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Abstract

Option prices, particularly those of out-of-the-money equity index puts, are diffi-

cult to justify in a no-arbitrage framework. This paper shows how limits to arbitrage

affect the relative pricing of out-of-the-money put vs. call options (option-implied

skewness). Decomposing the price of skewness into ex-post realized skewness and

a skewness risk premium in commodity futures options markets, I find that the

skewness risk premium becomes more positive (negative), but realized skewness

remains unchanged, when i) arbitrageurs absorb large long (short) positions in op-

tions, and ii) long positions in the underlying asset are concentrated among fewer

(more) traders. In addition, the first effect increases in the severity of financial

constraints facing arbitrageurs. Trading strategies designed to theoretically exploit

these limits yield up to 2 percent per month after risk-adjustment. The results pro-

vide solid support for the existence of a limits to arbitrage effect on option prices

as well as option returns.
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1 Introduction

Empirical studies have shown that writing equity and equity index options, most notably

out-of-the-money (OTM) index puts, yields abnormally high returns (Bakshi and Ka-

padia, 2003)1. The origins of these abnormal returns are hotly debated. No-arbitrage

asset pricing models are generally unable to explain them assuming reasonable parameter

choices for risk aversion and crash frequencies (see e.g. Bates, 2000; Bondarenko, 2003)2.

In his comprehensive survey, Bates (2003) concludes that no-arbitrage arguments alone

are likely inconsistent with observed option prices. Instead he suggests to focus on fric-

tions to financial intermediation in option markets, drawing parallels between the options

market and the market for catastrophe insurance (Froot, 2001).

One friction faced by financial intermediaries, the exogeneous demand for options, is

the subject of the literature on demand-based option pricing. Bollen and Whaley (2004)

and Garleanu, Pedersen, and Poteshman (2009) find evidence that systematic demand

pressure in the market for index and equity options affects the level as well as the slope of

the implied volatility function and suggest this price effect may be due to market makers

being capital-constrained and unable to fully hedge themselves.

These studies leave open a number of questions. First, assume demand was informed

about the future distribution of the underlying instead of being purely exogenous. Then

we would still expect to see the same effect in prices due to market makers avoiding

adverse selection, independent of the presence of limits to arbitrage. Thus, it is not clear

ex ante that demand is a valid proxy for limits to arbitrage.

Second, the literature has not related abnormal option returns to demand pressure

directly.3 An ex-ante decrease in the option price will not automatically translate into

an ex-post increase in the option return if it is correlated with changes in the physical

return distribution. Put differently, while there is evidence that demand pressure makes

some options more expensive than others (e.g. OTM index puts relative to OTM calls), no

one has established that they yield abnormally low returns as a consequence of demand

pressure.

Third, variation in demand across time and across strikes is only one side of a limits to

1A number of studies also find abnormal returns in equity options, e.g. from writing options of stocks
with high idiosyncratic volatility (e.g. Goyal and Saretto, 2009; Cao and Han, 2011).

2Exceptions are Liu, Pan, and Wang (2005) who suggest that historical index option prices can be
matched if investors dislike model uncertainty surrounding the true frequency of large negative jumps,
and Benzoni, Collin-Dufresne, and Goldstein (2011) who assume an extremely slow mean-reverting belief
about the likelihood of a crash.

3Cao and Han (2011) find option open interest affects option returns and regard it as a proxy for
demand pressure, but do not provide any evidence for this assumption.
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arbitrage explanation (Gromb and Vayanos, 2010); variation in the ability and willingness

of market makers or arbitrageurs to absorb that demand is the other. The question how

the capacity of arbitrageurs affects both prices and returns in the options market has not

been explicitly addressed.

My paper aims to fill those gaps. I consider not just demand pressure, but various

aspects of limits to arbitrage as well as interactions between different market frictions.

In particular, I emphasize the importance of arbitrageurs’ capacity to absorb hedging

demand rather than demand pressure alone in explaining observed option prices and

returns.

Further, my methodology allows me to identify what factors truly represent limits

to arbitrage as opposed to rational price setting by market makers e.g. in the face of

informed demand. I decompose the price of skewness into ex-post realized skewness and

a skewness risk premium using the newly developed skewness measures of Neuberger

(2011). Economic intuition would suggest that limits to arbitrage should influence only

the skewness risk premium, but not affect ex-post realized skewness.4 By contrast, beliefs

about the physical returns, e.g. informed demand or the convenience yield, should be

reflected in realized skewness.

The variance risk premium is the subject of a large number of previous studies (Carr

and Wu, 2009; Bollerslev and Todorov, 2011; Driessen, Maenhout, and Vilkov, 2009;

Bollerslev, Gibson, and Zhou, 2011). The focus of this paper is the relative pricing of the

tails of the return distribution, i.e. prices of OTM puts relative to OTM calls (option-

implied skewness), as opposed to the absolute level of prices (option-implied volatility).

Thus, I measure and describe the risk premium for skewness. Nevertheless, I also briefly

investigate the variance risk premium as a robustness check to my findings on skewness.

My work empirically distinguishes between beliefs and risk premia as determinants of

levels and changes in option prices. To intuitively illustrate the difference between prices

responding to changes in beliefs or risk premia, it is instructive to compare the market for

OTM options with the market for catastrophe insurance, as suggested by Bates (2003). If

the price for earthquake insurance goes up, it could be due to one of three reasons. Either

beliefs about the frequency of such an event have changed, households have become more

risk-averse towards the possibility of an earthquake, or insurers are more constrained in

their ability to provide such insurance. Similarly, observing a high price for OTM put

options may be due to a) a high physical probability of a large decline, b) high risk

4The same can be said about factors reflecting the economy’s risk aversion. Thus, allowing for a delin-
eation of risk aversion effects from financial market frictions may depend on careful economic motivation.
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aversion or c) large frictions in the intermediation of that risk. The existing literature

has not been able to empirically distinguish the former from the latter two explanations

because the extreme nature of OTM option returns and the low number of observations

make statistical inference difficult.

I use non-parametric measures of option-implied skewness and realized skewness de-

veloped by Neuberger (2011) to distinguish among these possibilities. Implied skewness

reflects the relative prices of OTM puts vs. OTM calls and is the expectation of realized

skewness under the Q-measure. The difference between realized and implied skewness is

the skewness risk premium and can be thought of as a return to a particular swap contract

that is long OTM calls and short OTM puts.5 I conduct the empirical analysis on the

market for commodity futures options rather than index or equity options for a number

of reasons.

All empirical work using S&P 500 index options is bedevilled by the paucity of data,

making estimation of the physical return distribution difficult. Options on a broad market

index are even less suitable for analyzing the effects of limits to arbitrage vis-à-vis other

effects, because financial constraints to market makers are strongly pro-cyclical (Adrian

and Shin, 2010), while risk aversion is strongly counter-cyclical (Campbell and Cochrane,

1999). In other words, more severe financial constraints, higher risk aversion and negative

realizations in index returns tend to occur jointly.

Options on a cross-section of stocks resolve some of these problems in theory. In

practice, option demand across stocks is highly correlated for similar stocks, e.g. large

or small, and jointly driven by investor sentiment (Lemmon and Ni, 2010). Finally, the

non-parametric measures employed, especially those for skewness, require a large number

of options at each point in time for each underlying to adequately measure prices in both

tails. Unfortunately, the available datasets (e.g. OptionMetrics) would limit this type of

analysis to the very largest stocks only.

Commodity futures options have none of these problems. My dataset consists of a

cross-section of 25 U.S.-listed optionable commodities over a time period of 20 years,

exhibiting low cross-correlations in both prices and demand patterns. Option chains of

some commodities have quotes for more than 100 options at a time. I merge this dataset

with data on the aggregate futures and options positions of different groups of traders,

notably speculators, e.g. market makers and arbitrageurs, and commercial traders that

trade for hedging purposes.

5Kozhan, Neuberger, and Schneider (2011) use these measures to quantify more precisely than was
previously possible the extent to which risk premia for both variance and skewness are present in options
on the S&P 500 index.
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While the origin of the exogenous demand may be different for commodity futures

options, the option market structure is very similar. In particular, market makers face

the same funding constraints and risks from the unhedgeable portions of their inventory

regardless of the underlying. In fact, market makers in different options exchanges are

often subsidiaries of the same parent companies. Further, trading desks of investment

banks actively seek out arbitrage opportunities across all financial markets so that many

of the arbitrageurs are identical across markets as well.

I consider four categories of potential limits to arbitrage effects: variables of hedging

demand and arbitrageurs’ capacity, measures of trader concentration, financial constraints

of arbitrageurs and lastly, variables that may be seen as proxies for recent profits and losses

by arbitrageurs. For each set of variables, I investigate how they affect the relative pricing

of OTM puts vs. calls, i.e. the option-implied skewness, as well as the measure of realized

skewness and the difference between the two, the skewness risk premium. If a particular

variable, X, is found to decrease implied and realized skewness equally, it will have no

effect on the risk premium. In other words, the change in prices caused by X is reflective

of a change in the physical distribution and investors’ rational beliefs about it. If, on

the other hand, an increase in variable X decreases implied skewness, but does not affect

realized skewness, its effect carries through to the risk premium. In this case, we can

conclude that prices change due to a deterioration in the arbitrage capacity of speculators

(or a change in risk aversion, depending on the context).

I begin by showing some evidence from the cross-section of commodities where cross-

sectional dispersion in average capacity of arbitrageurs to absorb demand is strongly

related to average implied skewness as well as the average skewness risk premium. Moti-

vated by this finding, I conduct the main analysis in a large panel dataset, focusing on the

time series dynamics of skewness measures and variation in limits to arbitrage. My main

findings are that the skewness risk premium becomes more positive (negative), but real-

ized skewness is unaffected, in times i) when arbitrageurs are constrained in adding new

long (short) positions via options and ii) when long (short) positions in the underlying

futures market are concentrated among fewer traders. In addition, increases in financial

constraints make these effects more pronounced. The fact that realized skewness is un-

affected gives great confidence that the suggested factors are indeed related to limits to

arbitrage and do not proxy for investor beliefs or informed demand.

