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1 Introduction

During the recent financial crisis the U.S. economy has experienced a significant in-

crease in measured uncertainty as documented in Bloom, Floetotto, and Jaimovich

(2009). At the same time the economy suffered a severe recession with sharp contrac-

tions in investment and credit, among other indicators. Figure 1 plots the evolution

since 2006 of the implied volatility index, VIX, as a measure of uncertainty, real

investments, and real commercial loans advanced to U.S corporations. Furthermore,

as can be see from Figure 1, in the aftermath of the crisis non-financial corporations

sharply increased their holdings of liquid assets, prompting the question of why firms

are not investing more given that they have access to so much liquidity?1 Motivated

by these observations, in this paper I study the effects of changes in uncertainty on

financing and investment decisions in a dynamic firm financing model, where firms

have access to complete markets subject to collateral constraints.

The main contribution of this paper is the study of the effects of changes in uncer-

tainty in an environment where financing is based on an optimal long-term contract.

Specifically, I derive comparative statics results and using calibrated parameter val-

ues, I then provide quantitative results.

Dynamic firm financing is modeled as in Rampini and Viswanathan (2010a),

who derive collateral constraints endogenously from limited enforcement constraints.

In this setting, uncertainty jointly determines firms’ optimal capital structure and

investment decisions. Specifically, collateral constraints impose limits on borrowing,

which forces entrepreneurs to finance their projects with both net worth and external

funds. In turn, limits to borrowing affect firms’ investment choices, as available net

worth determine the investment that entrepreneurs can afford.

Entrepreneurs use physical capital as their only factor of production. Investment

in physical capital is funded from the existing net worth and external financing.

External financing has benefits, but comes with a risk for entrepreneurs. On the

one hand, ex-ante higher leverage allows entrepreneurs to increase their investment

1See “Show us the money,” The Economist, July 1, 2010 and “The cost of repair,” The
Economist, October 7th, 2010.
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and achieve faster growth if ex-post returns on investments are high. On the other

hand, external financing carries a risk for entrepreneurs, as the repayment of debt

in periods of low returns reduces entrepreneurs’ net worth. As reductions in net

worth constrain future investment decisions, the scale of the project determines the

trade-off between faster growth when realized returns are high and the risk of losing

net worth in states with low returns. Thus, entrepreneurs have to choose not only

their investment policy but also their financing policy.

In this paper I show that increases in uncertainty amplify the risk of borrowing.

With an increase in uncertainty, the variance of the returns that entrepreneurs face

on their investment increases. As a result, in periods when returns are low, repaying

debt leads to larger reductions of net worth. Consequently, upon an increase in

uncertainty entrepreneurs will decrease the scale of their projects and will delever;

that is, entrepreneurs will reduce their demand for external financing and fund a

larger share of investments from their net worth. Thus, an increase in uncertainty

initially leads to a fall in optimal investment. Investment recovers as entrepreneurs

build up their net worth and transition into an environment with higher uncertainty

and lower leverage.

It is instructive to relate this result to the standard result on the effect of uncer-

tainty on investment when firms face convex adjustment costs. As shown in Abel

(1983), an increase in uncertainty induces a precautionary savings behavior, and since

capital is the only vehicle through which firms can save, increased uncertainty leads

to an increase in investment. In this paper, in addition to investment, entrepreneurs

also choose their financing policy. Consequently, the precautionary savings motive

can manifest either through an increased investment or through a decrease in ex-

ternal financing. This paper shows that when all collateral constraints bind before

and after an increase in uncertainty, entrepreneurs can only save by increasing their

investment, just as in Abel (1983). However, when some collateral constraints are

slack, entrepreneurs can also save by borrowing less at the margin, which may reduce

their investment.

In the long run, the change in uncertainty will be reflected in firms’ capital

structure. Upon an increase in uncertainty, firms decrease their demand for external
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financing and will finance a larger share of their investment from their net worth.

In the new environment with high uncertainty, firms will have larger net worth and

lower leverage and will be able to operate the firm at the initial scale. Thus this

paper highlights the importance of capital structure as the main mechanism through

which uncertainty affects firm dynamics.

The model has several important implications. First, the paper has implications

for corporate risk management practices. The main prediction of the model is that

upon an increase in uncertainty, risk management concerns override firms’ financing

needs, and as a result investment decreases. The need to hedge fluctuations in net

worth implies that entrepreneurs issue fewer claims against lower states; however this

comes at the expense of their financing needs, resulting in reduced investments.

Furthermore, the predictions of this paper are in line with the observed increase

in liquid assets held by non-financial corporations. The model features complete

markets, subject to collateral constraints, which allow firms to engage in risk man-

agement. Firms can hedge idiosyncratic risk by issuing fewer claims against lower

states, but also by conserving net worth in all states to take advantage of future

investment opportunities. Conserving net worth against all states in this context

can be thought of as hoarding cash. The results in this paper show that upon an

increase in uncertainty firms will increase their cash holdings, thus providing a po-

tential explanation for the observed increase in liquid assets holdings.

Additionally, it is important to note that leverage and collateral are determined in

equilibrium. This is so despite the fact that collateral constraints are derived endoge-

nously from limited enforcement constraints,2 where the tightness of the constraint

is governed by one parameter. Models that feature collateral constraints typically

assume that collateral constraints are always binding and thus the leverage ratio is

exogenously fixed.3 Indeed, the occasionally binding nature of collateral constraints

is crucial to the results in this paper.

2See Rampini and Viswanathan (2010a) and Kehoe and Levine (1993). For an alternative
environment with endogenously incomplete markets, see Geanakoplos (1997), Geanakoplos (2003),
Dubey, Geanakoplos, and Shubik (2005), Geanakoplos (2009).

3See Kiyotaki and Moore (1997), Iacoviello (2005), with the notable exception of Mendoza (2010)
and Khan and Thomas (2010).
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Finally, it is instructive to compare an economy with complete markets, subject

to collateral constraints, to an economy with incomplete markets that is subject to

the same constraints. When markets are incomplete, entrepreneurs insure against

fluctuations in productivity by conserving net worth. Thus, under incomplete mar-

kets firms tend to have higher capitalization. While entrepreneurs are less able

to insure against risk in the economy, higher capitalization allows entrepreneurs to

weather unexpected changes in uncertainty. In economies with complete markets, en-

trepreneurs can hedge states with low returns. Since hedging improves risk sharing,

entrepreneurs need not conserve as much of their net worth. But this also implies that

entrepreneurs will be thinly capitalized in the face of unexpected shocks. As a result

in economies with complete markets, subject to collateral constraints, shocks tend

to be amplified, while economies with incomplete markets, also subject to collateral

constraints, tend to dampen the effects of uncertainty shocks.4

This paper builds on Rampini and Viswanathan (2010a), who study risk-neutral

entrepreneurs subject to limited liability, whereas this paper assumes that entrepre-

neurs are risk-averse. The main implication of the assumption of risk-averse en-

trepreneurs can be found in the optimal firm size. Specifically, in the model with

collateral constraints, well-capitalized (high net worth) entrepreneurs will operate at

the same optimal size as in the frictionless economy. Crucially, this result allows

for the analytical derivation of comparative statics results. Furthermore, by using

calibrated values, I compute the the effects of uncertainty shocks and show that the

mechanism presented in the model is quantitatively significant.

The paper is related to several lines of research. First, I follow the literature that

considers dynamic incentive problems as the main determinant of firm financing

and capital structure. Specifically, I consider limited enforcement problems between

financiers and investors as in Albuquerque and Hopenhayn (2004), Lorenzoni and

Walentin (2007), Rampini and Viswanathan (2010a), and Rampini and Viswanathan

(2010b). Albuquerque and Hopenhayn (2004) consider the case of a firm which needs

financing for a project with an initial non-divisible investment, whereas here I con-

4Cooley, Marimon, and Quadrini (2004) also find that complete markets tend to amplify the
shocks in the economy.
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sider a standard neoclassical investment problem; moreover the limits of enforcement

differ in the two specifications. Lorenzoni and Walentin (2007) are the first to derive

endogenously collateral constraints from limited enforcement constraints and study

its implications on investment and Tobin’s q. Because of constant returns to scale,

in their setup firm-level net worth does not matter; moreover, they assume that all

collateral constraints bind. The focus in this paper is on the effect of uncertainty

on the capital structure, and the interaction between net worth and demand for ex-

ternal financing. Aggregate implications of limited enforcements are further studied

in Cooley, Marimon, and Quadrini (2004) and Jermann and Quadrini (2007). None

of these papers analyze the effect of changes in uncertainty on capital structure and

investment dynamics.

Implications of incentive problems due to private information about cash flows or

moral hazard on capital structure and investment dynamics are studied in Quadrini

(2004), Clementi and Hopenhayn (2006), DeMarzo and Fishman (2007), DeMarzo

et al. (2009). However they do not consider the effect of changes in the level of

uncertainty on leverage and investment dynamics.

Second, there is a recent literature that looks at the aggregate effect of uncertainty

shocks. In the presence of adjustment costs,5 Bloom (2009) and Bloom, Floetotto,

and Jaimovich (2009) argue that uncertainty shocks represent important driving

forces for business cycles,6 although the quantitative importance of this mechanism

is debated in the literature, see Bachmann and Bayer (2009). As in the above-

mentioned papers, my focus is also on the effect of uncertainty on capital accumula-

tion; however I do not consider the presence of adjustment costs.

Third, uncertainty shocks also have been considered in models with financing

frictions; this literature considers models in which entrepreneurs have private infor-

mation about their cash flows and obtain financing through optimal, one-period debt

contracts as in Townsend (1979) and Bernanke, Gertler, and Gilchrist (1999). In this

setup, changes in uncertainty affect credit spreads, thus influencing the cost of fi-

5There is a large literature on the role of uncertainty on capital accumulation, but the focus is
on the long run effects of uncertainty, see Abel (1983), Dixit (1989), Caballero (1991), Dixit and
Pindyck (1994), Bertola and Cabellero (1994), Abel and Eberly (1996), Abel and Eberly (1999).

6This idea initially was developed in Bernanke (1983).
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nancing. The first paper that formalized this insight is Williamson (1987); recently it

received further attention in Christiano, Motto, and Rostagno (2009) and Gilchrist,

Sim, and Zakraǰsek (2009). In contrast to the above literature, this paper consid-

ers optimal long-term contracts where the agency friction is limited enforcement,

and furthermore assumes that the cost of financing is constant, so the mechanism

described above is absent.

Finally, Arellano, Bai, and Kehoe (2010) study fluctuations in uncertainty in an

economy without capital, whereas Fernández-Villaverde et al. (2010) consider the

effect of fluctuations in uncertainty on small, open economies.

The outline of this paper is as follows. The next section presents the model

and characterizes the solution. Section 3 contains the main analytical results of the

paper, while Section 4 contains the quantitative results. The last section concludes.

