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Abstract

Using a flexible modeling approach that avoids imposing restrictive parametric assump-

tions, we find evidence of a clear non-monotonic relation between risk and expected

returns: At low-to-medium levels of conditional volatility there is a positive trade-off

between risk and expected returns, but this relationship gets inverted at high levels of

conditional volatility as observed during the recent financial crisis. Our finding of a non-

monotonic risk-return relation helps resolve why some empirical studies find a negative

risk-return relation, while others find a positive risk-return trade-off.
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1 Introduction

The notion of a systematic trade-off between risk and expected returns is central to

modern finance. Yet, despite more than two decades of empirical research, there is little

consensus on the basic properties of the relation between the equity premium and con-

ditional stock market volatility. Studies such as Campbell (1987), Breen, Glosten, and

Jagannathan (1989), Glosten, Jagannathan, and Runkle (1993), Whitelaw (1994), and

Brandt and Kang (2004) find a negative trade-off, while conversely French, Schwert, and

Stambaugh (1987), Bollerslev, Engle, and Wooldridge (1988), Harvey (1989), Ghysels,

Santa-Clara, and Valkanov (2005) and Ludvigson and Ng (2007) find a positive trade-

off. While these studies use different methodologies and sample periods, it remains a

puzzle why empirical results vary so much.

Theoretical asset pricing models do not in general imply a linear or even monotonic,

risk-return relationship. For example, in the context of a simple endowment economy,

Backus and Gregory (1993) show that the shape of the relation between the risk premium

and the conditional variance of stock returns is largely unrestricted with increasing,

decreasing, flat, or non-monotonic patterns all being possible. In fact, the risk-return

trade-off depends in a complicated way on agents’ preferences and the probabilities of

transitioning across states. Similar results are derived in Abel (1988), Gennotte and

Marsh (1993) and Veronesi (2000).

Inference on the risk-return relation is mostly conducted by studying the relation

between the conditional mean and the conditional volatility of stock returns. This

introduces two possible sources of bias. First, it follows from the ambiguity of the

risk-return relation suggested by asset pricing models that empirical analysis based

on restrictive assumptions (such as linearity) on the risk-return trade-off may produce

biased results. Second, neither the conditional mean nor the conditional volatility of

stock returns is observed, so in practice model-based proxies must be used for these.

This introduces model and estimation errors and opens up another possibility, namely

that the functional form of the models used to generate expected returns and conditional

volatility is misspecified. Again this might lead to biases in the subsequent risk-return

analysis.

Both explanations have received little attention in the literature. The main reason

is that it is difficult to entertain a flexible functional form for the conditional mean

and volatility models while simultaneously considering a reasonably large conditioning

information set−a point recently emphasized by Ludvigson and Ng (2007). For example,

non-parametric regression methods would quickly run into difficulties for even small

subsets of the potentially relevant state variables considered in models of the expected

return or variance.

We address this concern in the present paper by adopting a flexible regression ap-

proach to model the risk-return trade-off. The approach uses regression trees to carve

out the state space through a sequence of piece-wise constant models that approximate

the unknown shape of the risk-return relation. By using additive expansions of simple

regression trees−a process known as boosting− a smooth and stable estimate of the

shape of the risk-return relation can be obtained. Such boosted regression trees are
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capable of dealing with large sets of predictor variables without imposing strong as-

sumptions such as linearity on the risk-return relation or on the underlying models used

to generate estimates of expected returns and conditional volatility. The approach ac-

complishes variable selection and model estimation by assigning weights to the predictor

variables used to model time-variations in the conditional mean and variance.1 Due to

its flexibility, this modeling approach is less likely to lead to biased inference than linear

model specifications.

We adopt this approach to analyze the risk-return relation using monthly data on

US stock returns over the period 1927-2008. The most important empirical findings

from our analysis are as follows. First, we find that only few of the variables considered

in the literature on predictability of stock returns (see, e.g., Welch and Goyal (2008)

for a recent analysis) have predictive power, with inflation, the earnings-price ratio and

the T-bill rate all playing important roles. Moreover, in many cases the effect of the

predictor variables on the expected return is non-linear. For example, starting from a

state with deflation, rising consumer prices are associated with higher expected returns.

This turns into a steep negative relationship at positive levels of inflation. Hence, rising

consumer prices are good news in a deflationary state but bad news when the economy

is already running inflation.

Past volatility dominates the forecasts of realized volatility. This is unsurprising since

our analysis is based on realized volatility which is quite persistent through time (Schwert

(1989)). Nevertheless, variables such as the dividend payout ratio, past returns and the

default spread also help improve the volatility forecasts. Again we see a pronounced

non-linear relation between the realized volatility and the state variables. This typically

shows up in the form of dampened effects on future volatility when the predictor values

are unusually small or large. For example, higher current volatility leads to higher

predicted volatility only up to a certain point beyond which further increases in the

conditional volatility have no additional effect on the volatility forecast.

Overfitting is a potential hazard when applying flexible modeling approaches. To

verify that this is not a concern for our analysis, we consider the out-of-sample forecast-

ing performance of the return and volatility models. Boosted regression trees are found

to produce more precise forecasts of both returns and realized volatility than competing

approaches such as linear regressions, GARCH models or models based on past realized

volatility.

Turning to the empirical risk-return relation, we find strong evidence of a non-linear

relationship between variations in the conditional mean and volatility. At high levels of

volatility, the relationship appears to be flat or inverted−i.e., higher levels of conditional

volatility are associated with lower expected returns. Conversely, at low-to-medium

levels of conditional volatility, there is a significant positive relationship between the

conditional mean and volatility of stock returns.

Importantly, the inverted risk-return relation is not confined to subsamples such

as the Great Depression which saw very high levels of conditional volatility but also

1This stands in contrast to conventional regression analysis that uses a binary approach to variable
selection− either a variable is significant and gets included or it is insignificant and gets excluded.
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experienced periods with low expected returns. In particular, we also find a distinct

negative trade-off between the conditional mean and volatility during the recent financial

crisis which has seen similarly high volatility levels.

Our paper is part of a recent literature that has attempted to address biases in

models of the risk-return trade-off. Ludvigson and Ng (2007) argue that most studies

consider too few conditioning variables and provide a factor-based approach that par-

simoniously summarizes information from a large cross-section of variables. Once the

conditioning information set is expanded in this way, they find evidence of a positive

risk-return trade-off. Rather than conditioning on a specific set of variables, Brandt

and Kang (2004) instead propose a latent variable vector autoregression for exploring

the trade-off between the conditional mean and variance, which they estimate to be

negative. Ghysels, Santa-Clara, and Valkanov (2005) refine the estimated conditional

volatility based on a slowly decaying weighted average of squared returns over the pre-

vious year. Using this volatility proxy, they find evidence of a positive trade-off between

risk and returns. Common to these studies is, however, that they use a linear framework

to characterize the risk-return relation. By construction they are therefore limited to

studying monotonic risk-return trade-offs. However, it is important to go beyond this

setup in view of the indeterminacy of the risk-return relation highlighted by theoretical

asset pricing models.

The remainder of the paper is organized as follows. Section 2 offers a brief review

of the theoretical literature in order to motivate our empirical modeling strategy which

is introduced in Section 3. Section 4 describes the data on returns, realized volatility

and predictor variables and reports empirical results for the models used to generate

estimates of the conditional mean and volatility, while Section 5 reports on the forecasts

generated by the risk and return models. With these in place, Section 6 analyzes the

conditional mean−volatility relation. Section 7 conducts a series of robustness checks

and extensions, while Section 8 concludes.

2 The Risk-Return Trade-off: Theoretical Insights

To motivate our empirical research strategy, this section provides a brief review of the

theoretical literature on the relation between the risk premium and conditional volatility.

While the empirical literature has focused on the sign of the risk return relation, the-

oretical analysis shows that the relationship between expected returns and conditional

volatility need not be linear or even monotonic. For example, Abel (1988) derives an

equilibrium asset pricing model in which both the risk premium and the volatility of

stock returns vary over time as a result of time-variations in the dividend process. Abel

finds that the risk premium need not, in general, be a monotonic function of risk. Sim-

ilarly, the analysis in Gennotte and Marsh (1993) implies that the equity risk premium

is generally a non-linear function of the volatility of equity returns.