As a robustness check, I investigate whether similar effects can be detected in the

absolute level of option prices and in the variance risk premium. I confirm that financial

constraints and recent realized volatility increase both option prices and the variance
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risk premium, thereby providing additional evidence in favor of a limits to arbitrage

explanation.

While the use of non-parametric measures has great advantages over using option

returns directly, they make it difficult to interpret the economic magnitude of each effect.

Does a strategy designed to exploit limits to arbitrage give rise to significant returns?

Is it implementable? To answer these questions, in the final part of the paper I form

zero net investment portfolios of particular assets related to skewness. I find that a

long/short portfolio of delta-hedged risk reversals formed on the basis of the size of net

option exposure of speculators, for instance, yields very significant 2 percent per month,

even after risk-adjustment. Portfolios formed on the basis of trader concentration and

lagged realized skewness yield smaller, but still significant returns.

The remainder of this paper is structured as follows. Section 2 provides some back-

ground information on commodity options and describes the sample used for the analysis

as well as the variables related to hedging pressure. Section 3 motivates the limits to ar-

bitrage explanation by looking at skewness and skewness risk premia in the cross section

of commodities. Section 4 describes the skewness measures. Section 5 contains the design

and results of the main empirical analysis conducted on a large panel dataset. Section 6

examines portfolios constructed on the basis of limits to arbitrage criteria. Section 7

concludes.

2 Background on Commodity (Option) Markets

While the academic finance literature has intensively investigated options on stocks and

equity indices for decades, there is surprisingly little research on commodity futures option

markets. In part, this is due to lack of widely available data sources on commodity futures

options, but it may also reflect the relative lack of research into commodities in general

and the obscurity in which commodities existed in the public’s mind in the past.

Physical commodities as an asset class, let alone their respective option markets, have

been literally unknown to the average investor until a few years ago. Markets for financial

derivatives on physical commodities have existed for several hundred years and at least

as long as stock markets, yet compared to financial asset classes (such as stocks and

bonds) the demand for which can be characterized as purely speculative, markets for

physical commodities are mostly dominated by commercial traders who participate with

the intention of mitigating risk inherent to their line of business, in other words hedging,

not speculation. Further, each commodity is somewhat unique because of fundamental
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differences in the dynamics of supply and demand of the physical product (seasonalities

in production or consumption, storability).

A particular impediment with regards to commodity options is the lack of electronic

trading venues in stark contrast to equity or even currency options. To the present, the

majority of trading in commodity options takes place via open outcry in pits rather than

electronically.6

Prior to the advent of commodity-related exchange-traded funds (ETFs) and exchange-

traded commodities (ETCs), the investing public had neither the knowledge nor the tools

to participate in these markets, even though the (historic) diversification benefits of com-

modities have been known for quite some time, e.g. Bodie and Rosansky (1980). A widely

circulated paper by Gorton and Rouwenhorst (2006) on the equity-like performance of

being long commodity futures further advanced the popularity of commodity investing.

Domanski and Heath (2007) call this development the ’financialization’ of the commod-

ity space and find evidence that commodities have started to behave more like financial

assets.

[Figure 1 about here.]

Figure 1 provides a rough idea of the size of commodity derivatives markets, and com-

modity options in particular, over time. The two panels contrast the market for exchange-

traded commodity derivatives with the market for over-the-counter (OTC) derivatives.

The left panel depicts the aggregate open interest (in $B) of the 25 exchange-traded

commodities in my sample. Because the sample is limited to U.S. listed, optionable

commodities with a long history it under-reports the true level of open interest across

all commodity exchanges. On the other hand, open interest does not correct for spread

positions held within or across markets by the same agent. The panel distinguishes be-

tween open interest of Futures and Options and shows that the dollar amount of options

contracts has at times reached up to half that of Futures, peaking at $376B at the end

of the first half of 2008 (compared with $633B for Futures). The right panel shows the

aggregate notional amount outstanding in OTC commodity derivatives as reported by the

Bank of International Settlements in their ’Semiannual OTC derivatives statistics’7. At

the end of June 2008, the BIS reported notional amounts for OTC forwards and swaps

(OTC options) to be peaking at $7.5T ($5.0T). The OTC market is bigger by an order

of magnitude. Nevertheless, it appears that both markets have exponentially grown (and

6For recent information on relative volumes on the CME, see http://www.cmegroup.com/resources-
for/files/options-update.pdf.

7Available at http://www.bis.org/statistics/derstats.htm.
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subsequently ebbed) in a similar fashion over recent years. Further, OTC market makers

such as commodity trading desks of large investment banks will in turn hedge their net

exposure from the OTC market in the liquid futures market, thus leading to some level

of integration between the two markets.

2.1 Futures and Futures Options Data

To my knowledge, this paper is the first to use the futures options database of the Com-

modity Research Bureau in addition to their more commonly used futures database. To-

gether, they contain end-of-day closing prices for a large number of U.S. and international

futures and futures options markets covering financial indices, interest rates, currencies

and commodities. For the purpose of this paper, I focus on major commodity futures

markets in the U.S. for which exchange-listed futures options exist and have been liquid

over the majority of the sample period.

[Table 1 about here.]

Table 1 lists the sample containing 25 commodities which can be roughly divided into

5 major groups: Agricultural, Energy, Meat, Metal and Soft.8 The table shows the first

and last maturity of option contracts by commodity and the number of individual option

chains having the necessary data to create option-implied and realized skewness measures

at a remaining time to maturity of at least 30 (90) days.9 The data ends at the end of

August 2010, so that the last option expiration is either the August or September contract

of that year, with two exceptions. At the end of 2006, unleaded gasoline drops out of

the sample due to lack of options and COT data and is replaced by a related commodity,

RBOB gasoline, reflecting a change in economic relevance. For the same reason, data on

pork bellies ends in early 2008. The appendix describes the structure of the data, the

cleaning process and construction of implied and realized measures from option prices in

more detail.

8My set of commodities is similar to the U.S. based commodities used in Gorton, Hayashi, and
Rouwenhorst (2007). Compared to Szymanowska, De Roon, Nijman, and Van den Goorbergh (2010), I
exclude platinum and palladium, because there are no liquid options available, but I include natural gas.

9To compute implied measures, I require a sufficient number of option quotes of out-of-the-money
options in both tails for a particular maturity. The computation of realized skewness requires changes
in an implied variance contract as inputs, thus the same requirements have to be fulfilled for all days
leading up to expiration.
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2.2 COT Variables

In addition to a long history of options quotes, I require data on the position of traders

for these commodities as published by the U.S. Commodity Futures Trading Commission

(CFTC) in their Commitment of Traders (COT) reports. Because the CFTC only pub-

lishes this data if the number of active participants in the market and the size of open

interest are large enough, this further ensures that the commodities in the sample are

liquid and economically important.10

In the COT reports, traders are divided into 3 groups: commercials, non-commercials

and non-reporting. The first group is thought to mostly consist of producers and con-

sumers of the underlying commodity that use the Futures market to hedge future produc-

tion or consumption, thus they are typically called hedgers. The second group consists

of large institutions that trade in the commodity for financial gain, i.e. market makers,

trading desks, hedge funds, commodity trading advisors (CTA) and commodity pools,

collectively called speculators in the COT reports. However, for the purpose of this pa-

per, I want emphasize the market making and arbitrage function that many traders in

this group fulfill by accommodating the liquidity needs of other traders. The last group

consists of small traders with positions below the reporting limits, also called the public

or retail investors. Apart from total open interest, number of reporting traders, the report

details long and short positions held by members of each group as well as concentration

ratios for the long and short side of the market.

Hedging pressure in futures and options: The most commonly used measure

derived from COT data in the literature on commodity futures is hedging pressure (HP),

defined as the normalized net short exposure via futures contracts in commodity i by

commercial traders as a group:

HPi,t =

∑
comm. short fut.−

∑
comm. long fut.∑

comm. short fut. +
∑

comm. long fut.
(1)

By construction, HP lies between −1 and +1. Because futures positions must be secured

by margin accounts holding cash or Treasurys, the denominator can be interpreted as

being in proportion to the total amount of capital at risk for hedgers as a group. HP has

been found to positively predict futures returns (see e.g. Bessembinder (1992), De Roon,

10Currently, the report is published every Friday detailing data as of Tuesday of the same week. Prior to
October 1992, COT reports were published twice a month with a reporting lag of 6 business days. Markets
are excluded if there are less than 20 traders present with positions above a commodity-specific reporting
limit.Futures-only COT data generally begins in 1986, while the so-called combined COT reports only
start in April of 1995.
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Nijman, and Veld (2000)).

Apart from a Futures-only report, Combined Futures-and-options reports are available

since April 1995, where options positions are transformed into Futures-equivalents using

each option’s delta (based on a pricing model). To get a measure of demand pressure

in the commodity options space, I back out the long and short positions of commercials

in the options market alone and compute an analogue hedging pressure via options only

(OHP):

OHPi,t =
(∑ comm. short options−

∑
comm. long options∑

comm. short options +
∑

comm. long options

)
(2)

Arbitrageurs’ capacity in futures and options: For each of the two derivatives,

futures and futures options, corresponding measures of net long exposure can also be

constructed for the group of arbitrageurs, denoted by AC and ACO respectively.