2 The Model

This section presents a neoclassical investment model where entrepreneurs have ac-

cess to a complete set of state-contingent securities, subject to collateral constraints,

as in Rampini and Viswanathan (2010a). Due to the collateral constraints, en-

trepreneurs have to finance their investment from their net worth and external funds.

External funds are provided by lenders who have access to a limitless supply of cap-

ital. Credit markets are subject to limited enforcement; that is, entrepreneurs can

default on their loan obligations and divert cash flows and a fraction of their capital

holdings. Lenders discount the future at the rate β̃ ≡ R−1, and are willing to supply

funds as long as, in net present value terms, the loans are repaid.

There is a measure one of risk-averse, relatively impatient entrepreneurs, who

discount the future at the rate, β < β̃. Entrepreneurs have access to a produc-

tion technology with decreasing returns to scale.7 Capital, k, is the only factor of

production, which depreciates at a constant rate δ ∈ (0, 1).

Assumption 1 The production function, f , is strictly increasing, strictly concave

7This assumption can alternatively be motivated by a decreasing industry demand function.
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and differentiable, f ′(k) > 0, limk→0 f
′(k) =∞, limk→∞ f

′(k) = 0.

The return on capital, k′, is subject to stochastic shocks A(s′)f(k′), where A(s′)

is the realization of the total factor productivity in state s′ ∈ S. Let the history

of events up to time t be denoted by st = [s0, . . . , st−1, st], where st ∈ St, ∀t.
Furthermore, assume that the state s follows a Markov chain process with transition

matrix, π(st, st+1), with st ∈ S,∀t.

Assumption 2 For all s, ŝ ∈ S, where ŝ > s, A(ŝ) > A(s) and A(s) > 0, ∀s ∈ S

Entrepreneurs have the possibility to default. Upon default they can divert the

cash flow and (1 − θ) ∈ (0, 1) fraction of available capital, whereas creditors can

seize the remaining θ fraction of the resale value of capital. A crucial assumption of

the model is that defaulting entrepreneurs are not excluded from either capital nor

physical goods markets.

2.1 Limited Enforcement

Entrepreneurs enter into long-term contracts with risk-neutral lenders who have un-

limited capital. The contract specifies payments, pt(s
t) between entrepreneurs and

lenders. These payments can be negative or positive, depending on whether en-

trepreneurs need financing or pay back their loans. In order for lenders to participate

in this contract, the present value of net payments must be non-negative:

∞∑
t=0

∑
st

R−tπ(s0, s
t)pt(s

t) ≥ 0 (1)

where π(s0, s
t) = π(s0, s1)× . . .× π(st−1, st).

Additionally, since entrepreneurs might default in any future period or state,

lenders must ensure that in an eventual case of default, the value of the assets that

they recoup will cover the present value of their net payments. Since in the present

context, the value that lenders can recoup equals θ fraction of the resale value of the
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capital stock, the enforcement constraint is:

θkt+1(st)(1− δ) ≥
∞∑
j=t

∑
sj

Rt−jπ(st, s
j)pj(s

j), ∀sj ∈ S (2)

Notice that the enforcement constraint takes a very simple form; the present

value of capital holdings serves as collateral for the entrepreneurs’ future promised

payments. Because of the possibility of default, entrepreneurs can credibly issue

promises against state st+j, of up to the θ fraction of the resale value of undepreciated

capital in that state.

Denote Rb1(s0, s1) as the present value of all future payments from the en-

trepreneur to the lender in state s1. Then (1) can then be written as follows

Rb1(s0, s1) =
∞∑
t=0

∑
st

R−tπ(s0, s
t)pt(s

t)

= p0(s0) +R
∑
s1|s0

R−1π(s1, s2)b2(s1, s2)

= p0(s0) +
∑
s1|s0

π(s1, s2)b1(s1, s2)

(3)

Notice that (3) implies that entrepreneurs issue state-contingent, one-period se-

curities; however these securities are priced by the lenders with the probability that

particular states occur. This is intuitive; since lenders are risk-neutral, they price

state-contingent assets only with the probability of that state occurring; that is, with-

out correcting for any risk factor. With this notation, the enforcement constraint (2)

can be written:

θkt+1(st)(1− δ) ≥ Rbt+1(st, st+1), ∀st+1 ∈ S (4)

Furthermore, conditions (4) makes it clear that the long-term contract can be

implemented by a sequence of one-period contracts, where entrepreneurs issue state-

contingent claims that are subject to state-contingent collateral constraints. Notice

that, in general enforcement constraints depend on the value of default, and these

enforcement constraints have to hold in all future periods. This implies that for
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entrepreneurs to make credible promises to repay the loan, lenders need to know

all preference parameters and to keep track of the whole history of repayments. In

the present context, lenders only have to observe the current level of entrepreneurs’

physical capital, and thus the informational requirements on the lenders’ knowledge

is greatly reduced. Specifically, an important implication of the present model is

that lenders need to know only the per-period publicly available asset holdings of

entrepreneurs. Thus, the value of the default, in general a value function itself, now

depends only on the level of physical assets. This simplifies the problem consider-

ably8.

We now turn to the entrepreneurs’ problem.

2.2 Entrepreneurs’ Problem

Entrepreneurs choose dividends, investment and financing to maximize the expected

utility of their future dividend consumption. I assume entrepreneurs are risk-averse

over their dividend payments.

Assumption 3 The utility function, u, is strictly increasing, strictly concave, and

differentiable: u′(d) > 0, limd→0 u
′(d) =∞, limd→∞ u

′(d) = 0.

Using the collateral constraints (4), the entrepreneurs’ problem can be written in

recursive form. Furthermore, the problem can be substantially simplified with the

introduction of an additional variable, net worth. Define net worth in state s′ as

w(s′) = z′f(k′) + k′ (1− δ) − Rb(s′), the return on investment and resale value of

capital less the state-contingent debt to be repaid. The introduction of net worth

allows the reduction of the number of potential state variables from at least three

(k′, b(s′), s′) (where, notice, debt in every state of the economy is part of the state

variables), to only two (w(s′), s′), significantly simplifying the problem. I suppress

notation by assuming that every variable depends implicitly on (w, s). The en-

8See for example the treatment in Marcet and Marimon (1992), Kehoe and Levine (1993),
Alvarez and Jermann (2000), and Marcet and Marimon (2009)
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trepreneurs’ problem can then be written as:

V (w, s) = max
{d,k′,b(s′),w(s′)}

{
u(d) + β

∑
s′∈S

π(s, s′)V (w(s′), s′)

}
(5)

subject to

w +
∑
s′∈S

π(s, s′)b (s′) ≥ d+ k′ (6)

A(s′)f(k′) + k′ (1− δ) ≥ w(s′) +Rb(s′), ∀s′ ∈ S (7)

θk′ (1− δ) ≥ Rb(s′), ∀s′ ∈ S (8)

and

d ≥ 0, k′ ≥ 0.

Entrepreneurs in each period use their net worth and potential borrowing to

fund gross investments, k′, and pay out dividends, d, as can be seen from the budget

constraint (6). To obtain funding, entrepreneurs issue state-contingent securities that

they promise to buy back in the next period. Next period’s net worth depends on the

amount of investment, the realized state of the economy and the cost of financing,

as can be seen in equation (7).

Given the possibility of default, entrepreneurs’ promises to repay their debt are

not credible and they need to secure their borrowing with their physical capital.

Lenders are willing to provide financing only if, in case of default, entrepreneurs’

assets can cover the provided funds. This is encoded in the collateral constraints (8),

which need to hold in every state of the world.

Entrepreneurs issue state-contingent claims, secured with their capital holdings.

Obtained financing must be repayed at a cost Rb(s′). Entrepreneurs have to trade

off their need for investment with the cost of financing. Borrowing against state s′

reduces next period’s net worth in that state. This implies that borrowing against

state s′ carries a risk for entrepreneurs, as investment in state s′ will be constrained by

the available net worth. Notice also that the above collateral constraints are similar

to the one used in Kiyotaki and Moore (1997), with the exception that the collateral
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constraints here are derived endogenously from a limited enforcement problem, and

that borrowing is state-contingent.

Next, I turn to the characterization of the recursive problem. The below proposi-

tion states that the entrepreneurs’ problem is well-defined and there exists a unique

value function V satisfying (5) - (8).

Proposition 1 (i) There is a unique V , satisfying (5) - (8). (ii) V is continuous,

strictly increasing, and strictly concave in w. (iii) ∀ ŝ, s ∈ S such that ŝ > s, π(ŝ, s′)

strictly first order stochastically dominates π(s, s′), V is increasing in s.

The proofs for Parts (i) - (iii) are relatively standard. The concavity of the

production function, and the risk-aversion of entrepreneurs guarantee that V is a

unique, strictly increasing and strictly concave function of net worth.

Denote the Lagrange multipliers on the constraints (6), (7), (8) as λ, βπ(s, s′)λ(s′),

βπ(s, s′)λ(s′)µ(s′). The first-order conditions for the entrepreneur are:

λ = u′(d) (9)

λ = β
∑
s′∈S

π(s, s′)λ(s′)(A(s′)f ′(k′) + 1− δ + µ(s′)θ(1− δ)) (10)

λ = βRλ(s′)(1 + µ(s′)), ∀s′ ∈ S (11)

µ(s′)(θk′ (1− δ)−Rb(s′)) = 0, µ(s′) ≥ 0 ∀s′ ∈ S (12)

The envelope condition is Vw(w, s) = λ. Due to the assumptions on the produc-

tion and utility functions, capital and dividends is always positive; thus I do not

include that constraint in the above Kuhn-Tucker conditions.

Condition (9) governs the dividend payout policy of entrepreneurs, and the enve-

lope condition makes it clear that dividend payout depends on the marginal valuation

of net worth. Condition (10) governs the optimal investment of entrepreneurs. No-

tice that in states when the collateral constraint (8) does not bind for any state s′ ∈ S
next period, µ(s′) = 0, (10) reduces to the standard Euler equation, where optimal

investment is governed by the marginal revenue of capital weighted by entrepreneurs’

stochastic discount factor. A binding collateral constraint (8), µ(s′) > 0, drives a
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wedge between the marginal product of capital and the relative marginal utilities

of wealth. Specifically, binding collateral constraints imply that entrepreneurs use

physical capital both as a factor of production and as an asset that can be used

for collateral. Thus, internal funds require a premium in the presence of binding

collateral constraints.

Equation (11) governs the evolution of entrepreneurial net worth. Optimal next

period net worth depends on the financing need of entrepreneurs. In states where the

collateral constraint does not bind, µ(s′) = 0. In states however when the collateral

constraint binds, the use of capital for collateral purposes is encoded in the value of

µ(s′).

The next proposition shows that the problem (5) - (8) has a unique solution.

Proposition 2 Denote x0 ≡ [d0, k
′
0, b0(s′), w0(s′)]. The optimal policy x0 is unique.

Next, I discuss the solution of the frictionless problem, when entrepreneurs are

not relatively impatient and borrowing is not subject to collateral constraints.