This conclusion is consistent with the analysis of Veronesi (2000). Using a Lucas

economy, Veronesi shows that the relation between the conditional mean and condi-

tional variance of stock returns is affected by a term that summarizes investors’ degree
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of uncertainty about the economy’s unknown growth rate and the effect of such uncer-

tainty on asset valuations. Because of changes in the economy’s level of uncertainty,

the magnitude of this term varies over time. This means that the relationship between

expected returns and conditional volatility is ambiguous and depends on the level of

uncertainty facing investors.

2.1 A Simple Endowment Model

As a simple illustration of these points, we follow Backus, Gregory, and Zin (1989) and

Backus and Gregory (1993) and examine the risk-return relation in the context of a

simple dynamic exchange economy. We first derive analytical expressions for the risk

premium and conditional variances and then numerically compute the conditional risk

and return values implied by the model.

Consider a stochastic endowment economy with a representative agent who consumes

a single good. The endowment, e, varies over time according to the process: et+1 =

xt+1et where x represents the economy’s growth rate. This takes on a finite number

of values that evolve according to a stationary first-order Markov chain with transition

probabilities

πi,j = Pr (xt+1 = λj |xt = λi) . (1)

The representative agent is assumed to have a utility function that allows for habit

persistence:2

u(d) =
d(1−α) − 1
(1− α)

, (2)

where dt = ct − δct−1, ct measures consumption, α > 0 is the coefficient of relative

risk aversion, 0 < β < 1 is the subjective discount factor and δ determines the agent’s

habit persistence. Under the assumption that the agent maximizes expected utility

U = Et
P∞

k=0 βku(dt+k), an equilibrium in this economy with complete markets is a set

of state-contingent prices for which, at all dates and in all states, consumption equals

the endowment, i.e., ct = et for every t. Relative prices are then computed by equating

them to marginal rates of substitution evaluated at the equilibrium values. For example,

if the current state at time t is (et, λi), then the relative price of a state-contingent claim

that pays et+1 = λjet if state j occurs at time t + 1, is

πi,jβ
u′(et+1 − δet)
u′(et − eyt−1)

× et+1

et
= πi,jβλj

 
λj − δ

1− δ
λi

!−α

.

Following Mehra and Prescott (1985), the price per unit of output, denoted by w, is

w = (I−A)−1 d, (3)

2Allowing for habit persistence makes it easier to generate sizeable variations in risk premia across states
in this particular setup. However, non-monotonic risk-return relations can also be generated under the more
conventional power utility which arises when δ = 0.
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PJ

j=1 ai,j . One share of equity is a claim to

the entire stream of future endowments. If the economy transitions from state i to state

j, the equity return is

ri,j =
λj(wj + 1)

wi
− 1. (4)

Similarly, the conditional equity premium, starting from state i, is the expected equity

return in excess of the single-period risk-free rate, rfi

E[ri,j |xt = λi]− rfi =

"
JX

j=1

πi,jri,j

#
− rfi, (5)

where the risk-free rate is rfi =

"
PJ

j=1 πi,jβ

„
λj−δ

1− δ
λi

«−α
#−1

.

Finally, the conditional variance of stock returns, given that we start from state i,

can be computed by:

var[ri,j |et = λi] =
JX

j=1

πi,j (ri,j − E[ri,j |xt = λi])
2 . (6)

For a given set of model parameters we can then use (5) and (6) to compute the condi-

tional equity premium and the conditional volatility of stock returns and map out the

risk-return relationship across the states.

2.2 Numerical Illustration

To keep the analysis simple, we consider a three-state model. Our parameters are

chosen to be sensible in view of empirical findings reported in the literature, i.e., α = 5;

β = 0.98, δ = .7 and λ = [.985, 1.00, 1.03]. Hence in bad states, the economy contracts

by 1.5% while in good states it expands by 3%. Moreover, the state transition matrix

Π = [πij ] is assumed to be symmetric with persistence measured by a single parameter,

p:

πij =

(
p for i = j
1−p
2 for i #= j

.

Figure 1 plots the conditional variance and the associated conditional equity premium

under this parameterization, letting p take on values (0.4, 0.5, 0.6, 0.7, 0.8, 0.9). Very

different shapes of the risk-return relation emerge from this example, including mono-

tonically increasing, monotonically decreasing as well as hump- and v-shaped patterns.

We conclude from this brief analysis that theoretical models do not constrain the

risk-return relation to be linear or monotonic. The expected return and volatility pattern

depends in a complicated manner on the interaction between habit persistence (δ), state
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transition probabilities (πij) and the growth rates for the individual states (λi), making

it difficult to draw general conclusions.

These results suggest that imposing linearity on the risk-return relation is too re-

strictive a framework. To quote Gennotte and Marsh (1993, page 1039), “.. in a general

equilibrium framework, the market risk premium is a complicated function of the cash

flow uncertainty, implying that the simple regression and time series fits of the relation

between equity risk premiums and asset price volatility are likely to be misspecified.”

To avoid biases that follow from restricting the shape of the risk-return trade-off,

it is therefore important to adopt an empirical modeling approach that is flexible, yet

as emphasized by Ludvigson and Ng (2007) can simultaneously deal with large sets of

predictor variables. We next describe an approach that accomplishes this.

3 Methodology

We are interested in analyzing the relation between the conditional mean and the

conditional volatility of stock returns defined, respectively, as µt+1|t = Et[rt+1] and

σt+1|t = V art(rt+1)
1/2, where rt+1 is the stock return during period t + 1, measured

in excess of the risk-free rate, while Et[·] and V art(·) are computed conditional on in-

vestors’ information at time t. Both are ex-ante measures that are unobserved and so

empirical analysis typically relies on model-based proxies of the form

µ̂t+1|t = fµ(xt|θ̂µ) (7)

σ̂t+1|t = fσ(xt|θ̂σ),

where xt represents a set of publicly available predictor variables and θ̂µ and θ̂σ are

estimates of the parameters of the expected return and volatility models, respectively.

Theoretical asset pricing models have been used to suggest broad categories of pre-

dictor variables tracking risk premia or levels of uncertainty in the economy. However,

they typically do not identify the functional form of the relationship between economic

state variables, xt, and expected returns or volatility in (7). Assuming that a proxy for

the unobserved volatility, σ̂t+1, can be obtained, it is common to simply base estimates

of µt+1|t and σt+1|t on linear models of the form

rt+1 = β′µxt + εrt+1

σ̂t+1 = β′σxt + εσt+1. (8)

This gives rise to proxies µ̂t+1|t = β̂′µxt and σ̂t+1|t = β̂′σxt. There is little theoretical

justification for imposing such restrictions on empirical forecasting models. Moreover,

restricting the functional form to be linear may introduce model misspecification errors

and could bias empirical results in ways that makes it difficult to interpret the results.

To address this issue, we extend the basic linear regression model to a class of more

flexible and potentially more accurate models known as boosted regression trees. These

have been developed in the machine learning literature and can be used to extract

information about the relationship between the predictor variables, xt, and rt+1 or σ̂t+1
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based only on their joint empirical distribution. We do not consider conventional non-

parametric or smoothing approaches since these are difficult to apply in the presence of

many predictor variables and often produce poor forecasts.

To get intuition for how regression trees work and establish the appropriateness of

their use in our analysis, consider the situation with a continuous dependent variable Y

(e.g., stock returns) and two predictor variables X1 and X2 (e.g., the earnings-price ratio

and the payout ratio). The functional form of the forecasting model mapping X1, X2

into Yt is unlikely to be known, so we simply partition the sample support of X1 and

X2 into a set of regions or “states” and assume that the dependent variable is constant

within each partition.

More specifically, to carve out the state space we use only binary partitions and

limit ourselves to lines that are parallel to axes tracking X1 and X2. Hence, we first

split the sample support into two states and model the response by the mean of Y in

each state. We choose the state variable (X1 or X2) and the split point to achieve

the best fit. Next, one or both of these states is split into two additional states. The

process continues until some stopping criterion is reached. Boosted regression trees are

additive expansions of regression trees, where each tree is fitted on the residuals of the

previous tree. The number of trees used in the summation is also known as the number

of boosting iterations.