ACi,t =

∑
non-comm. long fut.−

∑
non-comm. short fut.∑

non-comm. long fut. +
∑

non-comm. short fut.
(3)

Because hedgers and large financial traders generally constitute the overwhelming major-

ity of total futures open interest, the numerators are quite similar for most commodities

and, due to the slight change in definition, of the same sign. However, even in the absence

of retail traders as a third group, HP differs from AC due to the denominators being the

sum of total positions held by each group. As with futures, the flip side to OHP is the

normalized net long exposure of arbitrage, ACO:

ACOi,t =
(∑ non-comm. long options−

∑
non-comm. short options∑

non-comm. long options +
∑

non-comm. short options

)
(4)

As before, OHP and ACO will differ due to different denominators even in the absence of

small investors holding option positions. In summary, both HP and OHP give an indica-

tion of how “one-sided” hedgers’ aggregate positions are relative to their total exposure

in each market, while AC and ACO do the same for speculators. For hedgers, a more

extreme position does not equal more risk, in fact, probably the opposite, as the general

purpose is to lock in forthcoming production or consumption of a commodity at a certain

price and eliminate risk. For arbitrageurs as a group, however, I consider these measures

to indicate the existing level of risk on their books. A larger value in absolute terms may

mean that they are nearing constraints with regards to capital or risk. As such, these

measures are proxies for the capacity of arbitrageurs to take on additional positions in
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response to demand from other traders.

Long and short trader concentration: The COT report contains another item

that, to my knowledge, has not been investigated before. In addition to all the previously

mentioned items, the CFTC also reports concentration ratios separately for the long and

the short side independent of trader classification, i.e. the proportion of long (short) open

interest that is held by the largest N long (short) traders for that commodity. I use the

concentration ratios reported in the Futures-only data for N = 8, e.g. for the long side

CRLi,t =
1

OIFut,i,t

j∈Top 8∑
(Long Fut.)j (5)

Ceteris paribus, if a larger fraction of futures is held by a small number of traders, those

traders may be less inclined to add to their already concentrated positions, while the

absence of other traders means that a given demand shock has to be absorbed by fewer

individual traders. An alternative explanation is possible if one assumes that arbitrageurs

act strategically when exploiting profit opportunities as suggested by Oehmke (2009) and

Fardeau (2011). The last 4 columns of Table 1 show time series averages for the two

concentration ratios and the two options-only demand pressure variables.

3 Cross-sectional Evidence

To see how skewness (as well as variance) are related to limits to arbitrage, I begin by

computing time series averages of implied and realized variance and skewness and their

differences, the risk premia for variance and skewness, for the cross section of commodities

in my sample. While the focus of this paper is on skewness and the skewness risk premium,

it may be helpful to readers unfamiliar with the notion of the latter to go through the

corresponding terms of variance first. In addition, I will discuss the connection between

limits of arbitrage and the variance risk premium in Section 5.6 as a robustness check of

my findings for the skewness risk premium. In the interest of brevity, I reserve the exact

definitions and computational details of all the measures involved for a later section as

well as the technical appendix.

3.1 Variance Risk Premium

The existing literature (e.g. Britten-Jones and Neuberger, 2000; Jiang and Tian, 2005)

defines the variance risk premium (VRP) as the difference between ex-ante model-free
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implied variance (MFIV) and ex-post realized variance (RV). Carr and Wu (2009) propose

to consider those three terms in the context of a financial contract, the variance swap.

While not traded on exchanges, variance swaps can be entered into over the counter with

investment banks. The buyer of a variance swap pays the implied variance at the time of

transaction as the fixed leg of the swap and receives as floating leg the variance realized

over the term of the contract. If on average implied exceeds realized, the buyer of the

swap tends to overpay in the form of a risk premium.

In the case of equity markets, Carr and Wu (2009) find a large negative VRP and

suggest that investors dislike states of high volatility and are willing to pay the variance

risk premium in order to insure against those states. The evidence on VRP in individual

stocks is more mixed. While Carr and Wu (2009) find some negative VRPs in their sample

of 30 large cap stocks, Driessen et al. (2009) report marginally positive VRPs on average

for the constituents of the S&P 100 index.

[Table 2 about here.]

Table 2 presents time series averages of implied and realized variance and the variance

risk premium for my sample of commodities as well as the S&P 500 index. For readability,

the variance measures are translated into annual volatilities. The VRP is also annualized

and multiplied by 100. Measures are based on options with maturities of between 90 and

99 days, with the exception of the second row for the S&P which is based on 30 to 36

days to maturity. This row is included because prior to 2008, only four S&P 500 option

series per year were listed more than 90 days prior to expiration. The introduction of

longer maturities with the beginning of the Great Financial Crisis is biasing the sample

towards high realized volatility observations, in turn causing the VRP to appear smaller.

For commodities, average implied volatility is always larger than the realized variety.

Consequently, the variance risk premium, the difference between realized and implied

variance, is always negative and (Newey-West adjusted) standard errors indicate that

almost all estimates are very significantly different from zero. In unreported tests, I find

that short-term VRPs generated by options with 30 to 36 days to maturity are even more

consistently negative. This means that just like for equity indices, but unlike individual

stocks, volatility in commodities and thus commodity options are on average overpriced.

These findings extend the results of Trolle and Schwartz (2010), who investigated the

variance risk premium of oil and natural gas only. It might be interesting to investigate

whether part of this premium is connected to exposure to some form of systematic variance

factor as Carr and Wu (2009) do for the cross-section of stocks. However, as the focus of

this paper is limits to arbitrage, I will leave this topic to future research.
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3.2 Skewness Risk Premium

While measures of option-implied skewness have been proposed in the literature (Bakshi,

Kapadia, and Madan, 2003), until recently no realized counterpart was known. Neuberger

(2011) and Kozhan et al. (2011) (henceforth KNS) overcome this problem and propose a

pair of measures, implied and realized skewness, whose difference can be interpreted as a

risk premium for skewness. The realized skewness of KNS is mostly determined by the

interaction between returns and forward-looking implied variance. If variance increases

concurrent with negative returns, the realized measure becomes consequently negative.

The implied measure is the risk-neutral expectation of realized skewness.

Again, one may think of this in the context of a swap. The buyer of a skewness

swap pays as fixed today’s price, i.e. the implied skewness, and receives as floating the

realized covariation between returns and variance over the term of the contract. If on

average implied lies below (above) realized, i.e. the buyer expects more negative (positive)

skewness, the skewness risk premium (SRP) is positive (negative).

[Table 3 about here.]

Table 3 shows measures of average implied and realized skewness as well as the SRP

for the cross-section of commodities in the sample. Numbers are based on maturities

between 90 and 99 days (except the second line for the S&P).

The column ‘BKM’ contains an implied, normalized measure of skewness of log returns

(based on Bakshi et al., 2003) and shows that most commodities are far less negatively

skewed than the equity market. In fact, the agricultural commodities in particular tend to

have positive skewness. The model-free implied skewness (MFIS) (based on Neuberger,

2011) is a non-normalized measure representing risk-neutral expectations of the third

moment of the percentage return, not log return, over the entire term. The difference

between log and percentage returns is the reason why BKM skewness is negative for more

commodities. Further, because MFIS is not divided by some function of variance, higher

average volatility will make MFIS larger in absolute terms. The next two columns show

the average sum of realized cubed returns ‘r3’ and the KNS measure of realized skewness

‘RSkew’, which is the sum of two terms: cubed returns as well as the covariation between

returns and changes in implied variance.

Note that for most commodities and the index, the majority of realized skewness does

not come from cubed daily returns, in fact the two terms occasionally have opposite signs.

Heating oil, for instance, seems to have more large negative returns than positive ones on

average. However, the difference between the two measures suggests that more than 100
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percent of total skewness comes from the positive covariation between returns and implied

variance. This indicates that, unlike for the equity market, large positive returns tend

to occur together with increasing volatility more than large negative returns for many

commodities.

Lastly, the skewness risk premium, just like implied skewness itself has varying signs

across commodities in the sample. The S&P 500 index has a strongly significant and

positive SRP when considering 30-day variance swaps.11 Implied skewness is on average

much more negative (at −.60) than realized skewness (at −.36). This is what makes

strategies that sell OTM index puts so profitable: index puts are much more expensive

relative to index calls beyond what can be justified by the ex-post physical distribution of

index returns. Commodities, on the other hand, exhibit both positive and negative SRPs.

The meats as well as natural gas are similar to the S&P 500 in that implied skewness is

more negative on average than realized skewness, while agricultural commodities and the

precious metals in particular exhibit the opposite behavior.

3.3 Limits to arbitrage

What can explain the notable dispersion of average implied skewness as well as SRPs

across commodities in Table 3? Cross-sectional variation in implied skewness could po-

tentially be due to corresponding differences in beliefs about the return distribution of

the underlying asset. The price for natural gas certainly behaves quite differently from

that for corn in many ways. However, the existence of and variation in the skewness risk

premium show that differences in the price dynamics of the asset alone are not sufficient

as an explanation.

In what follows, I argue that the cross-sectional pattern apparent in Table 3 is the

consequence of limits to arbitrage in the options market. After showing supportive evi-

dence for the cross-section of commodities in this section, I conduct a sequence of tests in

a panel dataset to show in more detail what types of frictions are present in the options

market and how they affect the process of financial intermediation.

In any financial market, arbitrageurs face constraints with regards to the amount of

capital they can commit to any one position, the amount of losses they can tolerate before

they are forced to liquidate or the ease with which they can access additional funding.

In the face of demand pressure - be it in futures or options - from institutional investors

(Bollen and Whaley, 2004), from ‘end-users’ (Garleanu et al., 2009) or from commercial

11As with variance swaps, the lack of power for 90-day skewness swaps is due to the smaller sample
size and relatively larger number of observations that cover the recent financial crisis.
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hedgers (e.g. Hirshleifer, 1988), asset prices will depend on arbitrageurs’ ability to raise

funds and their willingness to add to their existing positions to accommodate that de-

mand given a price. Both ‘end users’ and hedgers can be considered as price takers and

consumers of liquidity. Market makers and arbitrageurs, on the other hand, tend to be

liquidity providers.

Already Keynes (1930) posits in the Theory of Normal Backwardation that futures

markets help commodity producers to hedge part of their future production by selling it

forward at prices determined today. Since futures are in zero net supply, someone else has

to be long the corresponding amount of contracts. In Keynes’ model, speculators fill this

gap, but they demand compensation in the sense that the futures price must lie below the

expected future spot price, thereby introducing a futures risk premium into the market.