2.3 Frictionless Case

In this section I consider the frictionless case, when there are no collateral con-

straints and entrepreneurs have the same discount factor as lenders. In that case, en-

trepreneurs can perfectly insure against idiosyncratic productivity shocks, λ = λ(s′)

for all s′ ∈ S,9 and operate on the optimal scale. Indeed, the optimal capital stock

then is given by:

1 = β
∑
s′∈S

π(s, s′)(A(s′)f ′(k̄′) + 1− δ)

Since markets are complete, firms’ capital structure is indeterminate, and firms

operate at the optimal scale, k̄′, at all levels of net worth. Next, I turn to the case

when entrepreneurs are relatively impatient and face collateral constraints.

9See Chapter 8, in Ljungqvist and Sargent (1994).
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2.4 Characterization of the Optimal Policy

In this section I characterize the optimal financing and investment policies of en-

trepreneurs. Due to the presence of collateral constraints, entrepreneurs must finance

part of their investments with their internal funds. Depending on their level of net

worth, entrepreneurs must accumulate enough internal funds to be able to afford

levels of investment that maximize the return on their project. Entrepreneurs’ opti-

mal policies determine their financing demand, investment choice and their optimal

accumulation of internal funds. Throughout this section I derive the results under

the assumption of constant investment opportunities, π(s, s′) = π(s′).

The optimal financing policy can be best characterized by analyzing the shadow

value of collateral, µ(s′).

Proposition 3 (Optimal Financing Policy) (i) There exists w > 0 such that if

w < w, then the collateral constraint in all states bind µ(s′) > 0 ∀s′ ∈ S. (ii)

The marginal value of net worth is (weakly) decreasing in the state s′, whereas the

multipliers on collateral constraints are (weakly) increasing in the state s′; ∀s′, s′+ ∈
S, such that s′+ > s′, λ(s′+) < λ(s′) and µ(s′+) > µ(s′). (iii) There exist w̄ > 0 such

that if w ≥ w̄ then µ(s′) = 0, ∀s′ ∈ S

To understand the implications of the model for financing demand, recall that

entrepreneurs must finance part of their investment with their own net worth. Thus

entrepreneurs’ investment decisions are constrained by their available net worth. The

first part of the proposition states that when the net worth of entrepreneurs is low

enough, entrepreneurs will exhaust their debt capacity against all future states. Of

course, entrepreneurs do this because, in all future states, the marginal return on

their investment will be higher then their cost of financing, which in the current

model is R.

The second part of the proposition characterizes the shadow value of collateral in

different states of nature. The proposition says that in states when returns are low

the shadow value of collateral is lower. Intuitively, entrepreneurs would always like

to borrow less against states with low returns, as in such states repaying the debt

leads to losses of net worth. Entrepreneurs will always want to issue more claims
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against states with high returns, but the collateral constraints restrict the amount of

funds that can be borrowed. Thus entrepreneurs’ shadow value of collateral is higher

against states with high returns.

The last part of the proposition states that when entrepreneurs have accumulated

enough net worth, they will choose to issue fewer claims than the value of their

collateral, against all future states. The intuition for this result is that when the

level of net worth is high enough, entrepreneurs will be able to perfectly hedge the

idiosyncratic fluctuations in productivity, and they will no longer value physical

assets for the purpose of collateral.

Turning now to the optimal investment policy,

Proposition 4 (Optimal Investment Policy) There exists w̄ > 0 such that (i)

if w,w+ < w̄, for w < w+ such that w < w+ then k′(w) < k′(w+). (ii) If w ≥ w̄,

then k′ = k̄.

Entrepreneurs with low levels of net worth will be constrained in their invest-

ment opportunities, as part of their investments need to be financed by net worth.

As entrepreneurs increase their net worth, their investment decisions become less

constrained. Entrepreneurs keep accumulating net worth until the return on their

investment is greater or equal to their cost of financing R. Thus, as long as long

as net worth is low enough, in that entrepreneurs are constrained in their invest-

ment choice, entrepreneurs’ optimal investment policies are increasing in their net

worth. However, once optimal investment reaches the level at which the marginal

return on investment equals the opportunity cost of investment, R, entrepreneurs

stop accumulating further capital.

Notice that the maximal level of investment, k̄, is also the solution to the neo-

classical investment problem with complete markets, same discount factor, and no

collateral constraints. Since all risk is idiosyncratic, entrepreneurs can perfectly in-

sure against this risk, and at all levels of net worth they will invest k̄. In the presence

of collateral constraints, when net worth is low, investment will be constrained by

the available net worth. Thus entrepreneurs will have to build up their net worth

in order to afford the same level of investment as in the problem without limits to
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borrowing.

To understand the optimal dividend policy recall the optimality conditions (9)

and the envelope condition: λ = u′(d) = Vw(w, s). Intuitively risk aversion en-

sures that entrepreneurs increase their dividend payout in line with accumulation of

internal funds.

The evolution of optimal net worth is presented in the proposition below.

Proposition 5 (Net worth transition dynamics) Suppose π(s, s′) = π(s′), ∀s, s′ ∈
S. (i) ∀s′, s′+ ∈ S, such that s′+ > s′, w(s′+) ≥ w(s′), with equality if µ(s′+) = µ(s′) =

0. (ii) w(s′) is increasing in w, ∀s′ ∈ S; for w sufficiently small, w(s′) > w, ∀s′ ∈ S;

and for w sufficiently large, w(s′) < w, ∀s′ ∈ S. (iii) ∀s′ ∈ S, ∃w dependent on s′

such that w(s′) = w.

Part (i) of Proposition 5 states that the higher the returns on the projects are

in a state, the larger will net worth be in the next period. To understand Part

(ii), recall the optimality condition (11). If the level of initial net worth is low

enough, entrepreneurs will be able to grow by levering up against future states.

That is, at levels of initial net worth at which βR(1 + µ(s′)) > 1, entrepreneurial

net worth increases. However when net worth is high enough, entrepreneurs, being

relatively impatient, have no incentive to save and thus they will pay out net worth as

dividends. Therefore, next periods’ net worth decreases. Part (iii) states that there

exists a unique level of net worth in each state at which net worth stays constant.

The equilibrium outcome will be a stationary distribution of firms, in terms of

their net worth. The next proposition shows the existence of a stationary distribution

and characterizes its support.

Proposition 6 (Existence of a Stationary Distribution) There exists a unique

stationary distribution of net worth. Define wl, s, wu, and s̄, where s ≥ s, and s ≤
s̄, ∀s ∈ S, such that µ(wl, s

′) = 1/(βR) − 1 and µ(wu, s̄
′) = 1/(βR) − 1. Then the

support of the stationary distribution is w ∈ [wl, wu].

The partial equilibrium framework allows for the characterization of the station-

ary distribution and to provide sharp bounds on its support. From (11), notice that
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whenever µ(s′) < 1/(βR) − 1, λ < λ(s′) which implies that w > w(s′). Thus, en-

trepreneurs in state s′ choose to have lower net worth. However, since entrepreneurs

were already constrained in their investment choices, a further decline in capitaliza-

tion will further constrain their investment possibilities. This implies that with a

decline in net worth, the Lagrange multiplier on the collateral constraint, µ, next

period will have to rise. When µ(s′) increases such that µ(s′) > 1/(βR) − 1, from

(11) we have that λ > λ(s′); thus entrepreneurs will increase their net worth. The

symmetric argument applies when βR(1 + µ(s̄′)) > 1.

Levels of net worth, at which µ(s′) > 1/(βR) − 1 and µ(s̄′) < 1/(βR) − 1 are

transient. Whenever, net worth is low enough, w < wl, regardless of the realization

of the shocks entrepreneurs’ net worth in next period increases. Similarly, when net

worth is high enough, w > wu, entrepreneurs prefer to pay out net worth as dividends

and thus next period’s net worth decreases. As a result levels of net worth outside

of the support w ∈ [wl, wu] are transient.

In the more general case, with autocorrelated shocks, investment and financing

policies will depend both on the current state and net worth. In Section 4, I study

the quantitative implications when investment opportunities are stochastic. There

the properties of the technology shocks will be calibrated to empirically plausible

measures of autocorrelation and volatility.

2.5 Risk-Averse Entrepreneurs

Let me now turn to the discussion of the importance of risk-averse entrepreneurs.

As I have shown above, the assumption of risk aversion implies that investment

equals frictionless investment when net worth is sufficiently high. In contrast, with

risk-neutral entrepreneurs this is not the case. This result has several implications.

Above a threshold level of net worth, entrepreneurs will hedge all future states;

that is, entrepreneurs will conserve net worth against all states to be able to take

advantage of future investment opportunities. This happens despite the fact that

conserving net worth is costly, as entrepreneurs are relatively impatient. Accumu-

lating net worth against all states can also be interpreted as firms holding onto cash

17



or liquid assets, which I will discuss in the next section. If entrepreneurs are risk-

neutral, as shown in Rampini and Viswanathan (2010b) entrepreneurs will not hedge

states with high returns when investment opportunities are constant.

The assumption of risk aversion makes also it also convenient to derive compara-

tive statics results. When entrepreneurs’ net worth is high enough, then the project

is operated at the same scale as in the frictionless economy. And since this scale of

operation does not depend on the level of uncertainty, the bounds for the stationary

distribution can be exactly pinned down. This significantly simplifies the derivation

of comparative static results.

Finally, the results in this paper crucially depend on whether the collateral con-

straints bind. When agents are risk averse using calibrated parameters, I find that

collateral constraints will bind in some regions of the state variable, while not in

others. In a model with risk-neutral agents, under the current parameterization all

collateral constraints bind and thus from a quantitative point of view, the effects

discussed in this paper will not be present.

2.6 Collateral Constraints and Borrowing Constrained States

In this section I discuss the nature of entrepreneurs’ collateral constraints and how

financing depends on them. Since investment is constrained by the available net

worth, entrepreneurs want to accumulate net worth as fast as possible. However

entrepreneurs also want to insure against states with low realization of shocks. That

is, they want to transfer net worth from high states to low states. Collateral con-

straints (8) imply that entrepreneurs cannot promise to pay more than the value of

their collateral in the subsequent period. As a result, collateral constraints impose

a limit on how much insurance entrepreneurs can achieve. Consequently, collateral

constraints tend to bind against states with high realizations of shocks, and be slack

against states with low returns. However, this does not mean that entrepreneurs

are borrowing constrained in states with high returns. After all, both their invest-

ment and financing policies are choice variables. It simply means that in the absence

of collateral they cannot shift enough wealth from states with high realizations of
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productivity to states with low realizations of productivity.

In fact, the lower their net worth is, the more constrained entrepreneurs become.

To understand this, notice that collateral constraints imply that part of investment

must to be funded from entrepreneurs’ available net worth. The lower the net worth,

the lower the down payment entrepreneurs can afford, and the more constrained

their investment choices becomes. And since collateral constraints impose a limit on

firms’ maximum leverage, they tend to be borrowing constrained precisely at lower

levels of net worth, which can happen after a series of realizations of low productivity

shocks.