This approach is illustrated in Figure 2, where we show boosted regression trees

that use two state variables, namely the lagged values of the log payout ratio (i.e., the

dividend-earnings ratio) and the log earnings-price ratio, to predict excess returns on

the S&P500 portfolio. Each iteration fits a tree with only two terminal nodes, so every

new tree “stub” generates two regions. The graph on the left uses only three boosting

iterations. The resulting model ends up with one split along the payout ratio axis and

two splits along the earnings-price ratio axis. Within each state the predicted value

of stock returns is constant. The predicted value of excess returns is smallest for high

values of the payout ratio and low values of the earnings-price ratio, and highest when

the payout ratio is small and the earnings-price ratio is high. With only three boosting

iterations the model is quite coarse. This changes when more boosting iterations are

added. To illustrate this, the figure on the right is based on 5,000 boosting iterations.

Now the plot is much more smooth, but clear similarities between the two graphs remain.

Figure 2 illustrates how boosted regression trees can be used to approximate the

relation between the dependent and independent variables by means of a series of piece-

wise constant functions. This approximation is good even in situations where, say, the

true relation is linear, provided that sufficiently many boosting iterations are used. We

next provide a more formal description of the methodology.3

3.1 Regression Trees

Suppose we have P potential predictor (“state”) variables and a single dependent vari-

able over T observations, i.e. (xt, yt+1) for t = 1, 2, ..., T , with xt = (xt1, xt2, ..., xtp).

3Our description is in part based on Hastie, Tibshirani, and Friedman (2009) who provide a more in-depth
coverage of this approach.
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As illustrated in Figure 2, regression trees require deciding two things, namely (i) which

predictor variables to use to split the sample space; and (ii) which split points to use.

A given splitting point may lead to J disjoint sub-regions or states, S1, S2, ..., SJ , and

the dependent variable is modeled as a constant, cj , within each state, Sj . The fitted

value implied by a regression tree, T (x, ΘJ), with J terminal nodes and parameters

ΘJ = {Sj , cj}J
j=1 can thus be written

T (x, ΘJ) =
JX

j=1

cjI(x ∈ Sj), (9)

where I(x ∈ Sj) is an indicator variable that equals one if x ∈ Sj and is zero otherwise.

Estimates of Sj and cj can be obtained as follows. Under the conventional objective

of minimizing the sum of squared forecast errors,
PT

t=1(yt+1 − f(xt))
2, the estimated

constant, bcj , is the average of yt+1 in state Sj :

bcj =
1

PT
t=1 I{xt ∈ Sj}

TX

t=1

yt+1I{xt ∈ Sj}. (10)

The globally optimal splitting point is more difficult to determine, particularly in cases

where the number of state variables, P , is large. Often a sequential algorithm is used to

split the sample space. For a given starting model, this algorithm considers a splitting

variable p and a split point s so as to construct half-planes

S1(p, s) = {X|Xp ≤ s} and S2(p, s) = {X|Xp > s}

that minimize the sum of squared residuals:

min
p,s

2

4min
c1

X

xt∈S1(p,s)

(yt+1 − c1)
2 + min

c2

X

xt∈S2(p,s)

(yt+1 − c2)
2

3

5 . (11)

For a given choice of p and s the fitted values, ĉ1 and ĉ2, are

bc1 =
1

PT
t=1 I{xt ∈ S1(p, s)}

TX

t=1

yt+1I{xt ∈ S1(p, s)},

bc2 =
1

PT
t=1 I{xt ∈ S2(p, s)}

TX

t=1

yt+1I{xt ∈ S2(p, s)}. (12)

The best splitting pair (p, s) in the first iteration can be determined by searching

through each of the predictor variables, p = 1, .., P . Given the best partition from the

first step, the data is then partitioned into two additional states and the splitting process

is repeated for each of the subsequent partitions. Predictor variables that are never used

to split the sample space do not influence the forecast so the choice of splitting variable

effectively performs variable selection.

Regression trees are very flexible and can capture local features of the data which

linear models may overlook. Moreover, they can handle cases with large-dimensional

data. This becomes important when modeling stock returns since the identity of the
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best predictor variables is generally unknown and so must be determined empirically.

On the other hand, the approach is sequential and successive splits are performed on

fewer and fewer observations, increasing the risk of fitting idiosyncratic data patterns.

Furthermore, there is no guarantee that the sequential splitting algorithm leads to the

globally optimal solution. To deal with these problems, we next consider a method

known as boosting.

3.2 Boosting

Boosting is a technique that can be used to identify which of a large number of possible

variables help to improve forecasting performance. It is based on the idea that combining

a series of simple prediction models can lead to more accurate forecasts than those

available from any individual model. Boosting algorithms iteratively re-weight data used

in the initial fit by adding new trees in a way that increases the weight on observations

modeled poorly by the existing collection of trees.

A boosted regression tree is simply the sum of regression trees:

fB(x) =
BX

b=1

Tb(x; ΘJ,b), (13)

where Tb(x; ΘJ,b) is the regression tree of the form (9) used in the b-th boosting iteration

and B is the number of boosting iterations. Given the previous model, fB−1(x), the

subsequent boosting iteration seeks to find parameters ΘJ,B = {Sj,B , cj,B}J
j=1 for the

next tree to solve a problem of the form

Θ̂J,B = arg min
ΘJ,B

T−1X

t=0

[yt+1 − (fB−1(xt) + TB(xt; ΘJ,B))]2 . (14)

For a given set of state definitions (“splits”), Sj,B , j = 1, .., J , the optimal constants,

cj,B , in each state are derived iteratively from the solution to the problem

ĉj,B = arg min
cj,B

X

xt∈Sj,B

[yt+1 − (fB−1(xt) + cj,B)]2

= arg min
cj,B

X

xt∈Sj,B

[et+1,B−1 − cj,B ]2 , (15)

where et+1,B−1 = yt+1 − fB−1(xt) is the forecast error after B − 1 boosting iterations.

The solution to this is the regression tree that most reduces the average of the squared

residuals
PT

t=1 e2
t+1,B−1 and ĉj,B is the mean of the residuals in the jth state.

Forecasts are simple to generate from this approach. The boosted regression tree is

first estimated using data from t = 1, ..., τ. Then the forecast of yτ+1 is based on the

model estimates and the value of the predictor variable at time τ , xτ .

The most common explanation for why boosting is effective at increasing the forecast

accuracy of regression trees are the following. First, boosting makes it more attractive

to employ small trees (characterized by only two terminal nodes) at each boosting it-

eration, reducing the risk that the regression trees will overfit. Second, by summing

10



over a sequence of trees, boosting performs a type of model averaging that increases the

stability of the forecasts.

3.3 Implementation

Our estimations follow the stochastic gradient boosting approach of Friedman (2001)

and Friedman (2002) with J = 2 nodes. The baseline implementation employs 10,000

boosting iterations. In the robustness analysis (Section 7) we show that the results are

not very sensitive to this choice.

We adopt three refinements to the basic regression tree methodology, namely (i)

shrinkage, (ii) subsampling and (iii) minimization of absolute forecast errors. These

are all known to decrease the rate at which the objective function is minimized on

the training data. Controlling the “learning rate” in this manner reduces the risk of

overfitting.

In particular, we use a shrinkage parameter, 0 < λ < 1, which determines how much

each boosting iteration contributes to the overall fit:

fB(x) = fB−1(x) + λ
JX

j=1

cj,BI{x ∈ Sj,B}. (16)

Following common practice we set λ = 0.001.

In addition, each tree is fit on a randomly drawn subset of the training data, whose

length is set at one-half of the full sample, the default value most commonly used. By

fitting the tree only on a subset of the data, this method reduces the risk of overfitting.