The extant literature has generally found results supporting the theory (Bessembinder,

1992; Bodie and Rosansky, 1980; De Roon et al., 2000).

[Figure 2 about here.]

The implicit assumption in Keynes’ theory, however, is that speculators must be risk

averse to some extent. Otherwise no risk premium would be necessary. Only recently has

the literature begun to explicitly model this.12 For instance, Etula (2010) and Acharya,

Lochstoer, and Ramadorai (2011) both assume VaR constraints for speculators/financial

intermediaries, which makes them effectively risk averse, giving rise to limits to arbitrage

in both models.

The same principle may apply in the corresponding options market. Assume that

instead of via futures, hedgers would like to hedge their natural long position with short

positions in options, e.g. by buying puts or selling calls or any other strategy with a

negative delta. Someone has to write the put or buy the call, i.e. take a net long position

via options. Market makers and arbitrageurs fill that void, but option prices are affected

because of the inability of arbitrageurs to fully hedge themselves, facing residual risk

related to jumps, stochastic volatility and discontinuous trading (Garleanu et al., 2009).

Ceteris paribus, it thus seems sensible to assume that for commodities in which hedgers

demand more short exposure via options, (OTM) puts would be more expensive while

calls would be relatively less expensive.13

12Hirshleifer (1988) uses quadratic utility for all agents in his model, but does not discuss the reasons
for this choice.

13It is not possible to make statements about the absolute expensiveness of options solely based on the
delta exposure of speculators or hedgers. Rather, one would require information on the vega exposure,
i.e. whether hedgers are long or short volatility, which is not available in the COT data.
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In the futures market, it makes sense to call the group of non-commercial traders

speculators because this group takes on directional exposure in expectation of making a

profit on average from an appreciation in their outright futures position. By contrast,

directional exposure contained in the options book of a market maker is immediately

disposed of via offsetting positions in the underlying. Instead, expected profits accrue to

market makers and arbitrageurs because they demand compensation for unhedgeable risk

factors. Thus, I prefer the term arbitrageur in the context of this paper to describe this

group.

Consider now the top left panel of Figure 2, which plots implied skewness from Table 3

against the OHP measure from Table 1. It appears that the level of implied skewness

is significantly negatively related to the extent to which hedgers on average hold short

positions via options in the commodity. Thus, as expected, commodities in which hedgers

generally hold larger short options positions, i.e. have a more positive OHP, tend to

have more negative skewness and vice versa. This supports the notion that prices are

affected in a way that is consistent with limits to arbitrage and demand pressure. Does

net short option demand also affect the risk premium for skewness? The top right panel

shows the relation between hedging pressure and the SRP, more specifically the Newey-

West adjusted t-statistic testing the significance of the SRP estimate. This choice is

made because the skewness measures and thus the premium are not normalized by some

function of variance, and thus the absolute size of premia varies by an order of magnitude

across commodities. We see that more net short hedging pressure via options is related to

a more positive SRP, indicating that implied skewness is on average more negative than

realized skewness for those commodities. For those commodities, OTM puts (calls) will

have lower (higher) returns on average. OHP explains slightly more than one third of

total cross-sectional variation of both implied skewness and the SRP, respectively.

A key point I want to emphasize is that it is not the amount of hedging pressure itself

that determines prices. The same amount of hedging demand may lead to different prices

depending on how binding the aforementioned frictions, i.e. limits to arbitrage, are for

arbitrageurs at that time. Thus it is likely more relevant to judge the impact from net

hedging demand not relative to the total positions of hedgers, but relative to those of

arbitrageurs. In addition, it is the net exposure actually absorbed by arbitrageurs that

is relevant in the context of limits to arbitrage. I replicate the previous two panels at

the bottom of Figure 2, this time using the net exposure of arbitrageurs, ACO, scaled by

the total capital at risk for arbitrageurs as a group. While the general inference does not

change, the increase in fit is notable for both plots. An R-squared of 70 percent implies
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a correlation of over 83 percent in the case of implied skewness. The direct comparison

of the two measures of hedging pressure lends strong support to a limits to arbitrage

interpretation because it shows that arbitrageurs’ capacity (to absorb hedging demand)

can explain the observed patterns better than hedging pressure.

The cross-sectional finding presented in Figure 2 merely shows a correlation and does

not prove causality. But it serves as a starting point to investigate the different dimensions

of limits to arbitrage as they exist in the market for commodity futures options. For

instance, it is possible that some unknown factor causes both the observed cross-sectional

patterns in skewness as well as different propensities by commercial traders to use options

to hedge different commodities. Differences in individual industry or market structure are

potential candidates. Therefore, in order build additional support for a limits to arbitrage

explanation, I investigate in Section 5 how different frictions facing arbitrageurs affect the

price of skewness (i.e. option-implied skewness) as well as the return on skewness (i.e.

the skewness risk premium) over time, with the amount of hedging pressure being only

one of those frictions.

4 Measures of Skewness

The literature on option-implied moments has brought forth a number of measures for

skewness. It is still common to use the difference in implied volatility between OTM

put options and ATM options, i.e. the volatility slope or volatility smile, as a proxy for

risk-neutral skewness implied in option prices (Duan and Wei, 2008; Lemmon and Ni,

2010). This is valid because a one-to-one mapping exists between the volatility smile and

the risk-neutral density of the underlying asset return (Rubinstein, 1994). Bakshi et al.

(2003) (henceforth BKM) propose a more direct measure of option-implied skewness.

Via the spanning approach by Bakshi and Madan (2000), BKM use options data to

replicate the risk-neutral expectations of the first 4 uncentered moments of the log return.

They then systematically build expressions for standardized skewness (and kurtosis) from

those building blocks. The construction uses Taylor series expansions and is thus only

approximate. This measure has been employed e.g. by Dennis and Mayhew (2002),

Conrad, Dittmar, and Ghysels (2009), Rehman and Vilkov (2010) for index and equity

options. In practice, BKM skewness is more prone to produce negative outliers due to

the log transformation. Note that the skewness implied by this measure is the skewness

of the return over the life of the underlying option chain, not the average daily skewness

as is commonly measured in asset pricing (Boyer, Mitton, and Vorkink, 2010) using daily
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stock returns.

Kozhan et al. (2011) and Neuberger (2011) (henceforth KNS) propose a different

measure for longer-horizon skewness that measures the risk-neutral expectations of the

third power of percentage returns, the so-called model-free implied skewness (MFIS).

Under the assumption of continuous rebalancing, it is equal to the integral of the product

of asset return and changes in implied variance (for details see the appendix):

MFIS0,T = EQ
[
3

∫ T

0

dvEt,T

(
dSt
St

)]
≈ EQ [r30,T ] (6)

It, too, is based on the spanning approach. Its main drawback is that it is not standardized

by some power of volatility, making the interpretation of values less intuitive. It has

the advantage, however, that only one integral needs to be numerically approximated,

while the BKM measure (see Equation 18 in the appendix) is a ratio of several such

integrals. Most important and key to the focus of this paper, the KNS measure has

a realized counterpart. The question how much of the risk-neutral expectation reflects

the true return distribution and how much reflects risk aversion by investors insuring

against adverse outcomes was previously hard to answer. No natural counterpart to

implied skewness was available that was able to measures realized skewness over some time

period. Equation 6 reveals that the realized counterpart can be recovered as long as the

integral can be computed. This only requires the existence (or at least, the replication)

of a particular variance contract. A risk premium for skewness can be defined as the

difference between the expectations of realized skewness under the risk-neutral and the

physical measure, i.e.

SRP0,T = EP
[
3

∫ T

0

dvEt,T

(
dSt
St

)]
− EQ

[
3

∫ T

0

dvEt,T

(
dSt
St

)]
(7)

In practice, the P-measure expectation is replaced by its ex-post realization, abbreviated

RSkew, to compute a realization of the skewness risk premium.

The empirical analysis in Section 5 is based on the KNS measures of implied and

realized skewness, abbreviated MFIS and RSkew. Because MFIS (just like MFIV) in-

dicates the expected distribution of returns over the remainder of the life time of the

option chain, it gets naturally smaller as time progresses and ultimately converge to zero

at expiration. As a first step, I annualize MFIS, then I take an average over a short

range of days to avoid outliers on individual days from impacting results. For one-month

(3-month) skewness, I average MFIS over dates with remaining maturities in days of
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I1month = (30, . . . , 36) (I3months = (90, . . . , 99)). More formally, for commodity i and expi-

ration date T , given a maturity m, e.g. 1-month skewness, I average over observations at

times t where T − t ∈ Im.

MFISi,m,T =
1

|Im|
∑

T−t∈Im

MFISi,t,T (8)

Finally, because MFIS has an excess kurtosis of 64 in my sample, I take the signed third

root of this average (excess kurtosis −0.4).

MFIS
1/3
i,m,T := sign(MFISi,m,T ) (|MFISi,m,T |)1/3 (9)

Just like raw MFIS has an extremely heavy-tailed distribution, so do the raw realized

skewness as well as the skewness risk premium (excess kurtosis is 44 for the latter). I

define the signed third root of realized skewness in an identical fashion to MFIS1/3, i.e.

RSkew
1/3
i,m,T := sign(RSkewi,m,T ) (|RSkewi,m,T |)1/3 (10)

where RSkewi,m,T represent the average annualized realized skewness over some small time

window. To get a measure for the skewness premium that is better suited for analysis

than raw SRP, we compute SRP1/3 as follows: Within the estimation window (e.g. 30-36

days before maturity for 1-month measures), I compute the signed third root of realized

and implied skew separately, take the difference and only then compute an average. The

sequence is important to ensure that values for realized skewness are only included on

days where the implied measure is non-missing.

SRP
1/3
i,m,T :=

1

|Im|
∑

T−t∈Im

[
RSkew

1/3
i,t,T −MFIS

1/3
i,t,T

]
(11)

Note that in the case of SRP, the superscript 1/3 is merely for notational purposes to

distinguish it from the raw premium measure. The transformation of signed roots takes

away the extreme nature of the distribution of the skewness measures even better than

scaling by some power of variance does. The goal is to get a sense of how certain factors

affect skewness and the SRP on average without letting outliers dominate the analysis.