3 Uncertainty, Financing, and Investment Deci-

sions

In this section I analyze the effects of an increase in uncertainty on investment and

financing decisions in the presence of collateral constraints. All results are derived

under the assumption of constant investment opportunities; that is π(s, s′) = π(s′).

The effect of uncertainty can be modeled in two equivalent ways. On the one

hand one can assume two stochastic probability distributions, in which case one

probability distribution second order stochastically dominates the other probability

distribution. The two probability measures will impact the optimal investment and

financing decision through their impact on the prices of state-contingent securities.

Since lenders are risk neutral, the state-contingent securities are priced according to

their probability measures.

Changes in uncertainty are modeled as a mean preserving spread over the magni-

tude of productivity shocks. As such, the price of state-contingent securities remains

the same, however entrepreneurs’ demand for state-contingent debt will change as

the magnitude of shocks change. The effect of uncertainty is modeled by comparing

the stationary distribution of net worth, and the resulting investment and financing

decision under two total factor productivity processes, AL, AH . The two productiv-

ity processes have the same mean, but differ only in their variance. Denote the mean
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productivity level as Āi =
∑

s∈S π(s)Ai(s), ∀ i ∈ {L,H}. Then

Assumption 4 Define the mean of the two productivity levels as Āi =
∑

s∈S π(s)Ai(s),

and define the variances as σ2
i =

∑
s∈S π(s)(Ai(s)− Āi)2, ∀ i ∈ {L,H}. Assume that

ĀL = ĀH , but σL < σH .

Let us turn to the effect of uncertainty on firm investment and financing decisions.

The next proposition shows that dividend payout decreases with uncertainty.

Proposition 7 (Uncertainty and Dividend Payout) Dividend payout decreases

with an increase in uncertainty; that is dL > dH for all w.

The intuition behind this result can be understood as follows. Since the value

function is strictly concave, an increase in uncertainty induces a precautionary sav-

ings behavior for entrepreneurs; as a result entrepreneurs want to save more. Thus,

at any given level of net worth, entrepreneurs decrease their dividends payout in

order to be able to save more.

The next proposition states that when uncertainty is high, firms decide to hedge

at lower levels of net worth, whereas firms reach the level of net worth that allows

their investment choice to be unconstrained at higher levels of net worth.

Proposition 8 (Uncertainty and Financing Demand) Denote s, s̄ ∈ S such

that s ≥ s, and s ≤ s̄, ∀s ∈ S. (i) Denote wL and wH such that µL(wL, s
′) = 0 and

µH(wH , s
′) = 0. Then wH < wL. (ii) Denote w̄L and w̄H such that µL(w̄L, s̄

′) = 0

and µH(w̄H , s̄
′) = 0. Then w̄H > w̄L.

Intuitively, uncertainty affects the risk of external financing. On the one hand,

when uncertainty is high, entrepreneurs may want to borrow more against states

with high returns; however the collateral constraints limit the amount of external

financing provided by lenders. Thus, entrepreneurs cannot hedge the larger risks by

borrowing more against states with high returns. On the other hand, entrepreneurs’

in low states now face lower returns on their project. As a consequence in periods

with low returns, servicing the debt leads to larger losses of net worth, thus rendering

entrepreneurs more constrained in next periods’ investment decisions. As a result,
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entrepreneurs’ incentive is to hedge more states with low returns, by borrowing less

against those states.

The next proposition states the effect of uncertainty on investment decisions.

Proposition 9 (Uncertainty and Investment) (i) Assume wH the level of net

worth such that µH(w, s′) = 0. If w < w then k′L < k′H . (ii) Assume w̄H the level

of net worth such that µH(w̄H , s̄
′) = 0. If w ≥ w̄H then k̄′L = k̄′H . (iii) There exists

wH < ŵ < w̄H , such that if w ≤ ŵ then k′L ≤ k′H . If w ≥ ŵ then k′L ≥ k′H .

To understand the above result, remember that the value function is concave in

net worth. The concavity of the value function induces a precautionary motive for

entrepreneurial savings. When all collateral constraints bind entrepreneurial savings

can happen only through an increase in capital accumulation.

Moreover, the maximum level of investment does not depend on the level of un-

certainty. This is intuitive, since investors would never invest such that the marginal

return on capital would be lower then the cost of financing, R. Or put it differently,

since entrepreneurs can save using state-contingent securities with return R as well,

state-contingent securities represent an opportunity cost for entrepreneurs. Thus,

they will never accumulate levels of capital at which the marginal return on capital

is less than the opportunity cost, R. Alternatively, when net worth is high enough,

entrepreneurs can perfectly insure against idiosyncratic shocks and thus the level of

risk does not matter for their optimal decision.

The last part of the proposition states that there is a threshold level of net worth

ŵ, below which entrepreneurs invest more when uncertainty is high, and above which,

entrepreneurs decrease their investment with an increase in uncertainty. The intu-

ition behind this result is the following. When net worth is low enough entrepreneurs

will borrow to the maximum extent of their collateral. With an increase in uncer-

tainty, as long as collateral constraints bind, entrepreneurs choose to invest more due

to precautionary reasons. Thus there is a region of net worth where entrepreneurs’

investment increases with uncertainty. However with an increase in uncertainty, firms

start hedging at lower levels of net worth, invest less and thus lower their capital

growth. But when uncertainty is high, entrepreneurs reach the maximum scale of
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their project at higher levels of net worth. However with lower growth, there must

be a threshold level of net worth, ŵ, above which entrepreneurs will operate on a

lower scale, as compared to when uncertainty was low. Thus, when the level of net

worth is high enough, entrepreneurs’ investment decreases with uncertainty.

It is instructive to relate these findings to the result on the effect of uncertainty

on investment in the presence of convex adjustment costs, as in Abel (1983). In

that model, firms’ value function is concave because of the assumed constant returns

to scale production functions and convex adjustment costs. Upon an increase in

uncertainty, entrepreneurs’ precautionary motive for savings increases, but the only

vehicle through which entrepreneurs can save is capital, so they invest more. In this

paper, when all collateral constraints bind, savings can only increase through more

investment in physical capital. However, when some collateral constraints are slack,

entrepreneurs can also save by borrowing less at the margin, which may reduce their

investment. Indeed, with an increase in uncertainty, entrepreneurs with high enough

net worth chose to save more by decreasing their demand of external financing. With

lower funds entrepreneurs invest less and operate at a lower scale.

Let us now turn to the quantitative results.

4 Quantitative Results

In this section I show that quantitatively the effects presented in the previous section

are significant. First, I look at comparative statics; that is, how levels of uncertainty

and the collateral constraints affect the stationary distribution, especially the lever-

age ratio. Then, I compute the effects of uncertainty shocks in a calibrated economy.

The idiosyncratic shock process is modeled as a two-state Markov Chain process,

with a symmetric transition matrix. Specifically, assume that the productivity level

can be written as

A(st) =

AL = A− σ

AH = A+ σ
(13)

where A is the unconditional value of the productivity process, A = (AL + AH)/2
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and the variance is such that σ = (AH − AL)/2.

The literature on estimating the properties of firm level total factor productivity

processes does not provide uniformly accepted values for the autocorrelation and

unconditional variance. In fact, estimates for both parameters differ widely across

studies. For example Veracierto (2002) finds the unconditional volatility of the tech-

nology shock to be σ = 0.056, while Cooper and Haltiwanger (2006) finds that the

unconditional volatility, σ = 0.30. Conditional volatility estimates are even harder to

find in the literature. The exception is Bloom (2009), who derives the estimates from

stock market data. In this paper I follow Bloom, Floetotto, and Jaimovich (2009),

who calibrate the volatility process of idiosyncratic and aggregate productivity to

match moments of the cross-sectional dispersion of the inter-quartile sales growth

and moments based on a GARCH(1,1) estimated conditional heteroscedasticity of

GDP growth.10 In this paper I consider only idiosyncratic productivity, and I will fol-

low the parametrization in Bloom, Floetotto, and Jaimovich (2009). For the specific

values, I assume that when uncertainty is low, the standard deviation of productivity

is σL = 0.067, while when uncertainty is high σH = 0.13, thus uncertainty increases

twofold.

As with the volatility of the idiosyncratic productivity process, there is no con-

sensus on the estimate for the autocorrelation parameter either. For example Ve-

racierto (2002) estimates the autocorrelation of the idiosyncratic shock to be 0.83,

while Cooper and Haltiwanger (2006) estimate a higher autocorrelation parameter

of 0.885. Gomes (2001) and Khan and Thomas (2010) calibrate the autocorrelation

parameter to be 0.65, to match the persistence of the investment process. Here too

I follow Bloom, Floetotto, and Jaimovich (2009), and assume the autocorrelation to

be 0.86, resulting in the following transition matrix for the stochastic process:

π(s, s′) =

[
0.93 0.07

0.07 0.93

]

I take relatively standard values for the remaining parameters. The values of the

10These moments in both cases are: mean, standard deviation, skewness, and serial correlation
of the annual IQR sales growth rates and GDP growth.
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parameters are summarized in Table 1. Specifically, following Bernanke, Gertler, and

Gilchrist (1999), I assume a yearly discount factor for lenders to be equal to β̃ = 0.95,

which implies a yearly gross interest rate of R = 1/0.95 = 1.0524. Entrepreneurs

are assumed to have a CRRA utility function; that is u(d) = d(1−γ)/(1− γ) with the

coefficient of risk aversion, γ = 1. Turning to the production function, I assume that

the capital share in the production function is α = 0.33, while the yearly depreciation

is 10%.

The two relatively unconventional values are the magnitude of the relative dis-

count factor and the collateral constraint parameter θ. For the relative impatience

parameter I assume β = 0.93, which implies a yearly premium on internal funds of

2.2%. In comparison, Iacoviello (2005) assume the quarterly premium on internal

funds to be 1.1%, which gives a yearly premium of 4.4%. Finally, I assume that the

share of physical capital that can be pledged as collateral is 70%; that is θ = 0.7.

Depending on the level of uncertainty, this results in a book leverage ratio between

0.53 and 0.59 in line with the book leverage of 0.587, as found in Covas and Den

Haan (2010) and Covas and Den Haan (2011) using Compustat data. Using Flow

os Funds data Jermann and Quadrini (2010) report a somewhat lower book leverage

ratio; they find that the ratio of debt to capital over the period of 1984-2009:1 for

the Nonfinancial Business Sector is 0.46.

Define Z = W × S and φ(Z) as the cross sectional distribution of firms over net

worth and idiosyncratic shocks. Now define the leverage ratio as total liabilities over

net worth:

L =

∫
Z

∑
s′∈S π(s, s′)b(s′)

w
φ(z) (14)

Table 1 summarizes the parameter values.

Table 1: Parameter Calibration
β γ R α δ θ Ā ρ σL σH

0.93 1 1/0.95 0.33 0.1 0.7 1 0.86 0.067 0.13

The next section presents the comparative statics.
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4.1 Comparative Statics

In this section I present the descriptive statistics of the stationary distributions for

two levels of uncertainty. Table 2 contains the results.