Finally, the empirical analysis minimizes mean absolute errors, i.e. T−1PT
t=1 |yt+1−

f(xt)|. Under this objective, the optimal forecast is the conditional median of yt+1 rather

than the conditional mean used under squared error objectives. We do this in the light

of a large literature which suggests that squared-error loss places too much weight on

observations with large absolute residuals. This is a particular problem for fat-tailed

distributions such as those observed for stock returns and volatility. By minimizing

absolute errors, our regression model is likely to be more robust to outliers such as

returns during October 1987, thus reducing the probability of overfitting.

4 Empirical Estimates

Our empirical analysis of the risk-return trade-off relies on proxies for the conditionally

expected stock return and the conditional volatility. This section shows how we generate

estimates of these, using the boosted regression tree approach described in Section 3.

We first present the data used in our empirical analysis and then report results from

the boosted regression trees fitted to expected returns and stock market volatility.

4.1 Data

There is a shortage of theoretical models offering guidance on which variables to use when

modeling expected returns and volatility. However, empirical studies have found some
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evidence of countercyclical patterns in volatility (e.g., Schwert (1989), Engle, Ghysels,

and Sohn (2006)). In general, however, we do not know a priori which, if any, of a set

of economic state variables is capable of predicting stock returns or volatility. We take

a broad view and consider a range of state variables that been considered in the finance

literature.

In particular, our empirical analysis uses a data set comprising monthly stock returns

along with a set of twelve predictor variables previously analyzed in Welch and Goyal

(2008). Stock returns are tracked by the S&P 500 index and include dividends. A short

T-bill rate is subtracted to obtain excess returns. For brevity we refer to these simply as

the returns. The predictor variables from the Welch-Goyal analysis are available during

1927-2005 and we extend their sample up to the end of 2008.4

The predictor variables fall into three broad categories:

• Valuation ratios capturing some measure of ‘fundamental’ value to market value

– log dividend-price ratio (symbol: dp);

– log earnings-price ratio (ep);

• Bond yield measures capturing the level or slope of the term structure or measures

of default risk

– three-month T-bill rate (Rfree);

– de-trended T-bill rate, i.e. the T-bill rate minus a three-month moving average

(rrel);

– yield on long term government bonds (lty);

– term spread measured by the difference between the yield on long-term gov-

ernment bonds and the three-month T-bill rate (tms);

– default yield spread measured by the yield spread between BAA and AAA

rated corporate bonds (defspr);

• Estimates of equity risk and returns

– lagged excess return (exc);

– long term return (ltr);

– stock variance, i.e. a volatility estimate based on daily squared returns (vol);

We also consider the dividend payout ratio measured by the log of the dividend-

earnings ratio (de) and the inflation rate (infl) measured by the rate of change in the

consumer price index. Additional details on data sources and the construction of these

variables are provided by Welch and Goyal (2008). All predictor variables are appropri-

ately lagged so they are known at time t for purposes of forecasting returns in period

t + 1.

4We are grateful to Amit Goyal and Ivo Welch for providing this data. A few variables were excluded from
the analysis since they were not available up to 2008, including net equity expansion and the book-to-market
ratio. We also excluded the CAY variable since this is only available quarterly since 1952.
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4.1.1 Realized Volatility

Market volatility is unobserved, so we follow a large recent literature in proxying it

through the square root of the realized variance. More specifically, let ri,t be the daily

return on day i during month t and let Nt be the number of trading days during this

month. Following Schwert (1989), Ludvigson and Ng (2007) and others, we construct

the realized variance measure as follows:

σ̂2
t =

NtX

i=1

r2
i,t. (17)

The realized volatility, σ̂t, is simply the square root of this. Theoretical foundations for

the use of (17) can be found in Andersen, Bollerslev, Christoffersen, and Diebold (2006)

and Barndorff-Nielsen (2002). It should be recalled that the estimator in (17) is only

free of measurement errors as the sampling frequency approaches infinity, so σ̂t is best

thought of as a volatility proxy.

4.2 Importance of individual predictor variables

For linear regression models, the conventional measure of a particular state variable’s

importance is the magnitude and statistical significance of its slope coefficient. This

measure is not applicable to regression trees which do not impose linearity. As an

alternative measure of influence, we consider the reduction in the squared forecast error

every time a particular predictor variable, Xp, is used to split the tree. Summing the

reductions in squared forecast errors (or improvements in fit) across the nodes in the

tree gives a measure of the variable’s influence (Breiman (1984)):

Ip(T ) =
JX

j=2

∆|e(j)|I(v(j) = p), (18)

where ∆|e(j)| = T−1PT
t=1 (|et(j − 1)| −| et(j)|), is the reduction in the (absolute) fore-

cast error at the j′th node and v(j) is the variable chosen at this node, so I(v(j) = p)

equals one if variable p is chosen and otherwise is zero. The sum is computed across all

time periods, t = 1, ..., T and over the J − 1 internal nodes of the tree.

The rationale for this measure of influence is simple: At each node, one predictor

variable gets selected to partition the sample space into two sub-states. The particular

variable chosen at node j achieves the greatest reduction in the mean absolute forecast

error for the model fitted up to node j − 1. The importance of each predictor variable,

Xp, is the sum of the reductions in the forecast errors computed over all internal nodes

for it was chosen as the splitting variable. If a variable never gets chosen to conduct the

splits, its influence will be zero. Conversely, the more frequently a variable is used for

splitting and the bigger its effect on reducing the forecast errors, the larger its influence.

This measure of influence can be generalized by averaging over the number of boost-
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ing iterations, B, which generally provides a more reliable measure of influence:

Īp =
1
B

BX

b=1

Ip(Tb). (19)

This is best interpreted as a measure of relative influence that can be compared across

predictor variables. In the empirical analysis we therefore report the following measure

of relative influence, RIp, which sums to one:

RIp = Īp/
PX

p=1

Īp. (20)

Since it captures relative influence, this measure does not tell if a particular predictor

variable is capable of improving the forecasting performance relative to, say, a model

with no predictor variables. This question is best addressed by analyzing the model’s

out-of-sample forecasting performance, a point we shall later return to in Section 5.

4.2.1 Return Model

Panel A of Table 1 shows estimates of the relative influence of the predictor variables

when the boosted regression trees are applied to stock returns. We report results for the

full sample, 1927-2008, in addition to results based on splitting the sample in halves,

i.e. 1927-1967 and 1968-2008.

The results suggest that two predictor variables dominate over the long sample,

1927-2008, as inflation and the earnings-price ratio both obtain weights above 17%. In

addition, the de-trended T-bill rate and the long bond yield get weights close to 10%. If

each forecasting variable was equally important, we would expect them to get a weight

of 1/12 or 8%.

The results are quite consistent over the two subsamples as inflation and the earnings-

price ratio are ranked first and second in both subsamples. The de-trended t-bill rate

also continues to be relatively important in both subsamples.

4.2.2 Realized Volatility Model

Panel B of Table 1 shows that the lagged volatility is the dominant predictor variable in

the model for realized volatility, obtaining a weight close to 70% in the full sample. The

default spread and lagged return obtain weights around 8% percent, while the remaining

variables get lower weights.

With exception of the lagged volatility, no variable repeats in the top three most

important predictors in the two subsamples. Interestingly, the dividend-earnings ratio

and the default spread get weights of nearly 14% over the period 1927-67, while only

excess returns (and, again, the lagged volatility) get a weight greater than 10% in the

second subsample, 1968-2008. This indicates that the volatility forecasting model is less

stable than the excess return forecasting model.

Caution is due when interpreting these results, however, since they only measure

the relative influence of individual variables. Hence they do not show whether or not
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stock returns and realized volatility are in fact predictable. To address this, we present

out-of-sample forecasting results in the next section.

4.3 Effect of Individual State Variables

To gain economic intuition for the boosted regression trees, it is clearly of interest to

explore the relation between individual state variables and expected returns or realized

volatility. The regression trees do not impose any restrictions on the functional form of

the relationship between the dependent variable, Y−returns or realized volatility−and

the predictor variables, X. Measuring the effect of the predictor variables on the de-

pendent variable is therefore more complicated than usual.