The downside of this method is that the economic importance of each effect is difficult to

ascertain. Section 6 aims to provide some answers in that regard.
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5 Time Series Results

In Section 3, I provide evidence of substantial dispersion in the average skewness across

commodities. The cross-sectional results suggest that the net option exposure of arbi-

trageurs may play a role in the average level of skewness. This is visible in scatter plots

for both option-implied skewness as well as the risk premium for skewness. In this section,

I focus on the time series dynamics of skewness rather than cross-sectional averages using

a large panel data set. All variables involved, in particular the skewness measures, are

de-meaned separately for each commodity in order to filter out any level effects that may

obfuscate the results.

5.1 Design of the Time Series Analysis

Each set of results in this section is presented in the form of two panels, one for ex-

ante implied skewness and one for the ex-post realized skewness risk premium, or to be

precise, the transformations defined in Equations (9) and (11). By taking the differene

between the coefficients within each column, the corresponding coefficient for the realized

skewness can be recovered. If a factor that affects implied skewness significantly does

not show significantly (with the opposite sign) in the results for the skewness premium,

it means that realized skewness was affected in a similar fashion as implied skewness,

leading to the effect being insignificant for the difference, i.e. the premium. Thus, the

factor seems to be properly priced into option prices and its effects on skewness expected.

If, on the other hand, a factor affects both implied skewness and the premium significantly

(with opposite signs), we conclude that the factor does not influence realized skewness

and thus option prices appear to include a premium in response to that effect.

All dependent variables that are used to explain skewness are known prior to the time

window where measurement of implied skewness, i.e. the Q-measure expectation of future

realized skewness, takes place. Consequently, they are also known prior to the realization

of actual skewness over the corresponding time period. Thus, the regressions have pre-

dictive character and just like forecasting regressions for equity returns generally low R2.

The choice of 3-month horizons are a compromise between having timely predictors and

less noise in the realized measure.

A number of control variables are included in each regression, but have been omitted in

all of the following tables to conserve space and bring into focus the key results. These are

the percentage change in futures open interest over the last 6 month, the lagged 3-month

return of the underlying futures contract (i.e. momentum) and the current convenience
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yield that is implied by the front futures contract and the futures contract that is closest to

a 6-month maturity. Growth in open interest may be driven by new speculators or hedgers

coming to the market, potentially leading to a price impact on options. The inclusion

of last two variables is motivated by the existing literature. Brunnermeier, Nagel, and

Pedersen (2008) use momentum in their analysis of skewness in carry trade returns. The

convenience yield reflects the potential scarcity of the physical commodity and is affected

by the probability of low inventories (Gorton et al., 2007). It seems natural to assume

that skewness would react to the probability of low-inventory, high-price states. These

variables add some explanatory power to the regression, but are mostly insignificant. The

exception is the growth in open interest, which increases both implied as well as realized

skewness by a similar extent, leaving the SRP unchanged.

Further, as the findings below reveal, there are 3 particularly strong effects on the

relative pricing of options: the measure of arbitrageurs’ capacity to absorb demand in

options (ACO), the long concentration ratio (CRL) and the lagged realized skewness.

Each of these is included in the regressions that follow unless its effect is the focus of

the investigation for that particular set of results. For instance, the table in Section 5.2

displays the effects of different types of demand pressure, among them the ACO measure.

Thus, ACO is only included when specifically indicated, while the other two measures are

included in every column.

5.2 The Effect of Demand Pressure

The literature on hedging pressure in futures (e.g. Bessembinder and Chan, 1992) finds the

futures risk premia to be predictable by the measure HP. Ceteris paribus, higher pressure

leads to greater price concessions by hedgers in the futures market and increases the return

that speculators can expect on average. Here, I test if demand pressure variables affect any

of the skewness measures. My analysis includes the hedging pressure and arbitrageurs’

net exposure present in the underlying futures market as well as the equivalent measures

in the futures options market.

[Table 4 about here.]

Table 4 shows the results from regressing implied skewness as well as the skewness risk

premium on a sequence of demand pressure variables. The bottom three lines indicate the

dimensions of the sample and the number of non-missing observations by column. Within

each column, the sample is identical for the two panels.
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The first two columns indicate that neither hedging pressure (HP) nor the scaled

net exposure of arbitrageurs (AC) has any affect on skewness. More interesting are the

following 2 columns containing the corresponding measures based on the option market,

OHP and ACO. Both have a significantly negative impact on implied skewness and a

positive impact on the premium of nearly identical magnitude, which means that realized

skewness is not affected. The sign of the effects agree with the results shown in the scatter

plots. Not only do commodities with on average high levels of ACO have more negative

skewness on average, there is also evidence that commodity skewness reacts to the level

of ACO over time. Further, the effect is absent for realized skewness. As a consequence,

OTM puts will exhibit lower returns and calls relatively higher returns in times where

ACO is high, i.e. where arbitrageurs as a group have written a lot of puts and bought a

lot of calls as a share of their total overall positions.

A key result is visible in column 5, containing both demand pressure variables for the

options market. Notably, ACO dominates OHP both for implied skewness as well as the

risk premium. This impressively supports the idea that it is not alone the amount of

demand pressure coming from hedgers, but how this demand is absorbed by arbitrageurs.

If total open positions by arbitrageurs are small, the same amount of net hedging pressure

will have a larger effect. This result can also help delineate between the effects of changes

in risk aversion and limits to arbitrage. The hedging pressure in options scaled by hedgers

total open interest can be regarded as a proxy for the effective risk aversion of that group,

while ACO, i.e. absorbed hedging pressure scaled by total arbitrageurs’ capital at risk,

proxies for limits to arbitrage. We see that the latter matters more for both prices and

premia.

Column 6 conducts a robustness check splitting the ACO variable conditional on its

sign. At least for implied skewness, a difference in slope is discernable. To test potential

non-linearity of the effect of ACO, column 7 adds a square term. The fact that the linear

term remains highly significant in the presence of the square term indicates an asymmetric

effect. But more importantly, the significance of the square term provides evidence that

the marginal effect of one more unit of hedging pressure absorbed by arbitrageurs has an

increasing price effect.

5.3 The Effect of Trader Concentration

A limits to arbitrage explanation of the dynamics of relative option prices where prices

depend on the ability and willingness of arbitrageurs to enter positions opposite to those

of hedgers would suggest that prices may be impacted by both the number of (large)
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arbitrageurs present in the market and the share of their portfolio that is allocated to any

one market. On the one hand, it may affect their ability to take on additional exposure

if they are already heavily exposed to a particular market. On the other hand, those

knowing that they face less competition in a market may strategically offer to trade at

less favorable prices (Oehmke, 2009; Fardeau, 2011). Both channels affect prices in the

same way.

One way to catch this notion of individual exposure and strategic effects is the propor-

tion of long (short) open interest that is concentrated in the hands of the largest N traders

in that market. This measure would appear to be superior to the pure number of traders,

which does not say anything about their size or capability. Looking at a concentration

ratio offers a better glimpse into the supply and demand picture. For instance, if almost

all open interest is concentrated among the largest traders it suggests that the market

is not deep and that possibly those large traders are near or at their limits with regards

to the exposure they are allowed or willing to have. On the other hand, a market where

large traders make up a small share of total open interest indicates that many traders

have positions and none is dominating; competition is high and the individual exposure

of traders is relative low.

[Table 5 about here.]

Table 5 contains a sequence of regression results relating both skewness measures to

a set of variables of trader concentration. The first 3 columns show that the level of

concentration appears only to play a role on the long side of the futures market. The

effect there is significantly negative for implied skewness and even more significant for the

premium. In other words, in times when concentration is particularly high on the long

side of the underlying futures market, puts are particularly expensive relative to calls.

The explanation in the context of limits of arbitrage would be that the small number

of long speculators currently present is less willing or able to add long positions to their

portfolios, i.e. write puts or buy calls. This pushes the prices of puts up and down for

calls.

Column 4 conditions the long concentration on the sign of speculators’ exposure in

the futures market. While implied skewness exhibits little difference between the two

subsets, the skewness risk premium shows that the pricing effect is stronger in times when

speculators or arbitrageurs are long. Consistent with the notion of limits to arbitrage,

the concentration ratio plays a stronger role when it is the arbitrageurs that are highly

concentrated.
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Using levels of concentration may be able to capture persistent effects, but may fail

to uncover transitory effects. In a similar fashion as some demand pressure has only a

temporary effect on prices until the demand is absorbed, it may be the case that it takes

a small number of traders some time to adjust their portfolios to demand shocks. The

last 2 columns test for temporary effects. Notably, after controlling for level effects, I find

that skewness does react to changes in trader concentration on the short side, but that

the effect is only temporary. It is not immediately clear, why the effects are permanent

for one side and temporary for the other.

5.4 The Effect of Financial Constraints

The recent literature has shown that arbitrageurs, and as a result asset prices, are sensitive

to changes in their ease to access funding, i.e. credit (Adrian and Shin, 2010; Adrian,

Etula, and Muir, 2011). Acharya et al. (2011) and Etula (2010) show that the balance

sheets of broker-dealer firms offer a good glimpse at the their ability to engage in arbitrage

in the context of commodity futures. I use the measures they propose, i.e. the effective

risk aversion Φ̂ of broker-dealers and its year-over-year change dΦ̂ as in Etula (2010), and

the related measure of growth of household assets relative to the growth of broker-dealer

assets employed by Acharya et al. (2011), also on a 12-month rolling basis. The data is

extracted from the quarterly flow of funds database of the Federal Reserve Board. For all

three measures, higher values mean a deterioration in financial conditions.

[Table 6 about here.]