Table 2: Stationary Distribution
Variables σ = 0.067 σ = 0.13

Output, y 1.42 1.42
Investment, k′ 2.90 2.90
Dividend, d 1.04 1.05

External Financing,
∑

s′∈S π(s, s′)b(s′) 1.70 1.56
Net Worth, w 2.23 2.38
Book Leverage 0.58 0.53
Leverage Ratio, L 0.76 0.67

The primary difference across levels of uncertainty is the difference between the

equilibrium levels of net worth, debt, and leverage ratio. Notice that the real variables

remain equal across different levels of uncertainty, however the capital structure

changes dramatically. In the stationary distribution when uncertainty is high, firms

choose to increase their internal funds by more then 7.1% just to be able to afford

the same level of investment and reach the same output. The consequence of this

change in the capital structure is that the leverage ratio in the economy decreases

by 12%.

4.2 Transitional Dynamics

This section contains the results of how firms respond to unanticipated changes in

uncertainty. Studying the effects of unexpected shocks is important in light of the

recent financial crisis of 2007-2009 that was widely thought of as not having been an-

ticipated by most market participants or economists. Indeed, there was a widespread

belief that house prices could not fall and developments in the financial sector al-

lowed risks to be spread widely. Even the current Chairman of the Federal Reserve

Bank, Ben Bernanke, declared on March 28, 2007: “At this juncture, however, the
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impact on the broader economy and financial markets of the problems in the sub-

prime market seems likely to be contained.”11 Thus, it seems warranted as a baseline

scenario to investigate the effects of unanticipated changes in uncertainty. However,

in the next section I also present results for the stochastic volatility case.

Basically, by allowing for an unanticipated, permanent uncertainty shock, I trace

the transitional dynamics from a low to a high volatility environment. In order to

compute the transitional dynamics, I first solve the entrepreneurs’ problem (5) -

(8) for the optimal decisions. To compute the stationary distribution, I simulate a

large number of firms and trace them over time, until based on some metric, the

stationary distribution converges. I choose 100000 firms and track them over time

until the mean of net worth converges.

Having computed the stationary distribution, I increase the volatility of shocks.

Then I trace the evolution of firms for 20 periods. I repeat this last step 500 times

and chose the mean value of the variables. This last step is required to rule out the

dependence of transitional dynamics on a particular draw of idiosyncratic shocks.

In order to understand the effects of uncertainty shocks, first, I describe the

optimal policies in a constant investment opportunity environment. Figures 2 and 3

show the optimal policies for investment (k′), Lagrange multipliers on the collateral

constraints (µ(s′)), optimal dividend policy, and optimal net worth in next period

(w(s′)), in both cases when uncertainty is low and high.

Notice that when uncertainty is high, entrepreneurs start to hedge at lower lev-

els of net worth as compared to when uncertainty is lower. This is so because as

the ex-post risk of losing net worth in the economy increases, entrepreneurs issue

fewer claims against the state with lower returns. Moreover, entrepreneurs reach the

unconstrained scale of their projects at higher levels of net worth. However, costly

hedging crowds out investment, and as such entrepreneurs increase the size of their

project at a lower rate. This can be seen by comparing the optimal investment poli-

cies (k′) of firms, and noticing that the slope is lower in the case of high uncertainty,

under the region where entrepreneurs hedge. Finally, notice that the stationary dis-

11See “The Economic Outlook”, March 2007, Report before the joint economic committee, U.S.
Congress.
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tribution widens with an increase in uncertainty, as can be seen from the bottom

right panel in the two figure. The bounds of the stationary distribution increase,

as the bounds are at levels of net worth at which the optimal policy crosses the 45

degree line.

Figure 4 presents the transitional dynamics for investment, debt, net worth, and

output for the case of autocorrelated productivity shocks; that is, when investment

opportunities are stochastic. The parameters are listed in Table 2. Notice that the

effect of an unexpected, permanent increase in uncertainty is large; net investment

drops by more than 40%. Furthermore, upon an increase in uncertainty dividend

payout is reduced by more than 2% as entrepreneurs use their net worth for in-

vestment rather than pay it out as dividends. In order to hedge the increased risk,

entrepreneurs reduce their demand for external financing, which decreases the lever-

age ratio.

The main difference, however, resides in the different behavior of real and financial

variables. Notice that after 5 periods (years), entrepreneurs manage to build up

enough net worth to essentially operate at the same scale at which they operated

when uncertainty was low. However, the balance sheet undergoes significant change

for 15 more periods, as entrepreneurs conserve enough net worth to hedge the higher

risk in the economy. With constant investment opportunities, entrepreneurs will

never hedge the highest state, as they are able to insure against risks just by hedging

states with low realizations of returns. This is not the case anymore with stochastic

investment opportunities. Now, with an increase in uncertainty, entrepreneurs will

hedge all states; that is, they will conserve net worth against all states in order to be

able to take advantage of future investment opportunities. Thus with autocorrelated

shocks, an increase in uncertainty will increase entrepreneurs’ holdings of cash.

4.3 Stochastic Volatility

In this section I present the results for the case of stochastic volatility. With stochas-

tic volatility, entrepreneurs are aware that uncertainty in the economy can change

and will hedge accordingly. To model stochastic volatility, I assume, just as before,
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that productivity shocks follow a Markov process. However, now the magnitude of

the variance changes as well. Thus, I assume that

A(st) =

AL = A− σt−1

AH = A+ σt−1

(15)

where σt ∈ {σL, σH}. I assume that σt follows a Markov process with the transition

probabilities

πσ(s, s′) =

[
0.7 0.3

0.3 0.7

]
This implies that the yearly autocorrelation in the stochastic volatility process is 0.4.

To study the effects of an uncertainty shock in this environment, I follow Arellano,

Bai, and Kehoe (2010). First, I compute the stationary distribution in this economy

when uncertainty changes as well. Next, I force uncertainty to be low for 10 periods,

and then I increase the level of uncertainty from then on for 25 periods. Figure 5

presents the results from this experiment.

As a result of the low uncertainty environment, leverage in the economy is in-

creased by more than 4%. This implies that relative to steady state, entrepreneurs

decrease their net worth by 1.5%. Upon an increase in uncertainty entrepreneurs

delever in order to hedge the larger shocks in the economy. Hedging, however, comes

at the expense of financing needs and thus results in an initial reduction in in-

vestments. As entrepreneurs build up net worth, investment recovers and dividend

payout increases. Furthermore, notice that now the leverage ratio falls below the

steady state level; thus, as before, changes in uncertainty in the long run will be

reflected in entrepreneurs’ capital structure.

The main message of this section however is that even in the presence of stochastic

volatility, changes in uncertainty have large effects on optimal financing and invest-

ment dynamics. Let me now turn to some related implications of this model and a

discussion of the importance of complete markets for these results.
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4.4 Why Do Firms Save So Much?

As Figure 1 documents, by the third quarter of 2010, US nonfinancial corporations

amassed approximately $1.95 trillion in liquid assets.12 Furthermore Bates, Kahle,

and Stulz (2009) provide evidence that firms’ cash to assets ratio more than doubled

between 1980 and 2006, while recent reports13 suggest that firm level cash holdings

have increased significantly after the recent recession. In this section I show that an

increase in uncertainty induces firms to conserve more net worth against all states.

Conserving net worth against all states can be interpreted as cash, and thus this paper

potentially can explain why, in the aftermath of the financial crisis, US nonfinancial

firms appear to have increased their holdings of cash and liquid assets on their balance

sheets.

With higher uncertainty, firms start hedging states with low returns at lower levels

of net worth. Moreover, firms can fully hedge fluctuations in productivity at larger

levels of net worth, as compared to an environment with low uncertainty. Thus,

with increases in uncertainty, firms engage in more risk management. Furthermore,

if one interprets as cash the net worth that entrepreneurs conserve against all future

states, then the results show that entrepreneurs save more cash when uncertainty in

the economy is high.

Table 3 presents the ratio of cash and net worth under the two uncertainty

regimes.

Table 3: Holdings of Liquid Assets
σ = 0.067 σ = 0.13

Liquid assets,
∫
Z(w − w̄)/w)φ(z) 0% 0.93%

Notice that when uncertainty is low firms do not hold cash. However when un-

certainty in the economy increases, entrepreneurs choose to hold cash worth almost

12See the Flow of Funds data from the Federal Reserve Board, Table L102.
13On October 26 Moody’s Investor Service estimated that nonfinancial U.S companies are

hoarding $943 billion of cash, an increase from $775 billion since the end of 2008. See
http://www.reuters.com/article/idUSN2614487020101027.
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1% of their net worth. As such, these results are qualitatively in line with the docu-

mented increase in liquid assets after the financial crisis of 2007-2009. As documented

in Bloom, Floetotto, and Jaimovich (2009), measured uncertainty increased during

this period, and thus increasing holdings of cash for risk management purposes might

be a rational response from firms.

The predictions of this model are also in line with empirical results documenting

the gradual increase in cash holding by U.S firms.14 Campbell et al. (2001) and

Comin and Philippon (2005) document a secular increase in various measures of firm

level volatility. According to the results in this paper, firms experiencing an increase

in uncertainty hedge more, and thus will increase their holdings of liquid assets in

order to take advantage of future investment opportunities.

4.5 Collateral Constraints and Asymmetric Responses

The presence of collateral constraints implies that shocks can have asymmetric ef-

fects, depending on whether collateral constraints bind.

To understand the embedded asymmetry, take for example the case of a per-

manent increase in uncertainty. With increased risk, entrepreneurs want to hedge

more states with lower realizations of shocks. However, collateral constraints restrict

the issuance of state-contingent securities against states with higher realizations of

shocks, thus making it more difficult for entrepreneurs to hedge. Moreover, since

entrepreneurs are risk-averse, upon an increase in uncertainty firms do not cut their

dividend payout enough to meet the financing needs required to hedge the larger

shocks. Instead entrepreneurs cut their investments and external financing. Thus, an

increase in uncertainty will lead entrepreneurs to decrease the scale of their project,

which leads to a recession.

The response of the economy to an unexpected decrease in uncertainty, however,

is very different, as can be seen in Figure 6. Upon an increase in uncertainty, en-

trepreneurs will have too much net worth accumulated relative to the risks in the

economy, and as such they have an incentive to pay out the extra net worth as divi-

14See, for example Bates, Kahle, and Stulz (2009).
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dends. Risk aversion, however, implies that it is not optimal to pay out all the extra

net worth in one payment, and as such they will gradually pay out the extra net

worth until their balance sheet reflects the risks in the economy. Notice, however,

that when entrepreneurs need to pay out their net worth, collateral constraints will

be less binding, as entrepreneurs’ hedging and financing needs will be reduced. As a

result investment will react less to a decrease in uncertainty.

4.6 Uncertainty, Incomplete Markets and Collateral Con-

straints

To better understand the importance of complete markets, subject to collateral con-

straints, in this section I compute a model with exogenously incomplete markets

where financing is subject to collateral constraints. The key question is how do

results change if one assumes instead of complete markets, markets that are exoge-

nously incomplete?