To address this point, we proceed as follows. Suppose we select a particular predictor

variable, Xp, from the set of P predictor variables X = (X1, X2, ..., XP ) and denote the

remaining variables X−p, i.e. X−p = X\{Xp}. We use the following measure of the

average marginal effect of Xp on the dependent variable, Y = f(Xp, X−p)

fp(Xp) = EX−pf(Xp, X−p). (21)

This is called the average partial dependence measure. It fixes the value of Xp and

averages out the effect of all other variables. Repeating this process for different values

of Xp will then trace out the marginal effect this variable has on the predicted variable.

An estimate of fp(Xp) can be computed by averaging over the sample observations:

f̄p(Xp) =
1
T

TX

t=1

f(Xp, xt,−p), (22)

where xt,−p = {x1,−p, ..., xT,−p} are the values of X−p occurring in the data.

4.3.1 Conditional Equity Premium

Using this measure, Figure 3 presents partial dependence plots for the three most impor-

tant predictor variables in the model for stock returns. In each case the x-axis is chosen

so it covers the empirical support of the predictor variable during the corresponding

sample period. As in Figure 2, flat spots show that the mean excess return does not

vary in a particular range of the variable.

Figure 3 shows that the relationship between returns and the three most important

predictor variables is highly non-linear. At negative levels of inflation the relationship

between the rate of inflation and returns is either flat or rising. Thus in a state of

deflation, rising consumer prices are good news for stocks. Conversely, at positive levels

of inflation, higher consumer prices become bad news for stocks, although at very high

levels of inflation there is no systematic relation between inflation and stock market

performance. These effects are quite strong in economic terms: the difference between

expected returns evaluated at small and large values of the inflation rate is two percent

per month.

Similarly, although the relationship between expected stock returns and the log
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earnings-price ratio is always positive, it is strongest at low or high levels of this ra-

tio, and gets weaker at medium levels of this measure. Again the variation in expected

returns as a function of the earnings-price ratio is economically large, spanning a range

of 3.5% per month.

Movements in the de-trended T-bill rate seem mainly to indicate reduced expected

returns when this variable becomes slightly negative, suggesting that stock returns are

most sensitive to small reductions in interest rates.

Figure 4 repeats the plot in Figure 3 for the three most important variables in the two

subsamples, 1927-67 and 1968-2008. The figure suggests that the non-linear relationship

between both expected returns and inflation and expected returns and the earnings-price

ratio or other payout ratios is preserved across the two sub-samples. Viewed together,

these findings suggest that models of expected returns based on linear specifications are

likely to be misspecified.

4.3.2 Conditional Volatility

Turning to the volatility model, current realized volatility is clearly an important predic-

tor of future volatility. This can be seen from the partial dependence plots in Figure 5

by noting that the predicted volatility quadruples from roughly two percent to eight per-

cent per month as the lagged realized volatility increases over its historical support. The

relationship between current and past volatility is basically linear for small or medium

values of past volatility. However, very high values of past volatility do not translate into

correspondingly high values of expected future volatility, as evidenced by the flatness of

the relationship at high levels of volatility.

A highly nonlinear pattern is also found in the relation between the conditional

volatility and the default spread: At small or medium values of the spread, future volatil-

ity is increasing in this variable. However, at high values of the spread, the expected

volatility remains constant. Past returns are also clearly related to current volatility, but

the relation is negative as higher past returns imply lower expected volatility. Volatility

varies mostly with past returns as these move in a range between minus fifteen percent

and zero per month.

5 Out-of-sample Forecasting Performance

Our analysis so far suggests that some predictor variables from the finance literature

capture time-variations in expected returns and volatility. Moreover, the effect of these

variables appears to be nonlinear. The boosted regression trees may, however, be more

prone to estimation error and overfitting than more tightly parameterized linear re-

gressions. It is therefore far from certain that this approach provides a useful way to

generate forecasts.

To explore this point, this section follows the literature on real-time forecasting (e.g.,

Pesaran and Timmermann (1995), Bossaerts and Hillion (1999), Campbell and Thomp-

son (2008) and Welch and Goyal (2008)) and estimates the forecasting models recursively

through time. In particular, we use data up to 1969:12 to fit the first regression tree. We
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then predict excess returns or realized volatility for the following month, 1970:01. The

next month we expand the data window to 1970:01 and produce forecasts for 1970:02.

This procedure continues to the end of the sample in 2008:12.

5.1 Return Forecasts

As a first way to check whether the boosted regression trees overfit the data, consider

Figure 6 which shows return forecasts over the period 1985-2008. While there is a visible

relationship between the actual and predicted returns (top panel), there is no tendency

for the model to fit outliers. Indeed, the fitted values are confined to a relatively narrow

range between -3 and 5 percent per month which is far smaller than the corresponding

range for actual returns.

We next consider the out-of-sample forecasting performance of the boosted regression

trees. Table 2 compares the performance of the forecasts of returns from the boosted

regression trees to that from the prevailing mean, a benchmark advocated by Welch

and Goyal (2008), and a multivariate linear regression model. For the latter, we use the

Bayesian information criterion to select the best specification among the 212 possible

linear models that use different combinations of the predictor variables.

We present results separately up to 2005 (the end of Welch and Goyal’s original

sample) and for the sample extended up to 2008. This serves to illustrate the substan-

tial deterioration in forecasting performance during the very volatile period, 2007-2008.

Both the prevailing mean and the multivariate linear regression model generate nega-

tive out-of-sample R2−values. The boosted regression tree model generates more precise

out-of-sample forecasts than the prevailing mean model as witnessed by its smaller sum

of squared forecast errors and its positive R2−values in both subsamples.

5.2 Volatility Forecasts

Turning to the volatility forecasts, we would expect to find better out-of-sample per-

formance since the realized volatility series is considerably more persistent than excess

returns. The bottom panel in Figure 6 and Table 3 shows that this is what we find. The

table compares volatility forecasts from the regression tree to those from a GARCH(1,1)

model or an autoregressive model that exploits the persistence in realized volatility. We

also consider forecasts from a MIDAS model of the form proposed by Ghysels, Santa-

Clara, and Valkanov (2005). Following their analysis, we adopt the following MIDAS

estimator of the conditional variance of monthly returns:

V art(Rt+1) = 22
DX

d=0

wdr2
t−d, (23)
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where

wd(κ1, κ2) =
exp(κ1d + κ2d

2)
PD

i=0 exp(κ1i + κ2i2)
,

wd(κ1, κ2) =

`
d
D

´κ1−1 `
1− d

D

´κ2−1

PD
i=0

`
i
D

´κ1−1 `
1− i

D

´κ2−1

for the models that use exponential and beta weights, respectively. “D” represents the

maximum lag length which is set to 250 days following Ghysels, Santa-Clara, and Valka-

nov (2005). Figure 6 plots the fitted volatility levels associated with the GARCH(1,1),

MIDAS and the boosted regression trees.

Using the MIDAS approach to forecast monthly volatility yields results that strongly

improve on the GARCH model. In the shorter sample that ends in 2005, the out-of-

sample R2−value is 21-24% for the MIDAS models, and only 8% for the GARCH model.

However, the best forecasts are generated by the boosted regression trees which produce

smaller forecast errors and an out-of-sample R2−value of 35% which is substantially

higher than for the other models.

In the longer sample, 1970-2008, that includes the recent financial crisis, we see

larger forecast errors but also greater out-of-sample R2-values, reflecting the persistently

higher volatility levels at the end of this period. The boosted regression trees continue

to generate the best volatility forecasts, closely followed by the AR(1) model fitted to

lagged realized volatility and the MIDAS models.

In summary, this out-of-sample analysis suggests that the boosted regression tree

estimates of the conditional mean and volatility are not overfitting the data. Moreover,

as they do not make restrictive assumptions on the shape of the relationship between

predictor variables and the conditional mean or volatility, such estimates are less likely

to be biased than conventional estimates based on linear regression models. This makes

our estimates of the conditional equity premium and conditional volatility well suited

for an analysis of the risk-return trade-off.

6 Models of the Risk-Return Relation

This section uses the estimates of the conditional mean and conditional volatility of stock

returns from the previous section to explore the shape of the risk-return trade-off. We

first consider linear models for this relation and then generalize the setup to cover the

case with a general (unknown) risk-return relation. We study the risk-return relation

at various horizons and implement a formal test of the monotonic relation between

conditional volatility and expected returns.