The first 3 columns of Table 6 show those results. Consistent with the empirical artifact

that speculators are generally more active on the long side, I find that deteriorations in

the access to funding pushes implied skewness to be more negative, i.e. puts rise in price

relative to calls. It seems plausible to assume that in times of less credit availability,

realized returns of financial assets may be more negatively skewed as well. Notably,

comparing implied skewness and the risk premium, I find that this is not the case for

commodities. Almost all of the price effect translates into a premium.

In addition to the pure effects from changes in funding constraints of arbitrageurs, I

am also interested whether other effects related to limits to arbitrage are amplified under

increasing constraints. For instance, does the effect from ACO in Table 4 get larger in

times where arbitrageurs suffer from reductions in the size of their balance sheets? This

is what the next 3 columns in Table 6 try to answer by including the interaction terms

between proxies of financial constraints and ACO. The coefficients for the constituent
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terms stay remarkably stable. More importantly, recent increases in financial constraints

for broker-dealers amplify the effect of hedging pressure in the options market. This makes

intuitively sense, as I would expect that arbitrageurs react with larger price adjustments

in times of stress for a given amount of hedging demand.

The final column investigates the effect of recent volatility on skewness. Past volatility

by itself is not useful with regards to skewness, because assets that tend to have positive

(negative) skewness will be more positive (negative) skewed in times of higher volatility.

Thus, a linear specification is confounded by opposing effects. However, the interaction

term between ACO and lagged volatility is significantly negative. This suggests that

speculators react more sensitively to hedging pressure for commodities that recently ex-

perienced high volatility. Again this makes sense, as trading capital is allocated on the

the basis of perceived risk. The fact that the cross-term is not significant and the coeffi-

cient only have as large for the skewness premium indicates that arbitrageurs are at least

partially right in their pricing policy.

5.5 The Effect of Lagged Realized Skewness

The effect of lagged volatility suggests the possibility that recent experience for speculators

in the individual asset may affect their abilities to take on future risk in the same asset.

[Table 7 about here.]

I test this by looking at recent realized skewness of the individual commodity. The

top row in Table 6 shows that recent realized skewness has a very substantial positive

effect on current implied skewness. Negative recent skewness leads market participants

to price in more negative skewness in the future (under the Q measure) and vice versa.

The corresponding coefficient on the premium suggests that more than half of the effect

in implied skewness is due to an actual effect on realized skewness going forward. Yet the

premium is still significant, so that option prices react by more than what is justified on

average.

Columns 2 to 4 contain interaction terms between the financial constraint proxies and

lagged skewness. As with ACO, the effect of recent realized skewness on current prices is

amplified in times of financial stress for broker-dealers, but the effect carries through to

the premium to a smaller extent.

The last two columns, investigate if the pricing response to lagged skewness depends on

speculators aggregate positions during the time the skewness was realized. The cross term

between lagged skewness and the lagged average level of AC yields a weakly significant
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effect on the premium. I get stronger results when splitting lagged skewness into times

when speculators were net long vs. net short in futures. Notably, the premium effect

due to lagged realized skewness is limited exclusively to those times where speculators

were long. For instance, after experiencing negative realized skewness while being long,

speculators as a group demand especially large price concessions, a large part of which

constitutes a risk premium.

In summary, all of the findings in this section are consistent with a limits to arbitrage

explanation for the case of commodity options markets, whereby ability and willingness

of arbitrageurs to absorb demand shocks from hedgers, and thus option prices, vary with

their existing positions in options, the concentration of traders in futures markets, with

recent realized skewness and with the financial constraints they face. In addition increases

in financial constraints amplify those effects.

5.6 Robustness: The Variance Risk Premium

Thus far, I have exclusively focused on the relative pricing of OTM puts relative to OTM

calls and the extent to which it is justified by rational beliefs. While I present the cross-

sectional averages of volatilities and the variance risk premium in Table 2, I have left out

any discussion about what drives the absolute level of option prices and the variance risk

premium. This paper has to remain largely silent on this issue because the COT data

on aggregate positions is based on directional exposure (i.e. delta) only and does allow

to extract volatility exposure for traders. Therefore demand-related variables cannot be

used to explain time-variation in the level of volatility or its premium. However, one

can make the assumption that hedgers and retail customers that are not sophisticated

financial firms may generally prefer to buy options rather than writing them because

short positions in options require strong risk management techniques (margin calls, short

vega and short gamma exposure) while long positions do not. This intuition is certainly

confirmed by the fact that all commodities on average do exhibit a large negative variance

risk premium.

[Table 8 about here.]

Albeit limited, I can still conduct some basic analysis using other variables that are

not demand-based. Table 8 shows that lagged realized volatility and financial constraints

have an effect of both the level of option prices (i.e. implied volatility) and the variance

premium embedded in options. The dependent variables in this table are the model-free

implied variance (MFIV) and the variance risk premium (as used by Jiang and Tian,
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2005; Carr and Wu, 2009). Unlike the skewness measures, I do not transform the variance

measures because the inference below essentially does not change between volatilities and

variances.

In Table 6, broker-dealers’ risk aversion (both level and changes) and the inverse

asset growth of broker-dealers negatively affected implied skewness. Almost the entire

magnitude of these effects carried through to the skewness risk premium. In the case

of variance, I find that the proxies for financial constraints increase implied variance,

i.e. make options more expensive in general, and at least partially make the variance

risk premium more negative14. Consistent with limits to arbitrage, more severe financial

constraints increase both prices and the premium on options.

Table 7 shows that lagged realized skewness has a greater positive effect on implied

skewness going forward than on future realized skewness, thus leading to a negative effect

on the skewness risk premium. For instance, a negative realization of skewness made puts

more expensive relative to calls than is justified by next period’s realized skewness. In a

similar fashion, the last column of Table 8 shows that lagged realized volatility affects im-

plied volatility more severely than realized volatility, because the VRP is more negative.

A high realization of volatility in one period leads to options being more expensive in the

next period and in fact too expensive when compared to future realized volatility. Again,

this is consistent with arbitrageurs limiting additional volatility exposure after experi-

encing an adverse shock. High current volatility may lead to a mechanical trimming of

exposure to that particular market, i.e. it reduces arbitrageurs’ willingness; alternatively,

recent losses to existing short volatility exposure may have decreased the capability of

arbitrageurs to absorb additional demand.

6 Returns to Marginal Liquidity Provision

The results in the previous section provide evidence that time-variation in the severity of

limits to arbitrage facing arbitrageurs has predictive power for the skewness risk premium.

Large current exposure in options by arbitrageurs and high concentration of long futures

positions forecast a positive skewness risk premium in the future. In other words, in

those instances OTM put options will yield lower returns and OTM calls relatively higher

returns on average. Recent realized skewness forecasts a negative skewness risk premium.

Unfortunately, the non-parametric nature of the measures employed, not to mention

14The effect for the level of effective risk aversion, Φ̂, is more significant in the case of volatilities than
variances.
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the non-linear transformation to limit excess kurtosis, make it hard to judge how econom-

ically important these factors really are. Can a trader create abnormal returns by taking

on exposure to skewness in commodities based on some dimension of limits to arbitrage?

And second, what kind of risks does he subject himself to?

As for the second question, consider a trader that aims to exploit the predictive power

of the ‘ACO’ variable. To profit, he would go long (short) skewness in commodities that,

at the current time, have above-normal (below-normal) levels of speculative long expo-

sure. Since his positions would align with those of the existing speculators, he essentially

represents the marginal investor on the speculators’ side. In other words he takes on the

position of the marginal liquidity provider in the commodity options market. As such, he

should be particularly vulnerable to shocks to the funding constraints of other specula-

tors. If those investors on the same side of the trade as himself are forced to liquidate, his

position will suffer accordingly. Thus, the return from such a strategy can be considered

compensation for liquidity provision. In a future version of this paper, I will investigate

more thoroughly the extent to which any returns are compensation for risk factors related

to liquidity risk. For now, I consider the standard risk factors only.

6.1 Practical Implementation

The most direct way to implement these strategy would be with long and short positions

in skewness swaps. Unfortunately, the use of skewness swaps is, at least at present, largely

academic as they are not offered by investment banks. Even variance swaps, which are

available over the counter, will likely be available for a small number of equity indices

only, not for the cross section of stocks or commodities.

It is possible to form long/short portfolios of skewness swaps synthesized from options,

but it is unclear of what magnitude the bid/ask spreads would be and further, given

the extreme number of short option positions that need to be taken, what the margin

requirements would be. In addition, the replication method of KNS requires continuous

rebalancing in the underlying futures contract. If one chooses instead to rebalance daily,

the floating leg, i.e. the realized skewness, becomes very noisy for short periods of time.

After all, in the preceeding section I choose 90 day maturities precisely because shorter

maturities of e.g. one month are unreliable. All these issues make it difficult to compute

returns on skewness swaps in a set up of overlapping, re-balancing portfolios.15

Instead, I form relatively simple portfolios made of options in an attempt to catch

15In unreported tests, I do form portfolios of skewness swaps, albeit without intermittent rebalancing.
The signs and significances do line up with the results reported below.
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the basic notion of skewness. Risk reversals, i.e. a long position in a OTM call option

and a short position in a put option with the same absolute delta, are well-known in the

realm of currency options and widely available over-the-counter Brunnermeier et al. (see

e.g. 2008). A risk reversal based on options with an absolute delta of .25 each, carries

a total delta of +.50. To neutralize the valuation effect from a directional move in the

underlying, I enter an offsetting position in the underlying futures contract.16

Using delta-neutral risk reversals (DNRR) as the asset of choice, I form zero net

investment portfolios that are long and short an equal dollar amount of DNRRs in each

commodity. The portfolios are held for either one month or half a month after which they

are replaced by new DNRRs of the same commodities, but rebalanced to allocate equal

dollar amounts between positions once more. This process is repeated until the underlying

option series are close to expiration. To reduce standard errors of this strategy, several

partially overlapping portfolios are held at each point in time, much in the way momentum

portfolios of stocks are constructed (Jegadeesh and Titman, 1993).