The entrepreneurs’ problem now becomes:

V (w, s) = max
{d,k′,b′,w(s′)}

{
u(d) + β

∑
s′∈S

π(s, s′)V (w(s′), s′)

}

subject to

w + b′ ≥ d+ k′

A(s′)f(k′) + k′ (1− δ) ≥ w(s′) +Rb′, ∀s′ ∈ S

θk′ (1− δ) ≥ Rb′.

When markets are exogenously incomplete, entrepreneurs can insure against fluc-

tuations in productivity only by conserving net worth. This is the only way for en-

trepreneurs to be able to take advantage of future investment opportunities. This

happens despite the fact that entrepreneurs are relatively impatient; thus, it is costly

for them to save net worth. Relative impatience, however, also means that en-

trepreneurs will not save enough to become forever unconstrained. Upon a series of

31



low realizations of shocks, entrepreneurs’ net worth may be reduced so much that

their investment choices become constrained and the collateral constraint will bind

again.

The precautionary savings motive implies that the collateral constraint will bind

as long as entrepreneurs have net worth below a threshold level. Above this threshold

level, entrepreneurs can choose the unconstrained level of investment. Importantly,

however, the unconstrained level of investment will be below the investment level

achieved under complete markets. The reason is that, as shown in Angeletos and

Calvet (2006), when markets are incomplete, entrepreneurs cannot insure against the

idiosyncratic production risk and thus will charge a risk premium on net worth.

Upon an increase in uncertainty, in the region of net worth where the collateral

constraint binds in both regimes of uncertainty, entrepreneurs will choose to accumu-

late capital at a faster rate. This is due to the precautionary savings motive, just as

in Abel (1983). The maximum level of investment, however, now will be lower, since

an increase in uncertainty leads to an increase in the risk premium on net worth.

Figure 7 plots the optimal investment policy in both cases of constant and stochastic

investment opportunities.

What do these results imply for the overall effect of a permanent increase in

uncertainty? For the numerical results, I use the same parameter value as in Table

1. The next table presents descriptive statistics of the stationary distributions under

different levels of uncertainty.

Table 4: Stationary Distribution under Incomplete Markets
Variables σ = 0.067 σ = 0.13

Output, y 1.42 1.42
Investment, k′ 2.91 2.93
Dividend, d 1.04 1.04

External Financing,
∑

s′∈S π(s, s′)b(s′) 1.74 1.74
Net Worth, w 2.21 2.23
Book Leverage 0.59 0.59
Leverage Ratio, L 0.78 0.77

From the table above, one can see that in economies with incomplete markets
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the long run effect of an increase in uncertainty is to increase the capital stock. The

intuition behind this result can be found in the shape of the stationary distribu-

tion. In the case of stochastic investment opportunity the precautionary savings

effect overcomes the risk premium effect and a larger mass of entrepreneurs will have

higher investments. This is in stark contrast to the comparative statics results under

complete markets.

Additionally, results from this section also imply that incomplete markets tend

to dampen the effects of uncertainty shocks. Intuitively, under incomplete markets

conserving net worth is the only way to insure against risks in the economy. But this

implies that entrepreneurs become overly capitalized. And since changes in uncer-

tainty effect capital structure, uncertainty shocks have a small impact on investment

decisions.

Under complete markets subject to collateral constraints, results are both qualita-

tively and quantitatively different. With complete markets, entrepreneurs can hedge

risks by issuing state-contingent securities subject to collateral constraints. Thus

entrepreneurs are now better able to hedge risk and are not required to conserve as

much net worth. But this implies that in the face of an increase in uncertainty firms

find themselves undercapitalized and thus their reaction to the shock is larger. As a

result, complete markets subject to collateral constraints tend to amplify shocks in

the economy.

These results highlight the importance of how different choices of modeling of

financial frictions can have profoundly different implications.

5 Conclusion

In this paper I studied the effect of uncertainty on financing demand and investment

in the context of a model where firms face collateral constrains. The main innovation

of this paper is to study the effect of uncertainty in a dynamic model of firm financing,

where financing is advanced based on an optimal long-term contract.

Collateral constraints limit the amount that firms can borrow. Thus, investment

needs to be financed both with internal funds and external funds. In this setting,
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uncertainty affects the capital structure of firms, specifically the optimal mix of

internal and external financing that firms use to fund their investment projects.

Uncertainty implies that external financing is risky, in the sense that if the return on

investment is low, servicing the debt leads to a loss of internal funds, which constrains

future investment choices.

Upon an increase in uncertainty, entrepreneurs reduce their demand for external

financing and consequently the scale of their production. Investment and output

rebound as entrepreneurs build up internal funds and transition to an equilibrium

with high uncertainty. Quantitatively, an unexpected increase in uncertainty has

large effects on optimal leverage and investment dynamics.

In this paper I assume that the price of capital does not change. An important ex-

tensions would be to endogenize the price of capital, since then collateral constraints

then would depend on the resale value of capital. Fluctuation in the price of capital

could potentially amplify the mechanism presented in this paper. Furthermore, it

would be important to consider the effect of uncertainty on credit spreads, as fluctu-

ations in the cost of financing will affect the maximum scale of investment and thus

could further amplify the mechanism presented above. These lines of research are

left for future work.
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Appendix: Proofs

To prove Propositions (1)-(6), I adapt the proofs from Rampini and Viswanathan
(2010a), to the case of risk averse entrepreneurs. Define x as the set of choice variables
x ≡ {d, k′, b(s′), w(s′)}, where x ∈ R2+S

+ ×RS, and the constraint set Γ(w, s) is given
by the state variables such that (6) - (8) is satisfied. Lemma 1 shows that the choice
set is convex

Lemma 1 (i) Γ(w, s) is convex, given (w, s), and convex in w and monotone in the
sense that w ≤ ŵ implies Γ(w, s) ⊆ Γ(ŵ, s).

Proof of Lemma 1. Suppose x, x̂ ∈ Γ(w, s). For φ ∈ (0, 1), let xφ ≡ φx+ (1−φ)x̂.
Then xφ ∈ Γ(w, s) since equations (6), (8) are linear, and from (7) as f is concave,

we have f(k′φ) ≥ φf(k′) + (1− φ)f(k̂′).
Let x ∈ Γ(w, s) and x̂ ∈ Γ(ŵ, s). For φ ∈ (0, 1), let xφ ≡ φx + (1 − φ)x̂. Since

(7), (8) does not include w, and ŵ, and Γ(w, s) is convex given w, xφ satisfies these
equations. Moreover, since x and x̂ satisfy equation (6) at w, and ŵ, respectively,
and equation (6) is linear in x and w, xφ satisfies the equation at wφ. Thus, xφ ∈
Γ(φw + (1− φ)ŵ, s). In this sense, Γ(w, s) is convex in w.

If w < ŵ, then Γ(w, s) ⊆ Γ(ŵ, s)

Proof of Proposition 1. Part (i). Define the operator T as follows:

(Tg)(w, s) = max
x∈Γ(w,s)

u(d) + β
∑
s′∈S

π(s, s′)g(w(s′), s′)

where x and Γ(w, s) is defined above. To show that the problem (5) has a unique
solution V , it is enough to show that the operator T satisfies Blackwell’s sufficient
conditions for a contraction.

Suppose g(w, s) ≥ f(w, s), for all (w, s) ∈ R+ × S. Then, for any x ∈ Γ(w, s)

(Tg)(w, s) ≥ u(d) + β
∑
s′∈S

π(s, s′)g(w(s′), s′) ≥ u(d) + β
∑
s′∈S

π(s, s′)f(w(s′), s′).

Thus,

(Tg)(w, s) ≥ max
x∈Γ(w,s)

u(d) + β
∑
s′∈S

π(s, s′)f(w(s′), s′) = (Tf)(w, s)

for all (w, s) ∈ R+ × S. Thus, T satisfies monotonicity.
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Next, we show that T satisfied discounting

T (f + a)(w, s) ≤ max
x∈Γ(w,s)

u(d) + β
∑
s′∈S

π(s, s′)(f + a)(w(s′), s′) = (Tf)(w, s) + βa

Thus T is a contraction and by the contraction mapping theorem, has a unique fixed
point V .

Part (ii). Let x0 ∈ Γ(w, s) and x̂0 ∈ Γ(ŵ, s) attain (Tf)(w, s) and (Tf)(ŵ, s),
respectively. Suppose f is increasing in w and suppose w ≤ ŵ. Then,

(Tf)(ŵ, s) = u(d̂0) + β
∑
s′∈S

π(s, s′)f(ŵ0(s′), s′) ≥ u(d) + β
∑
s′∈S

π(s, s′)f(w(s′), s′)

≥ max
x∈Γ(w,s)

u(d) + β
∑
s′∈S

π(s, s′)f(w(s′), s′) = (Tf)(w, s)

Hence, Tf is increasing in w. Moreover, suppose w < ŵ, then

(Tf)(ŵ, s) ≥ u((ŵ − w) + d0) + β
∑
s′∈S

π(s, s′)f(w0(s′), s′)

≥ u(d0) + β
∑
s′∈S

π(s, s′)f(w0(s′), s′) > (Tf)(w, s)

implying that Tf is strictly increasing. Hence, T maps increasing functions into
strictly increasing functions, which implies that V is strictly increasing.

Suppose f is concave. Then, for φ ∈ (0, 1), let x0,φ ≡ φx0 + (1 − φ)x̂0 and
wφ ≡ φw + (1− φ)ŵ, we have

(Tf)(w, s) ≥ u(d0,φ) + β
∑
s′∈S

π(s, s′)f(w0,φ(s′), s′)

> φu(d0) + (1− φ)u(d̂0) + β
∑
s′∈S

π(s, s′)f(w0,φ(s′), s′)

= φ(Tf)(w, s) + (1− φ)(Tf)(ŵ, s)

Thus, the concavity of u ensures that Tf is strictly concave, and T maps concave
functions into strictly concave functions, which implies that V is strictly concave.
Since V is increasing and strictly concave in w, it must be continuous in w.

Part (iii). Let S = s1, . . . , sn, with si−1 < si, for all i = 2, . . . , n and N =
1, . . . , n. Define the step function on the unit interval b : [0, 1] → R as b(ν) =∑n

i=1 b(s
′
i)1Bi

(ν), ∀ν ∈ [0, 1], where 1 is the indicator function, B1 = [0, π(s, s′1)],
and

Bi =

[
i−1∑
j=1

π(s, s′j),
i∑

j=1

π(s, s′j)

]
, i = 2, . . . , n.
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For ŝ, define B̂i, ∀i ∈ N , analogously. Let Bij = Bi∩ B̂j, ∀i, j ∈ N , of which at most

2n− 1 are non-empty. Then, we can define the step function b̂ : [0, 1]→ R as

b̂(ν) =
n∑
j=1

n∑
i=1

b(s′i)1Bij
(ν), ν ∈ [0, 1]

We can then define the stochastic debt policy for B̂j, ∀j ∈ N , with positive Lebesgue

measure (λB̂j > 0), as b̂(s′i|s′j) = b(s′j) with conditional probability χ(s′i|s′j) = λ(Bij)/λ(B̂j).
Moreover, this implies a stochastic net worth

ŵ(s′i|s′j) = A(s′j)f(k′) + k′(1− δ)−Rb̂(s′i|s′j)
≥ A(s′i)f(k′) + k′(1− δ)−Rb(s′i) = w(s′i), a.e.

with strict inequality when i < j, since λ(Bij) = 0, whenever i > j. Moreover,
ŵ(s′i|s′j) > w(s′i) with positive probability given our assumption stated in the Propo-
sition.