6.1 Linear Risk-Return Model

We initially follow Ludvigson and Ng (2007) and consider the following reduced-form

relation that models the conditional equity premium as a function of the conditional
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volatility and lags of both volatility and expected returns:

µ̂t+1|t = α + β1σ̂t+1|t + β2σ̂t|t−1 + β3µ̂t|t−1 + εt+1. (24)

We use ‘hats’ to indicate that estimates of the conditional expected return and volatility

are used. In a generalization of the conventional volatility-in-mean model, lags are in-

cluded in order to account for the complex lead-lag relationship between the conditional

mean and volatility, see, e.g., Whitelaw (1994) and Brandt and Kang (2004).

Empirical results of this analysis are shown in Table 4. For the full sample, 1927-2008,

we find evidence of a positive and significant linear relation between the contemporane-

ous volatility and expected returns with a t-statistic around 2.8. Conversely, the effect

of lagged volatility is strongly negative, while the effect of lagged expected returns is

strongly positive. These effects carry over to the first subsample 1927-67. In the sec-

ond subsample, 1968-2008, the relationship between the conditional mean and both the

current and lagged conditional volatility is, however, insignificant and much weaker,

suggesting that the linear risk-return specification is perhaps not robust.

Further evidence that the positive and significant linear risk-return relation is not

particularly robust arises when we estimate the model separately for two high-volatility

periods. During 1927-39 (which includes the Great Depression) and 2001-2008 (which

includes the recent financial crisis), there is no significant evidence of a linear relation

between the conditional mean return and current or lagged volatility.

6.2 Unknown Shape of the Risk-Return Relation

The results reported so far call the linear risk-return specification into question. The

risk-return relationship need not be linear of course, a point emphasized also by Merton

(1980). For this reason we next employ the boosted regression trees to provide a flexible

model of the relationship between expected returns and conditional volatility that avoids

imposing particular functional form assumptions. More specifically, we generalize (24)

to the following model

µ̂t+1|t = g(σ̂t+1|t, σ̂t|t−1, µ̂t|t−1) + εt+1. (25)

Table 5 presents estimates of the relative influence of the three variables in this

model. The relative weight on current conditional volatility is 8% for the full sample

which is similar to the weight on lagged volatility (9%). The weight on the lagged

expected return (83%) is somewhat higher, which is unsurprising since the expected

return is quite persistent and so its lagged value is likely to have large explanatory

power in this model. This finding is also consistent with the much larger t-statistic and

greater coefficient estimates observed for lagged expected returns in the linear model.

Interestingly, in the first sub-sample, 1927-67, the current conditional volatility obtains a

much greater weight of 21%, while the weight declines to 10% in the second sub-sample,

1968-2008.

For the periods with the highest realized volatility, 1927-39 and 2001-2008, we see

that, at 23-24%, the relative influence of the conditional volatility on the conditional
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mean is larger than during calmer markets.

Turning to the shape of the risk-return relation, Figure 7 shows that the trade-

off between concurrent expected returns and conditional volatility is highly non-linear

in the full sample, 1927-2008: At low-to-medium levels of volatility, we find a strong

positive relationship, where higher volatility is associated with higher expected returns.

In contrast, at high levels of conditional volatility, the relationship appears to be inverted

so higher volatility is associated with declining expected returns.

The inverted risk-return trade-off is a robust finding in the sense that it appears not

to be confined to a particular historical period. This point is illustrated in Figure 8 which

shows the shape of the risk-return relation for the two sub-samples, 1927-67 and 1968-

2008. For small values of the initial volatility the expected return increases sharply

in both subsamples as the conditional volatility rises. However, at higher volatility

levels the expected return declines or remains constant as the conditional volatility rises

further.

In summary, our results show that expected returns tend to decline during periods

with high conditional volatility. The opposite finding holds for periods with low or

medium levels of conditional volatility, where rising volatility levels lead to a systematic

increase in the expected return.

6.3 Risk-Return Relation at Longer Horizons

The analysis presented above focused on the risk-return relation at the monthly hori-

zon. However, as pointed out by Ghysels et al (2005), it is of interest to study how

similar the results are across different horizons. To accomplish this we next present

results for bimonthly, quarterly and semi-annual frequencies and show that the non-

linearities in the risk-return relation become more pronounced, the longer the horizon

under consideration.

The first step in the analysis entails aggregating monthly returns and volatility figures

into their lower frequency counterparts. We do it in the following standard fashion:

rt+1:t+h =
hY

j=1

(1 + rt+j)− 1 (26)

σ̂t+1:t+h =

 
hX

j=1

σ̂2
t+j

!1/2

.

Note that in this notation, the earlier results for the one-month horizon represent

the special case h = 1. After obtaining estimates of the h-month conditional mean

µ̂t+1:t+h|t and conditional volatility σ̂t+1:t+h|t, we estimate the following variant of (25):

µ̂t+1:t+h|t = g(σ̂t+1:t+h|t, σ̂t:t+h−1|t−1, µ̂t:t+h−1|t−1) + εt+1:t+h. (27)

Figure 9 presents the shape of the risk-return relation for h = 2, 3 and 6 months.

Confirming the findings of Figure 7 and 8, at low-to-medium levels of volatility, we find

a strong positive relationship, where higher volatility is associated with higher expected
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returns. Even more so than at the monthly frequency, at high volatility levels we find

a negative relation between volatility and expected returns. Furthermore, the negative

relation becomes stronger the longer the horizon under consideration, suggesting that

the time dimension plays an important role in shaping the trade-off between risk and

return.

While the estimates of the risk-return relation suggest marked non-monotonicities at

various horizons, they do not necessarily imply that the relationship between conditional

volatility and expected returns is non-monotonic in a statistical sense. In the next section

we take on this point in a more rigorous fashion.

6.4 Formal Test of Monotonicity

To test formally if the relationship between the conditional volatility and expected

returns {µ̂t+1:t+h|t, σ̂t+1t+h|t} is monotonic, we use the approach advocated in Patton

and Timmermann (2009). To keep the notation simple, we will illustrate the procedure

for h = 1 even though we compute the test separately for various horizons.

The monotonicity test proceeds as follows. Since our model uses the lagged condi-

tional mean and lagged conditional volatility as control variables, but we are interested

in the relationship between the concurrent conditional mean and volatility, we first ‘in-

tegrate out’ the effects of the lagged variables. In particular, we first compute the

marginal effect of the lagged conditional volatility and lagged conditional mean on the

current mean and then study the relationship between the marginalized conditional

mean, µ̂m
t+1|t, and the conditional volatility, σ̂t+|t. We then sort pairs of monthly ob-

servations, {µ̂m
t+1|t, σ̂t+|t} ranked by the conditional volatility and group them into N

‘portfolios’. Monotonicity would imply that, as we move from groups associated with

low conditional volatility to groups with high conditional volatility, the expected value

of the conditional mean return should rise.

More specifically, we seek to test whether the “marginalized” conditional expected

return increases when ranked by the associated value of σ̂t+1|t :

E
ˆ
µ̂m

t+1|t,i
˜

> E
ˆ
µ̂m

t+1|t,i−1

˜
, for i = 2, .., N. (28)

Following Patton and Timmermann (2009) and defining ∆i ≡ E
ˆ
µ̂m

t+1|t,i
˜
−E

ˆ
µ̂m

t+1|t,i−1

˜
,

for i = 2, ..., N, this can be re-written as

∆i > 0 for i = 2, ..., N. (29)

To test this hypothesis, we follow the approach of Wolak (1989) which has (weak)

monotonicity under the null hypothesis, so that, for ∆ =(∆2, ∆3, ...., ∆N )′:

H0 : ∆ ≥ 0, (30)

whereas the alternative is of a non-monotonic relationship, i.e. H1 : ∆ unrestricted.