The decision whether a given commodity receives a positive or negative weight in

the portfolio is based on the relative rank after sorting the cross-section of commodities

available at the time of formation according to some criterion such as ACO. The bottom

third receives a negative, the top a positive and the middle a zero weight.

6.2 Portfolio Results

[Table 9 about here.]

Using the method decribed above, I construct a time series of portfolio returns based

on the key variables that measure some aspect of limits to arbitrage. I use the maximum

time period for which the sorting variable is available. Table 9 shows those results for the

three sorting criteria that exhibited strong predictability of the skewness risk premium:

the net exposure of arbitrageurs in options (ACO); the futures trader concentration on

the long side (CRL); and lagged realized skewness. The analysis is done for 2 levels of

delta, .25 and .10, as well as for monthly and bi-monthly rebalancing. This means that for

monthly rebalancing there are 2 overlapping portfolios at any point in time, while there

are 4 when rebalancing is done bi-monthly. For each commodity, the risk reversals are

based on an expiration that lies between 2 and 4 months after first formation.

To compute returns in a more realistic fashion, assumptions about margin require-

ments have to be made. The rules governing margins of futures and options are complex

16Bali and Murray (2010) use a similar construct, which they call ‘skewness asset’, but adjust the
weights of the put in order to make the asset both delta and vega-neutral.
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and change constantly with market states, regulatory environments and over time more

generally.17 For the case of a delta-hedged risk reversal, margins are required for the

short side of the option trade and for the futures contract. I conservatively assume that

a margin buffer of 10 percent of the nominal exposure in the futures contract has to be

maintained. In most commodities and in most periods, this will exceed actual margin

requirements18.

On the part of the option positions, I assume that the required margin is 150 percent

of the sum of put and call price combined for the .25-delta risk reversal. In practice,

no margin would be required on the long side of the risk reversal, but about 3 times

the option price on the short side based on example calculations. For the more extreme

.10-delta RRs, the option price is small relative to potential changes in value. Example

calculations here suggest that about 6 times the short option value is required, which I

proxy for by using 3 times the sum of both option prices as margin.19

Three patterns are discernable from Table 9. First, increasing the rebalancing fre-

quency and, at the same time, the number of overlapping portfolios from 2 to 4 reduces

standard errors. Second, using options that are further out-of-the-money (lower delta)

may lead to larger returns, but increases noise in measurement due to the more extreme

nature of far-OTM option returns. Third, equity-based risk factors (Fama-French factors

and stock momentum) do not significantly contribute to an explanation of the returns of

these portfolios.

Specifically, I find that sorting on ACO over time period from 1995 to 2010 yields up

to 145 basis points per month in returns with a t-statistic in excess of 4 based on risk

reversals with a delta of .25. The return increases to about 2 percent for the more extreme

.10-delta risk reversals, while significance does not change materially. The strategy goes

short (long) risk reversals of commodities with low (high) levels of ACO. A long position in

a delta-hedged risk reversal proxies for a long position in skewness. Thus, the positive sign

of the coefficient for ACO in forecasting the SRP translates into a significantly positive

return when going long (short) skewness in commodities with high (low) ACO.

I repeat the same procedure for the long futures trader concentration. Going long

(short) DNRRs in commodities with a high (low) level of trader concentration yields a

positive return of between 68 and 85 basis points per month, except for the low-turnover,

17The CBOE provides numerous examples for margin requirements on option strategies e.g. in
http://www.cboe.com/LearnCenter/pdf/margin2-00.pdf

18http://www.cmegroup.com/clearing/margins/ provides current information on futures margins on
the CME.

19I used http://www.cboe.com/tradtool/mcalc/default.aspx for the example calculations.
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far-OTM case, which appears to be too noisy. The returns here are lower than expected

given the large significance of the log of CRL variable in Section 5. The equal-weighting

based on (linear) rank of CRL may not be able to fully account for the non-linear rela-

tionship with the skewness risk premium.

Lastly, given the negative sign for lagged realized skewness in the panel analysis in

Section 5, I expect a negative return for a strategy that is long (short) DNRRs in com-

modities with a recently high (low) realization of skewness. Table 9 confirms this intuition.

Returns reach up 97 basis points for .25-delta DNRRs and up to 131 basis points for the

more extreme .10-delta DNRRs. Notably, it appears that this strategies loads positively

on equity market risk. Thus, a trader that wants to profitable trade based on lagged

skewness would actually have negative beta risk.

Unfortunately, the dataset underlying this analysis does not provide bid and ask

quotes, only mid-quotes. Thus, it is hard to judge how much of the observed abnor-

mal returns can be realistically attained. Note, however, that in a delta-hedged risk

reversal, the proportion of capital used for the options is relatively small given the large

position in the futures contract. Transactions costs in futures are generally on the order

of a few basis points.

Lastly, the strategy presented here is rudimentary in the sense that the weights are

equal across commodities and across time. Given the results that the effects of limits to

arbitrage increase in times of financial constraints one might consider varying over time

the dollar amount put at risk accordingly. One might also consider putting more weight

on risk reversals of commodities for which the sorting variable ranked very high or very

low to improve returns.

7 Conclusion

Asset pricing models have some difficulty to rationalize the abnormal returns that have

been found for a number of strategies involving equity and equity index options. Among

these, the out-of-the-money index put option puzzle has received the most attention (see,

among others, Bondarenko, 2003; Liu et al., 2005; Benzoni et al., 2011). Rather than

assuming unrealistically large risk aversion parameters or biased beliefs, a small strand

of the literature searches for alternative explanations in the microstructure of the options

market, more specifically, in the process of financial intermediation fulfilled by market

makers and arbitrageurs more generally (Bollen and Whaley, 2004; Garleanu et al., 2009).

I expand this literature by investigating several aspects of limits to arbitrage that affect
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this intermediation activity: hedging demand pressure in options, trader concentration

in the underlying futures market, funding constraints of arbitrageurs and recent losses

to speculators. In a large panel dataset containing 25 commodities over 20 years, I find

that the skewness risk premium becomes more positive (negative), but realized skewness

is unaffected, in times i) when arbitrageurs are constrained in adding new long (short)

positions via options and ii) when long (short) positions in the underlying futures market

are concentrated among fewer traders. In addition, increases in financial constraints make

these effects more pronounced. Lastly, to judge the economic importance of these limits

to arbitrage, I form portfolios that aim to exploit the different returns to OTM calls and

puts. I find these strategies to yield significant returns on the order of 1 to 2 percent per

month that are unrelated to common risk factors.

As a side product, I document that commodity option prices consistently contain a

large negative variance risk premium. For lack of suitable data on volatility exposure by

traders, I am unable to investigate this premium more thoroughly in the context of limits

to arbitrage. Lastly, my findings suggest that limits to arbitrage in the futures market

spill over into the options market and impact prices and returns there. Conversely, the

option market may contain information that affect futures returns. I am leaving both

topics for others to explore.
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A Datasets

A.1 Commodity Futures and options

The main source of data are the ’InfoTech CDs’ provided by the Commodity Research

Bureau (CRB) covering i) futures and cash markets and ii) futures options for a large

cross-section of U.S. and international futures and commodities markets. The futures

data contains OHLC prices, while the options data only provides a daily closing price.

Volume and open interest data is not available for options and for futures only from the

year 2001 onwards. I substitute volume and open interest data from Thomson Reuters

DATASTREAM for all futures contracts in the sample, going back to 1980. The option

closing price is either the price of the last trade or if no trade occurred it is a ’nominal

settlement’ as determined by an options pricing model.

Details on cleaning process

For a few commodities in the sample, option prices are rounded and are missing a crucial

last digit. For instance, Feeder Cattle has a minimum tick size of 0.025, i.e. option prices

must be multiples of this tick size, but prices are given with only 2 digits after the decimal

point. In those cases, if a price ends in x.x20 or x.x30 (x.x70, x.x80) it is corrected to

end in x.x25 (x.x75). Second, prices below the minimum tick size are deleted from the

sample.

Further, the data is cleaned from stale option quotes. If an option price remains stale

for more than 2 days, every further instance at the same price is deleted. This filter is

waived for prices at or below 5 times the minimum tick size, because for far out-of-the-

money options the tick size prevents frequent adjustment to movements in the underlying.

Lastly, going from at-the-money to out-of-the-money for calls and puts separately, option

quotes with nominal value are deleted if they follow another option with nominal value.

An additional quirk in the data is that the strike is always given as a 4-digit number

regardless of actual strike price. For instance, the strike 7500 could be 0.75 cents in the

case of gasoline, 7.50 cents in the case of sugar, . . . or even 7500 cents in the case of

silver. I identify the true strike using the following algorithm: First the closing price of

the underlying futures contract is added to the raw options data. I visually inspected the

data for each commodity to identify the smallest and largest strike that ever occurred

over the course of the sample as well as the greatest common factor (GCF) of strikes.

For puts, I start with the highest possible, i.e. assuming a 4-digit strike price. By

simple no-arbitrage for American-type options, it must hold that K−P < F , allowing for
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some small amount of tolerance. If this inequality does not hold, the strike is divided by 10

until it holds or until the strike falls below the minimum strike price or is not a multiple of

the GCF (maximum 5 iterations). For calls, I start with the smallest strike possible within

the sample data, which is a number between 1 and 0.1. By no-arbitrage, it must hold

that K+C > F . The strike is multiplied by 10 until the condition holds for the first time

or the strike exceeds the maximum strike price. This algorithm identifies the only valid

strike price given the price of the underlying and the option price. Additional no-arbitrage

conditions as well as a maximum on implied volatility ensure that the strike-quote tuple

is sensible.

Construction of discount factors

I construct discount factors as suggested by the manual to the Ivy DB US options

Database, which outlines an algorithm for discount factors based on BBA LIBOR rates

and CME Eurodollar futures. The CRB data on Eurodollar futures starts in 1982 which

coincides with the exchange listing of that contract. BBA LIBOR data is available from

Thomson Reuters DATASTREAM starting in 1986.

