103** [2.28] 0.058 [1.53] 0.004 394.75***
EP 0.498*** [4.01] 0.026 [0.59] 0.008 16.25***
RI 0.742*** [5.76] 0.016 [0.38] 0.009 4.00*
Lasso 0.186 [1.40] 0.055 [1.09] 0.008 37.53***
Linear 0.170* [1.73] 0.059 [1.44] 0.006 71.36***
Ridge 0.098 [1.22] 0.058 [1.25] 0.005 124.96***
XGB 0.722*** [3.72] 0.022 [0.49] 0.009 2.05
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Table 7. (Continued)

Panel B: Portfolio Analyses

HVZ RI EP Linear Lasso Ridge XGB
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Decile ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

1 2.91 3.46 2.22 1.40 1.83 0.83 1.94 6.20 2.03 4.88 2.10 4.60 2.09 1.65
2 5.09 5.10 4.37 3.98 3.58 3.63 3.24 7.67 3.34 7.73 3.63 6.58 3.33 4.10
3 6.69 5.44 5.73 3.69 4.73 3.80 4.44 6.87 4.65 6.92 5.13 6.26 4.19 6.23
4 8.26 6.43 6.83 6.83 5.71 5.06 5.79 6.25 6.17 6.35 6.85 6.54 5.01 6.45
5 10.00 7.63 7.90 6.23 6.68 6.59 7.36 6.52 7.87 6.31 8.68 7.69 5.84 6.88
6 12.08 7.61 9.06 8.53 7.72 7.39 9.24 5.55 9.77 6.15 10.78 6.98 6.71 7.71
7 14.70 8.63 10.39 8.17 8.94 9.42 11.65 6.72 12.00 7.27 13.32 7.76 7.68 8.44
8 18.55 9.99 12.11 10.42 10.52 10.01 14.89 7.51 14.83 6.90 16.80 7.80 8.85 8.21
9 25.62 9.09 14.68 10.75 12.80 12.67 19.57 7.58 18.91 8.16 21.94 7.52 10.47 9.78
10 46.85 9.03 21.48 12.42 18.52 13.04 29.73 10.48 27.89 10.17 33.50 9.12 14.34 11.92

Spread 43.94*** 5.57** 19.26*** 11.02*** 16.69*** 12.21*** 27.79*** 4.29 25.86*** 5.29 31.40*** 4.52* 12.25*** 10.27***
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