Under this test, the null of a monotonically increasing “marginalized” conditional mean

gets rejected if there is sufficient evidence against it. Conversely, a failure to reject
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the null implies that the data is consistent with a monotonically increasing relation

between the “marginalized” conditional mean and conditional volatility. Wolak (1989)

shows that the test statistic has a distribution which, under the null, is a weighted

sum of chi-squared variables,
PN

i=1 ω(N, i)χ2(i), with ω(N, i) being the weights and

χ2(i) a chi-squared variable with i degrees of freedom. Approximate critical values are

calculated through Monte Carlo simulation.

We have 982 observations when the horizon h = 1 and we perform the test under a

variety of different values of N . In particular, we divide the data into N = 15, 20 and 25

groups and conduct the test for horizons h = 1, 2, 3 and 6. The results are reported in

Table 6. At the one-month horizon, we get p-values below 2% irrespective of the number

of portfolios N. Similar results are obtained for the bimonthly and quarterly horizons.

The only exception is the six-month horizon, where the number of portfolios seem to

play a role given that we cannot reject the null of monotonicity when the number of

portfolios, N = 15.

Overall, these results show that a monotonically increasing relation between the

conditional mean and conditional volatility at various horizons is strongly rejected, pro-

viding further evidence of a non-linear risk-return relation.

7 Robustness and Extensions

In this section we conduct robustness tests that shed light on the sensitivity of our results

with regard to parameterizations of the boosted regression trees. We also consider an

extension to the basic analysis that allows for a larger set of conditioning state variables.

7.1 Robustness Analysis

Our benchmark analysis uses 10,000 boosting iterations to estimate the regression trees.

Since it is possible that the results could be sensitive to this choice, we next explore

the sensitivity of our results to alternative ways of choosing the number of boosting

iterations. As a first robustness exercise, Table 7 reports the performance of boosted

regression trees using 5,000, 10,000 and 15,000 boosting iterations. The results are

not particularly sensitive to this choice. On the whole, the regression tree forecasts

outperform the benchmarks listed in Tables 2 and 3 for both the return and volatility

series.

To further corroborate these results, Figure 10 presents out-of-sample R2−values as

the number of boosting iterations is varied from 100 to 15,000. Signs of overfitting would

take the form of a declining R2−value as the number of boosting iterations rises beyond

a certain point. For the stock return model there is evidence only of a very slow decay in

forecasting accuracy beyond 7,000 boosting iterations. The lower graph does not show

any signs of over-fitting for the volatility prediction model. This stability across different

numbers of boosting iterations, B, makes the choice of number of boosting iterations

less critical to our analysis.

We finally consider two alternative ways for selecting the number of boosting itera-
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tions that could be used in real time, a point emphasized by Bai and Ng (2009). The

first chooses the best model, i.e. the optimal number of boosting iterations, recursively

through time. Thus, at time t, the number of boosting iterations is based on model

performance up to time t − 1. Second, we use forecast combinations as a way to lower

the sensitivity of our results to the choice of B by aggregating forecasts across different

boosted regression trees by using the simple average of the forecasts from regression

trees with 1, 2, ..., 10,000 boosting iterations.

Table 7 shows that the combined average is particularly effective in generating precise

return predictions while selecting the best model on the basis of recent performance is

most effective for volatility prediction.

7.2 Expanding the Information Set: Common Factors

Ludvigson and Ng (2007) argue that the relationship between expected returns and

conditional volatility critically depends on the variables included in the conditioning

information set used to generate estimates of time-variations in the conditional mean

and volatility of stock returns. Their analysis suggests the need to include a broad set

of macroeconomic and financial state variables that can be summarized through a small

set of common factors.

Following their analysis, we assume that a large set of state variables xit, i = 1, ..., N

are generated by a factor model of the form

xit = λ′ift + eit, (31)

where ft is a vector of common factors, λi is a set of variable-specific factor loadings

and eit is an idiosyncratic error assumed to be cross-sectionally uncorrelated. Using

the common factors as predictor variables rather than the N individual regressors will

achieve a substantial reduction in the dimension of the information set provided that

the dimension of ft is much smaller than N .

We follow Ludvigson and Ng (2007) and extract factors through the principal compo-

nents method. The data contains N =131 economic time series for the period 1960-2007

which are grouped into 8 broad categories:5 1. Output and Income, 2. Labor Market,

3. Housing, 4. Consumption, Orders and Inventories, 5. Money and Credit, 6. Bond

and Exchange, 7. Prices, 8. Stock Market. The factors are simply the first principal

components in each of these variable groupings, yielding a total of eight factors.

We follow Ludvigson and Ng (2009) and interpret each of the common factors by

way of the marginal R2−values obtained by regressing each of the 131 series on each of

the extracted factors. This gives us a relatively straightforward way of characterizing

the information content of each factor: bf1 is a real activity factor that loads heavily on

employment and output data. bf2 loads on interest rate spreads, while bf3 and bf4 load

on prices. bf5 loads on interest rates, bf6 on housing variables and bf7 on measures of the

money supply. Finally, bf8 loads on variables relating to the stock market.

Ludvigson and Ng’s (2007) analysis assumes a linear relation between volatility or

5These are the same time series used in Ludvigson and Ng (2009)
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expected returns and the extracted factors. We generalize this to allow for a flexible

and potentially non-linear relation of the form

µt = fµ(xt, f̂t|θµ) (32)

σt = fσ(xt, f̂t|θσ). (33)

In a final step we relate the factor-based estimates of expected returns and volatility

using the setup from (25).

Table 8 reports the relative influence of the eight factors in the return and volatility

forecasting models. We also include the three variables from the earlier list deemed to

be most influential over the period 1960-2007. For the equity premium model this is

inflation, the log dividend-price ratio and the log earnings-price, while for the volatility

model this is the lagged volatility, lagged excess returns and the log earnings-price ratio

for volatility. As expected, not all factors are equally relevant. For the equity premium

model, a particularly heavy weight is assigned to the factors that load on interest rate

spreads ( bf2) and stock market variables ( bf8). Factors appear to be less influential in

explaining stock market volatility as all factors obtain weights of 4% or less.

Based on the results in Table 8, we generated estimates of the conditional mean and

conditional volatility and used these in the general model for the risk-return trade-off

(25). The relative weight on current conditional volatility is 18% while the weights on

lagged volatility and lagged expected returns are 14% and 68%.

Figure 11 shows the shape of the risk-return relation when we use the variables in

Table 8 as conditioning information. Expanding the information set to include factors

seems to reinforce the non-linearities between expected returns and conditional volatility

uncovered in Figures 7 and 8.

We conclude that the weight on the current conditional volatility in the risk-return

model nearly doubles as a result of expanding the information set to include eight factors.

Moreover, the earlier conclusions on the non-monotonic, hump-shape of the risk-return

relation continue to hold.

8 Conclusion

We propose a new and flexible approach to modeling the conditional equity premium and

the conditional volatility that avoids imposing strong assumptions on the functional form

of the model used to generate estimates of the conditional mean and volatility. Imposing

invalid restrictions could lead to biased estimates and erroneous inference. We then use

this approach to model the risk-return trade-off.

Our empirical analysis suggests that there is a positive risk-return trade-off during

periods with low or ‘normal’ levels of volatility, but that the relationship is flat or

inverted during periods with high volatility, as observed, for example, during the recent

financial crisis. These findings make it easier to understand why so many studies differ in

their results regarding the sign and magnitude of the empirical risk-return relationship

and why results from linear models appear not to be robust to the sample period used
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in the analysis. In particular, studies that are conducted over periods without bouts of

high (conditional) volatility are more likely to find a positive trade-off between risk and

returns, while studies that include such episodes are more likely to find a negative or

insignificant risk-return trade-off. In both cases, the conclusions can only be viewed as

partial evidence that fails to cover the global behavior of the risk-return relation.