Now suppose ŝ > s and f(w, ŝ) ≥ f(w, s), ∀w ∈ R+. Let x0 attains (Tf)(w, s).
Then

(Tf)(w, ŝ) ≥ u(d0) + β
∑
ŝ′∈S

π(ŝ, ŝ′)
∑
s′∈S

χ(s′|ŝ′), ŝ′)

> u(d0) + β
∑
s′∈S

π(s, s′)f(w0(s′), s′) = (Tf)(w, s)

Thus, T maps increasing functions into strictly increasing functions, implying that
V is strictly increasing in s.

Proof of Proposition 2. We now show that x0 that attains V (w, s) is unique.
To see this, we first show that w0(s′) is unique ∀s′ ∈ S. Suppose that there exist
x̃0 with w̃0(s′) 6= w0(s′) for some s′ ∈ S that also attains V (w, s). Then a convex
combination x0,φ is feasible and attains a strictly higher value due to strict concavity
of V (w, s), a contradiction. Thus x0,φ is unique in terms of w0(s′), ∀ w and s.

To see that the choice of the optimal capital stock k′0 is unique, suppose that
x0 and x̃0 both attain V (w, s), but k′0 6= k̃′0. Since Γ(w, s) is convex, by taking the
convex combination of x0 and x̃0, note that

A(s′)f(k′0,φ) + k0,φ(1− δ) >φ[A(s′)f(k′0,φ) + k0,φ(1− δ)]
+ (1− φ)[A(s′)f(k′0,φ) + k0,φ(1− δ)]
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However this implies that at x0,φ, (7) is slack, and hence there exists a feasible choice
that attains a strictly higher value, a contradiction. Thus x0(w, s) is unique in terms
of k′0, for all w and s.

Given k′0 and w′0(s′), for all s′ ∈ S, b0(s′) is uniquely determined by (7), and the
payout policy, d0, by (6).

Proof of Proposition 3. Part (i): Using (6)

w = d+ k′ −
∑
s′∈S

π(s, s′)b(s, s′) > k′ −
∑
s′∈S

π(s, s′)b(s, s′)

> k′ − θk′(1− δ) = (1− θ)(1− δ)k′

where, for the first inequality we use that limd→0 u(d) =∞, which implies that d > 0,
and the second inequality uses the collateral constraint (8). Notice however, that
the above results implies that as w → 0, investment k′ → 0. Now using (10) and
substituting out µ(s′) from (11)

1 ≥ β
∑
s′∈S

π(s, s′)
λ(s′)

λ

(
A(s′)f ′(k′) + (1− δ)(1− θ)

1− θ(1− δ)/R

)
As k → 0 implies that f ′(k′)→∞, but from the above equation then it must be that
λ(s′)/λ → 0. But then using the collateral constraint (8): µ(s′)λ(s′)/λ → (βR)−1,
resulting that µ(s′) > 0 ∀s′ ∈ S. Thus, by continuity, ∃w > 0, such that ∀w < w :
µ(s′) > 0 ∀s′ ∈ S.

Part (ii): If w(s′) ≤ w(s′+), then λ(s′) ≥ λ(s′+) by concavity. Moreover, from
(11), λ(s′)(1 + µ(s′)) = λ(s′+)(1 + µ(s′+)), thus µ(s′) ≤ µ(s′+). Suppose instead that
w(s′) > w(s′+). Then, from (7), µ(s′) = 0, but then λ(s′) = λ(s′+)(1 + µ(s′+)),
resulting that λ(s′) ≥ λ(s′+). But this implies that w(s′) ≤ w(′s+), which is a
contradiction.

Part (iii): From part (ii), it is enough to show that µ(s̄′) = 0 if w > w̄ > 0,
where s̄′ ≥ s′ ∀s′ ∈ S. Since the marginal product of capital in states when the
collateral constraint binds is A(s′)f ′(k′) + (1− δ)(1− θ), while the marginal product
of capital in states when the collateral constraint doesn’t bind is A(s′)f ′(k′)+(1−δ),
and noting that the opportunity cost of investment is R it has to be that ∃ k̄ such
that k′ < k̄′∀ w > 0.

Assume that w is high enough, in the sense that k̄′ is the optimally chosen level
of investment. I prove the statement by contradiction. First, assume that w(s̄′) is
chosen optimally such that µ(s̄′) = 0. But this implies that w(s̄′) = A(s̄′)f(k̄′) +
k̄′(1− δ)−Rb(s̄′). Then (11) implies that λ = Rβλ(s̄′).
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Now take w1(s̄′) such that µ1(s̄′) > 0. Then

w1(s̄′) = A(s̄′)f(k̄′) + k̄′(1− δ)(1− θ)
< A(s̄′)f(k̄′) + k̄′(1− δ)−Rb(s̄′) = w(s̄′)

Thus w(s̄′) > w1(s̄′). However, from (11), λ = Rβλ1(s̄′)(1 +µ1(s̄′)) and λ = Rβλ(s̄′)
implying that λ1(s̄′) < λ(s̄′), resulting that w1(s̄′) > w(s′). But this is a contradic-
tion, and thus it cannot be that at the optimum µ(s̄′) > 0. Then ∃ w̄ > 0 such that
µ(s′) > 0 ∀s′ ∈ S.

Proof of Proposition 4. Part (i). Suppose that w < w̄. If µ(s′) > 0 ∀s′ ∈ S, then
k′ = (w−d)/(1−θ(1−δ)/R). Take any w+, w such that µ(s′) > 0 ∀s′ ∈ S. Assuming
that w+ > w, implies that λ+ < λ. Now proceed by assuming that k′+ < k′. From
(7) w+(s′) < w(s′) ∀s′ ∈ S. Then from (10)

λ

(
1− θ(1− δ)

R

)
= β

∑
s′∈S

π(s, s′)λ(s′)(A(s′)f ′(k′) + (1− δ)(1− θ))

< β
∑
s′∈S

π(s, s′)λ+(s′)(A(s′)f ′(k′+) + (1− δ)(1− θ))

< λ+

(
1− θ(1− δ)

R

)
However this implies that λ < λ+, which is a contradiction. As a result k′+ > k′

whenever µ(s′) > 0 ∀s′ ∈ S.
Suppose now that µ(s′) = 0, for some s′ ∈ S. Then from (10) and (11) we get

1 = β
∑
s′∈S

π(s′)
λ(s′)

λ
(A(s′)f ′(k′) + (1− δ) + θµ(s′)(1− δ))

= β
∑

s′|µ(s′)>0

π(s′)
λ(s′)

λ
(A(s′)f ′(k′) + (1− δ)(1− θ)) +

∑
s′|µ(s′)>0

π(s′)θ(1− δ)/R

+ β
∑

s′|µ(s′)=0

π(s′)
λ(s′)

λ
(A(s′)f ′(k′) + (1− δ))

Take as before w+ > w and k′+ < k′. Then f ′(k′+) ≥ f ′(k′). Moreover, for {s′|µ(s′) =
0}, λ(s′)/λ = (βR)−1. Since λ+ < λ, the above equation implies that ∃s′ such that
λ+(s′) < λ(s′). But k′+ < k′ implies that for {s′|µ(s′) > 0}, w+(s′) < w(s′) and
hence λ+(s′) > λ(s′), a contradiction. Hence, k′ and w(s′) are strictly increasing in
w for w ≤ w̄.
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Part (ii). If w > w̄ then µ(s′) = 0 ∀s′ ∈ S. Combining (10) and (11) we get

R =
∑
s′∈S

π(s′)(A(s′)f ′(k̄) + 1− δ)

Thus the maximum level of capital, k̄ = f ′−1((R− 1 + δ)/
∑

s′∈S π(s′)A(s′)).

Proof of Proposition 5. Part (i) follows directly from Proposition 2 (ii).
Part (ii). To show that ∃w such that w(s′) > w, ∀s′ ∈ S note that Proposi-
tion 2 implies that for w sufficiently small µ(s′) > 0, ∀s′ ∈ S. Since w(s′) =
A(s′)f(k′) + k′(1− δ)(1− θ), we have that:

∂w(s′)

∂w
= A(s′)f ′(k′)

∂k′

∂w
+ (1− δ)(1− θ)∂k

′

∂w
> 0

where we use that the production function is increasing in its argument, f ′ > 0, and
Proposition 3 (i). To show that ∃w such that w(s′) < w, ∀s′ ∈ S note that Proposi-
tions 2 also implies that for w sufficiently large µ(s′) = 0, ∀s′ ∈ S. From (11) then
λ = βRλ(s′) > λ(s′), ∀s′ ∈ S, which implies that if w > w̄ then w(s′) < w, ∀s′ ∈ S.
Part (iii): By the theorem of maximum w(s′) is continuous in w, and the interme-
diate value theorem and part (ii) hence imply the result.

Proof of Proposition 6. Define the induced state space W = [wl, wu] ∈ R with
its Borel subsets W . Take P to be the induced transition function on (W,W), with
the associated operator on bounded continuous functions T : B(W,W)→ B(W,W)
and the associated operator on probability measures T ∗ : P (W,W)→ P (W,W).

First, I show that P is monotone (that is, for any bounded, increasing function
f , the function Tf defined by (Tf)(w) =

∫
f(w′)P (w, dw′),∀w, is also increasing)

and has the Feller property (that is, for any bounded, continuous function f , the
function Tf is also continuous). Take any bounded, increasing function f . Then
(Tf)(w) =

∑
s′∈S π(s′)f(w(s′)(w)) is increasing since w(s′)(w) is increasing by part

(ii) of Lemma 2. For any bounded, continuous function f , (Tf)(w) is moreover
continuous as w(s′)(w) is continuous by the theorem of maximum.

Next, I show that ∃w0 ∈ W , ε > 0, and N ≥ 1, such that PN(wl, [w
0, wh]) ≥ ε

and PN(wh, [wl, w
0]) ≥ ε.