The non-monotonic risk-return trade-off uncovered here naturally raises the ques-

tion of which type of asset pricing model is required to generate this pattern. Models

where the representative consumer has constant relative risk aversion preferences are

also able to generate non-monotonic patterns, but it is not clear that they can match

the magnitude of the effect observed empirically. Our brief analysis indicated that a

model with habit persistence in which the risk premium varies because the risk aversion

varies across states shows promise in generating a sizeable non-monotonic risk-return

pattern. We leave it to future research to explore this important issue in more depth.
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Table 2. Forecasting performance of the
return models

1970-2005 1970-2008

Forecasting Method MSE R2 MSE R2

×103 ×103

Boosted Regression Trees 1.945 1.56% 1.970 0.30%

Prevailing Mean 1.987 -0.58% 1.992 -0.79%

Multivariate Linear Model 2.003 -1.37% 2.015 -1.97%

This table reports the mean squared error (MSE) and the out-of-sample R2-value for a
boosted regression tree model based on 10,000 boosting iterations used to forecast monthly
stock returns. For comparison we also present results for the prevailing mean model proposed
by Welch and Goyal (2008) and for a multivariate linear regression model selected recursively
using the BIC on the full set of predictor variables listed in Table 1. Results are showed
separately for the period pre-dating the recent financial crisis (1970-2005) and the period that
includes this episode (1970-2008). The parameters of the forecasting models are estimated
recursively through time.

Table 3. Forecasting performance of the
realized volatility models

1970-2005 1970-2008

Forecasting Method MSE R2 MSE R2

×104 ×104

Boosted Regression Trees 2.550 35.51% 3.314 40.84%

Garch(1,1) 3.664 7.69% 4.810 14.13%

MIDAS (Beta) 3.012 23.90% 3.602 35.69%

MIDAS (Exp) 3.116 21.28% 3.746 33.12%

AR(1) 3.001 24.42% 3.369 39.85%

This table reports the mean squared error (MSE) and the out-of-sample R-squared value
for a boosted regression tree model based on 10,000 boosting iterations used to forecast the
monthly value of realized volatility. For comparison we report the results for GARCH(1,1),
AR(1) and MIDAS models (Ghysels et al (2005)). Results are presented separately for the
period pre-dating the recent financial crisis (1970-2005) and the period that includes this
episode (1970-2008). The parameters of the forecasting models are estimated recursively
through time.
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Table 4. Least-squares estimates of linear models
for the risk-return trade-off

Model: µt+1|t = α + β1σt+1|t + β2σt|t−1 + αµt|t−1 + εt+1

Period σt+1|t σt|t−1 µt|t−1 R2

(t-stat) (t-stat) (t-stat)

A. Sub-samples

1927-2008 0.058 -0.079 0.659 44.40%
(2.76) (-3.79) (26.78)

1927-1967 0.056 -0.104 0.584 41.54%
(2.07) (-3.92) (15.41)

1968-2008 0.048 -0.025 0.662 42.93%
(1.42) (-0.72) (19.29)

B. High-Volatility Periods

1927-1939 -0.024 -0.052 0.43 34.46%
(-0.61) (-1.34) (5.82)

2001-2008 0.063 -0.067 0.510 25.77%
(0.82) (-0.81) (5.64)

This table reports estimates and t-statistics from ordinary least squares regressions of the
estimated conditional mean return (µt+1|t) on the conditional volatility (σt+1|t), the lagged
volatility (σt|t−1) and the lagged conditional mean (µt|t−1). Estimates of the conditional
mean and volatility used in the analysis are based on boosted regression tree models that use
the 12 variables listed in Table 1 as predictors.
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Table 5. Relative influence of
variables in risk-return model

Model: µt+1|t = f(σt+1|t, σt|t−1, µt|t−1)

Sub-samples σt+1|t σt|t−1 µt|t−1

A. Sub-samples

1927-2008 7.6% 9.4% 83.0%

1927-1967 21.1% 19.5% 59.4%

1968-2008 9.9% 9.9% 80.2%

B. High-Volatility Periods

1927-1939 24.5% 35.4% 40.1%

2001-2008 23.0% 20.6% 56.4%

This table shows the relative influence in the expected return specification of the current
conditional volatility, σt+1|t, the lagged volatility, σt|t−1, and the lagged expected return,
µt|t−1. Relative influence estimates sum to 100. Estimates of the conditional mean and
volatility are based on boosted regression trees that use the 12 predictor variables listed in
Table 1 as predictors.

Table 6. Monotonicity test for the
risk-return relation

Number of Portfolios

Horizon (months) 15 20 25

1 0.0103 0.0180 0.0000

2 0.0166 0.0000 0.0000

3 0.0386 0.0000 0.0000

6 0.6092 0.0015 0.0077

This table presents the results of a test investigating whether the relationship between con-
ditional volatility and expected returns after marginalizing out the effect of lagged volatility
and lagged expected returns is monotonic. Marginalized expected returns and conditional
volatilities {µ̂m

t+1:t+h|t, σ̂t+1t+h|t} are grouped into N portfolios based on the value of the
conditional volatility. Each entry reports the p-value of a Wolak test that entertains the null
hypothesis of an increasing and monotonic relation between expected returns and conditional
volatility against the alternative of a non-monotonic relationship. Small p-values indicate re-
jection of monotonicity. For robustness purposes, the test is performed for different time
horizons and using different numbers of portfolios.
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Table 7. Robustness of the forecasting performance
of the boosted regression trees.

A. Return Prediction

1970-2005 1970-2008

Forecasting Method MSE R2 MSE R2

×103 ×103

Boosted Regression Trees (5,000) 1.947 1.47% 1.965 0.53%

Boosted Regression Trees (10,000) 1.945 1.56% 1.970 0.30%

Boosted Regression Trees (15,000) 1.946 1.49% 1.975 0.06%

Best model selected recursively 1.959 0.86% 1.978 -0.01%

Combined Average 1.942 1.72% 1.960 0.76%

B. Volatility Prediction

1970-2005 1970-2008

Forecasting Method MSE R2 MSE R2

×104 ×104

Boosted Regression Trees (5,000) 2.701 31.76% 3.571 36.24%

Boosted Regression Trees (10,000) 2.550 35.51% 3.314 40.84%

Boosted Regression Trees (15,000) 2.525 36.22% 3.275 41.53%

Best model selected recursively 2.568 35.13% 3.318 40.75%

Combined Average 2.701 31.74% 3.656 34.73%

This table shows the out-of-sample forecasting performance of the boosted regression trees
under different rules for determining the number of boosting iterations. The first three
lines show results using 5,000, 10,000 and 15,000 boosting iterations. The fourth line (best
model selected recursively) chooses the number of boosting iterations recursively based on
data up to the previous month. The combined average uses the simple average of forecasts
from regression trees with 1, 2, ..., 10,000 boosting iterations. Panel A covers the return
prediction model, while Panel B covers the realized volatility prediction model. Results are
showed separately for the period pre-dating the recent financial crisis (1970-2005) and for
the period that includes this episode (1970-2008).
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1927-1967

1968-2008

Figure 4: Partial dependence plots for the mean excess return equation based on the three
predictor variables with the highest relative influence during the sub-samples, 1927-1967 (top
graphs) and 1968-2008 (bottom graphs), namely, inflation (infl), the log earnings price ratio
(ep), the log dividend earnings ratio (de), and the log dividend price ratio (dp). The x-axis
covers the sample support of the individual predictor variables, while the y-axis tracks the
change in the conditional equity premium as a function of the individual predictor variables.
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Figure 6: Actual versus predicted values of returns and realized volatility. The top graph
shows the time-series of excess returns plotted against the out-of-sample predicted values
from the boosted regression tree models. The bottom graph plots the realized volatility
against the predicted values from a boosted regression tree, a GARCH(1,1) model and a
MIDAS model with beta weights. 40
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1927-1967

1968-2008

Figure 8: Partial dependence plots for the conditional equity premium as a function of the
conditional volatility (vol), past volatility (vollag) and the lagged conditional mean return
(exclag). The plot is based on a Boosted Regression Tree with 10,000 boosting iterations,
using data for the two sub-samples, 1927-1967 (top graphs) and 1968-2008 (bottom graphs).
The x-axis covers the sample support of each predictor variable, while the y-axis tracks the
change in the conditional mean as a function of the individual state variables.
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Figure 10: Out-of-sample forecasting performance of the boosted regression trees (measured
by the R-squared) as a function of the number of boosting iterations (listed on the x-axis).
The top panel shows results for excess returns, while the bottom panel covers the realized
volatility. In both cases, results are based on the sample 1970-2008.
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