First, notice that all levels of net worth outside of [wl, wh] are transient. To
see this, suppose that w < wl. Then µ(w, s′) > µ(wl, s

′) = 1/(βR) − 1, ∀s′ ∈ S.
But then from (11) if µ(w, s′) > 1/(βR) − 1, ∀s′ ∈ S, then w < w(s′), ∀s′ ∈ S.
Similarly, assume that w > wh. Then µ(w, s′) < 1/(βR)− 1, ∀s′ ∈ S, and from (11)
if µ(w, s′) < 1/(βR)− 1, ∀s′ ∈ S, results that w > w(s′), ∀s′ ∈ S.
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Since µ(wl, s̄
′) > 1/(βR)−1, take w0 such that w0 = w(s̄′)(wl). Then P (wl, [w

0, wh]) ≥
π(s̄′) and N1 = 1 and ∃ε1 > 0 such that π(s̄′) > ε1 > 0.

Now given w0 = w(s̄′)(wl), I show that ∃N2 ≥ 1, such that PN2(wh, [wl, w
0]) ≥ ε2.

The idea is that given a sufficiently long sequence of the lowest productivity realiza-
tion results in a net worth lower than w0. Notice that µ(w, s′) < 1/(βR)−1,∀w > wl.
This implies that w(s′)(w) < w, ∀w > wl. Thus ∃N2 < ∞ and ε2 > 0 such that
PN2(wh, [wl, w

0]) ≥ ε2, where πN2(s′) > ε2.

Proof of Proposition 7. First, we show that when in both regimes of uncer-
tainty all collateral constraints bind, dL > dH . Assume that the the optimal choice
variables are constant across regimes of uncertainty. That is, assume that w is
low enough such that µi(s

′) > 0, for all i ∈ {L,H} and s′ ∈ S. Then dL = dH ,
k′L = k′H , µL(s′) = µH(s′), bL(s′) = bH(s′), and VL = VH . But then from (7) and
since (8) holds with equality: wi = Ai(s

′)f(k′i) + k′i(1− δ)(1− θ), ∀i ∈ {L,H}. But
Assumption 4 implies that V ar(wL(s′)) < V ar(wH(s′)). And since V is concave,∑

s′∈S λH(s′) >
∑

s′∈S λL(s′), which implies that (10) cannot hold for AH(s′), which
is a contradiction. Thus, then dL 6= dH , kL 6= kH , and VL 6= VH when w is low
enough such that µi(s

′) > 0 for all i ∈ {L,H}, s′ ∈ S.
Assume instead that dL < dH , and µi(s

′) > 0 for all i ∈ {L,H}, s′ ∈ S still
holds. Then k′L > k′H . But this implies that λL > λH . But k′H < k′L implies that
AH(s′)f ′(k′H) + (1− δ)(1− θ) increases for all s′ ∈ S and such, λH(s′) must decrease
for all s′ ∈ S. To see that this cannot happen, take w such that 0 < µ(w, s′) <
1/(βR)−1, for all i ∈ {L,H}. But from (11) results that λH = βRλH(s′)(1+µH(s′)).
Now using the assumption µ(w, s′) < 1/(βR) − 1, results that λH < λH(s′); that is
w > wH(s′). But this is a contradiction, as from the concavity of the value function
wH(s′) < w implies that dH(s′) < dH and λH(s′) > λH . As a result it must be that
dL > dH and k′L < k′H whenever µi(s

′) > 0 for all i ∈ {L,H}, s′ ∈ S.
Next, we show that when all collateral constraints are slack, dL < dH . Assume

that w is high enough such that µi(s
′) = 0,∀i ∈ {L,H}, s′ ∈ S. First, note that

optimal investment is given by R =
∑

s′∈S π(s′)(A(s′)f ′(k̄′)+1−δ), thus the optimal
capital stock does not change with uncertainty, k̄′L = k̄′H = k̄′. Now assume that
dL = dH . Note, that when µ(s′) = 0, for all s′ ∈ S, then λi = βRλi(s

′) has to hold
for all i ∈ {L,H}, and s′ ∈ S. From (10) however since V ar(AL(s′)) < V ar(AH(s′))
it must be that, states with more extreme realizations of the shocks have to be
weighed less. For example it has to be that λH(s′) < λL(s′). But λL(s′) = λH(s′)
for all s′ ∈ S, thus a contradiction. As a result it cannot be that dL = dH when w is
high enough such that µi(s

′) = 0,∀i ∈ {L,H}.
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Now take dL < dH . This implies that λL > λH . From (11) it has to be that
λH = βRλH(s′) for all s′ ∈ S. However this implies that λH < λH(s′), for all s′ ∈ S.
But then (10) cannot hold, contradiction. Thus is must be that dL > dH when w is
such that µi(s

′) = 0 for all i ∈ {L,H} and s′ ∈ S.
Finally, since V is strictly concave function it then must be that dL > dH for all

w.

First, I show that the collateral constraint binds against the lowest state when the
marginal return on capital in that state is greater than the cost of financing. Then,
I prove Proposition 8.

Lemma 2 µ(s′) > 0 if A(s′)f ′(k′) + (1− δ) > R, for all s′ ∈ S.

Proof of Lemma 2. Take s′ ∈ S such that µ(s′) > 0. Now I show that µ(s′) > 0
if A(s′)f ′(k′) + (1 − δ) > R. Suppose otherwise; assume that µ(s′) = 0 and
A(s′)f ′(k′) + (1 − δ) > R. Denote the optimal debt against state s′ as b(s′). Then
increase borrowing against state s′ by ε > 0, furthermore increase investment by
k̂′ = k′+ π(s′)ε, such that A(s′)f ′(k̂′) + (1− δ) > R still holds and d stays the same.
But then (6) still holds, ŵ(s′) > w(s′) for all s′ ∈ S. Thus there exist a allocation
that achieves higher utility and satisfies the budget constraints, contradiction. As
such it cannot be that µ(s′) = 0 and A(s′)f ′(k′) + (1− δ) > R.

Proof of Proposition 8. Part (i). From Proposition 7 we know that for all w
such that if µi(s

′) > 0 for all i ∈ S then k′L < k′H . But then AH(s′)f ′(k′H) + 1− δ <
AL(s′)f ′(k′L) + 1− δ. Moreover AH(s′)f ′(k′H) + 1− δ is decreasing in k′H . And since,
from Proposition 4, k′H is increasing in wH then it must be that there is 0 < wH < wH
such that AH(s′)f ′(k′H(wH)) + 1 − δ = R, AL(s′)f ′(k′L(wH)) + 1 − δ > R, and
AL(s′)f ′(k′L(wl)) + 1 − δ = R. But then from Lemma 2, at wH , µH(wH , s

′) = 0,
whereas µL(wH , s

′) > 0. Thus wH < wL.
Part (ii). Now I show that if µH(w̄H , s̄

′) = 0 and µL(w̄L, s̄
′) = 0 then w̄H > w̄L.

First take the case when the level of net worth is high enough that entrepreneurs can
fully insure in both regimes of uncertainty. Then from (6) and since dL(w) > dH(w)
results that

∑
s′∈S π(s′)bL(s′) <

∑
s′∈S π(s′)bH(s′). Moreover, since V ar(AL(s′)) <

V ar(AH(s′)) and from (11) results that bH(s̄′) > bL(s̄′). But recall that from (8),
θk′(1 − δ) ≥ Rb(s′). Thus, take w̄L such that at w = w̄L − ε, for ε > 0 very
small, θk′L(w)(1 − δ) = RbL(w, s̄′), but θk̄′L(1 − δ) > RbL(w̄L, s̄

′). But then en-
trepreneurs in the high uncertainty regime cannot afford to borrow bH(w̄L, s̄

′) such
that θk̄′H(1 − δ) > RbH(w̄L, s̄

′), as bH(w̄L, s̄
′) > bL(w̄L, s̄

′). As such entrepreneurs
can not be perfectly insured at w̄L. As a result at w̄L, when µL(w̄L, s̄

′) = 0,
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µH(w̄L, s̄
′) > 0.

Proof of Proposition 9. Part (i). See Proposition 7 above.
Part (ii) See Proposition 7 above.
Part (iii) Using the results from Proposition 8, we have that µH(s′) < µL(s′), when-
ever µL(s′) > 0. Thus ∃ω > 0 such that µH(s′) = 0 and µL(s′) > 0. Moreover, since
µH(s̄′) > µL(s̄′), if µH(s̄′) > 0, then there is ω̂L < ω̂H . This implies that at ω̂L),
k′H < k′L. But then since ∃ω > 0 such that k′H > k′L, and ω̄ such that k′H ≤ k′L, and
that k′ is monotone and continuous, it results that ∃ω̂ > 0 such that if ω < ω̂ then
k′H > k′L, whereas if ω > ω̂ then k′H < k′L.
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Figure 1: Aggregate Economic Indicators

2006 2007 2008 2009 2010

20

30

40

50

VIX Volatility Index, Monthly

Year

A
nn

ua
liz

ed
 s

ta
nd

ar
d

de
vi

at
io

n 
(%

)

2006 2007 2008 2009 2010

80

85

90

95

100

Real Investment Index (2007.75 = 100)

Year

2006 2007 2008 2009 2010
70

80

90

100

110

120

Year

Real Commercial Loans, Monthly

In
de

x
(2

00
7 

O
ct

ob
er

 =
 1

00
)

2006 2007 2008 2009 2010
1.4

1.5

1.6

1.7

1.8

1.9

Liquid Assets

Year

$ 
tr

ill
io

n 

Figure 2: Optimal Policy - Low Volatility, π(s, s′) = π(s′)

Parameter values are:
β = 0.93, R = 1/0.95, γ = 1, α = 0.33, δ = 0.1, θ = 0.7, σH = 0.067
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Figure 3: Optimal Policy - High Volatility, π(s, s′) = π(s′)

Parameter values are:
β = 0.93, R = 1/0.95, γ = 1, α = 0.33, δ = 0.1, θ = 0.7, σH = 0.13
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Figure 4: Increase in Uncertainty, Transitional Dynamics

The figure depicts the impact of an unexpected increase in uncertainty that
occurs in period 0. All variables are relative to their steady-state values under
low uncertainty. Parameter values are: β = 0.93, R = 1/0.95, γ = 1, α = 0.33,
δ = 0.1, θ = 0.7, ρ = 0.86, σL = 0.067, σH = 0.13.
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Figure 5: Uncertainty Shock, Stochastic Volatility

All variables are relative to their steady-state values. Parameter values are:
β = 0.93, γ = 1, R = 1/0.95, α = 0.33, δ = 0.1, θ = 0.7, ρA = 0.86, ρσ = 0.4,
σL = 0.067, σH = 0.13.
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Figure 6: Decrease in Uncertainty, Transitional Dynamics

The figure depicts the impact of an unexpected increase in uncertainty that
occurs in period 0. All variables are relative to their steady-state values under
high uncertainty. Parameter values are: β = 0.93, γ = 1, R = 1/0.95, α =
0.33, δ = 0.1, θ = 0.7, ρ = 0.86, σL = 0.067, σH = 0.13.
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Figure 7: Optimal Scale of Production in Incomplete Markets

Panel (a) shows the optimal scale with iid shocks, and (b) shows the optimal
scale with correlated shocks. Parameter values are: β = 0.93, γ = 1, R =
1/0.95, α = 0.33, δ = 0.1, θ = 0.7, σL = 0.067, σH = 0.13.
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