Eurodollar futures represent the present value of a 3-month time deposit of $1m USD at

a bank outside the U.S. starting at the expiration of the futures contract. In other words,

they are forward rate agreements. They expire during the last month of each quarter and

are available up to 10 years in the future. It is thus possible to construct discount rates

(zero rates) up to 10 years into the future based on a strategy that sequentially rolls over

3-month bank deposits. The anchoring of these forward agreements is provided via linear

interpolation of LIBOR spot rates.

Step 1: Transform BBA LIBOR rates (for T ∈ 1w, 1m, 2m, . . . , 12m) into discount

factors (DF) using an actual/360 day count convention:

DFT = (1 + rT
d

360
)−1

Step 2: Tranform the DF back into continuously-comounded rates using an actual/365

convention:

rc,T = −365

d
log(DFT )

Step 3: Linearly interpolate the two LIBOR rates surrounding the front Eurodollar

futures (expiration > 7 days). Transform the interpolated rate of the front futures back

into a discount factor DF0
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DF0 = exp(
d0

365
rc,T0)

Step 4: The Eurodollar implied forward rates are 100 minus the settlement prices

divided by 100. Compute subsequent discount factors by discounting the previous DF

with the implied forward rate:

Fi,i+1 =
100− EDi

100
(12)

DFi,i+1 = (1 + Fi,i+1
di+1 − di

360
)−1 (13)

DFi+1 = DFi ·DFi,i+1 (14)

Step 5: Transform all Eurodollar discount factors back to continously-compounded

rates (as in step 2).

Construction of implied measures

Given a clean set of option prices and discount rates, implied volatilities are computed

following the BBSR algorithm proposed by Broadie and Detemple (1996). It combines the

Binomial Black Scholes (BBS) method, whereby the option prices in the penultimate nodes

of the tree are replaced by the Black Scholes value, with the Richardson interpolation.

In the latter, a binomial tree is constructed twice, once with N1 nodes yielding a price

C1 and then with N2 = 2N1 nodes yielding a price C2. The price C = 2C2 − C1 gives a

much more accurate estimate of the true price than C2 alone, because of the oscillation

property of the binomial tree estimation. For further details, see Broadie and Detemple

(1996).

Given IVs of American-type options, I proceed in accordance with the literature on the

computation of option-implied measures of variance and skewness. IVs are interpolated

linearly on a fine grid for moneyness levels of up to 8 standard deviations around the

money. The IVs are translated into European-type option prices, which are then used ac-

cording the summation formulas put forth in Bakshi, Kapadia, and Madan (2003) (BKM)

and Kozhan, Neuberger, and Schneider (2011) (KNS) to compute model-free implied vari-

ance, implied BKM skewness and model-free implied skewness (KNS) as described in those

papers and in the technical appendix of this paper.
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Realized measures

Following KNS, the realized counter-parts to MFIV and MFIS can be computed as sums

of functions of daily (futures/stock) returns and option price data. KNS provide formal

proof that under the risk-neutral measure the expectations of these sums converge to the

implied measures in the limit. The formula to compute the realized measures are also in

the technical appendix.

A.2 SPX cash settled index options

A second dataset was acquired from ’Market Data Express’ covering all options on the

S&P 500 cash index. I use cash options rather than futures options, because the latter

was only available at quarterly expirations until 2006. The data set covers the time period

1990 to 2009. The data requires some filtering for errors which can be inferred from the

documentation provided by the vendor. The computation of implied volatilities is done

in the same way as for the commodity options, the only difference being that data on

dividends is required. I infer those from the difference in returns between the total return

and the price index for the S&P 500 as provided by Thomson Reuters DATASTREAM.

Lastly, implied and realized measures are computed just as above.
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B Theory of option-implied measures

B.1 Spanning Approach

Carr and Madan (2001) derive a neat way of replicating any (twice differentiable) time-

T payoff function of an underlying price process by taking an initial time-0 position in

the risk-free asset, the underlying asset (stock, forward, Futures) and in a continuum of

European options with maturity T. Call the stochastic time-T value of underlying S =

ST and today’s value S0. The payoff is some function H(S) which can be replicated as

follows:

H(S) = [H(S0)−HS(S0)S0] +HS(S0)S+

∫ S0

0

HSS(K) (K − S)+ dK

+

∫ ∞
S0

HSS(K) (S −K)+ dK (15)

The derivation can be found in the appendix of Carr and Madan (2001) and is based on

the fundamental theorem of calculus. The time-0 price of the payoff must then equal to

the value of the replicating portfolio, i.e.

V0[H(S)] = EQ
0

[
e−rτH(ST )

]
= [H(S0)−HS(S0)S0] e

−rτ +HS(S0)S0

+

∫ S0

0

HSS(K)P0(K)dK +

∫ ∞
S0

HSS(K)C0(K)dK (16)

Here, we used that EQ
0 [e−rτST ] = S0. This approach has been used by, among others,

Bakshi et al. (2003), Britten-Jones and Neuberger (2000), and Jiang and Tian (2005) to

derive option-implied expectations for payoffs of higher moments of returns.

B.2 Computing implied moments

In an oft-cited paper, Bakshi et al. (2003) (BKM) derive non-parametric formula for

option-implied, risk-neutral skewness (and kurtosis) of log returns in the following way.

Using the method of Bakshi and Madan (2000), they replicate in turn the square, cubic

and quartic contract of log return rr,T = log(ST/St). Then the risk-neutral skewness of
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the log return over the period τ = [t, T ] is given by

BKMSKEWt,T =
EQ
t

[(
rt,T − EQ

t [rt,T ]
)3]

EQ
t

[(
rt,T − EQ

t [rt,T ]
)2]3/2 (17)

=
erτWt,T − 3µt,T e

rτVt,T + 2µ3
t,T

[erτVt,T − µ2
t,T ]3/2

(18)

where

µt,T = EQ
t

[
log(

ST
St

)

]
(19)

= erτ − 1− erτ

2
Vt,T −

erτ

6
Wt,T −

erτ

24
Xt,T (20)

and V,W,X are the time-t prices of the replicating portfolios of the square, cubic and

quartic contract respectively. Note that the relationship for µ is based on a Taylor ex-

pansion and thus the resulting expressions are not exact.

B.3 Aggregation Property and Generalized Variance

The existence of risk premia for higher moments of stock market returns has received

considerable attention in recent years. One tool that has proven very useful in evaluating

the presence of one such premium, the variance risk premium, is the variance swap. For

recent applications, see e.g. Carr and Wu (2009). The basic idea of the variance swap

is that the buyer of a variance swap pays some fixed amount that represents today’s

expectation of future variance of the period return and then receives the actually realized

variance as measured by returns of a higher frequency.

Neuberger (2011) echoes similar results in the literature (Jiang and Tian, 2005; Martin,

2011) which state that the definitions of the variance swap used in practice are not fully

consistent as the expectation of the period return variance do not equal the variance

of daily returns in the presence of jumps. To this end, Neuberger (2011) derives the

‘Aggregation Property’ (AP) which ensures that the risk-neutral expectation of a function

g of the period return is equal to the sum of functions g of returns at a higher frequency.

Denote St as the underlying price process, st = logSt, δSt = St−St−1 as the price change

and δst = log(St/St−1) as the log return. Following Neuberger (2011), if (g,X) has the
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Aggregation Property (where X could be a price process or a log price process) then

EQ
t [g(XT −X0)] = EQ

t

[
T∑
g(δX)

]
(21)

for any partition of the period [0, T ]. The left side of the equation is called the implied

characteristic and is written in terms of a function of the price process over the whole

period, while the right hand side is called the realized characteristic and can be computed

using price changes or returns of a higher frequency. This definition can be extended to not

only cover one-dimensional price processes, but also a tuple (X, v) where v is a so-called

generalized variance of the process X. The latter is defined as vf (s) = Et [f(ST − S0)]

where for f it must hold that limx→0 f(x)/x2 = 1.

B.4 Variance Swap

Variance swaps can be defined in a number of ways. The version commonly used in

practice is based on log returns, i.e. g(sT − s0) = (sT − s0)2. The implied variance can

be replicated using the square contract of the log return as in BKM. While this definition

satisfies the definition of a generalized variance, it does not have the aggregation property,

which means that

EQ
0

[(
log

ST
S0

)2
]

= EQ
0

[
T∑(

log
St
St−1

)2
]

(22)

is not always exact20. As pointed out in Jiang and Tian (2005), this relationship only holds

for fully continuous processes without jumps. Neuberger (2011) and Kozhan et al. (2011)

propose two alternative functional forms, which have both the property of generalized

variance and the aggregation property: gL(s) = 2(es−1−s) and gE(s) = 2(s ·es−es+1).

For instance, for gL(s) = 2(es − 1 − s), it it is easy to see that, even in the presence of

jumps, it holds that

EQ
0

[
gL
(

log

(
ST
S0

))]
= 2EQ

0

[
ST
S0

− 1− log

(
ST
S0

)]
(23)

= 2EQ
0

[
T∑[

St
St−1

− 1− log

(
St
St−1

)]]
(24)

20An alternative approach by Martin (2011) achieves consistency by proposing an alternative definition
of both legs of the variance swap.
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Rewrite the right-hand side of Equation 23 as vL0,T := 2
(
logS0 − EQ

0 [logST ]
)

and call it

the implied variance of a security that pays log ST at time T , or log variance. Using the

spanning approach, the implied log variance can be replicated using weights HL
SS(K) = 2

K2

for the option contracts. This variance measure is identical to the so-called model-free

implied variance (MFIV) used in Britten-Jones and Neuberger (2000) and is used in

this paper as well. The floating leg of the variance swap is different from the common

definition, but in practice the two measures of realized variance are very close. In a similar

fashion, following Neuberger (2011), one can write

EQ
0

[
gE
(

log

(
ST
S0

))]
= 2EQ

0

[
ST
S0

log

(
ST
S0

)
− ST
S0

+ 1

]
(25)

= 2EQ
0

[
ST
S0

logST −
ST
S0

logS0

]
(26)

= 2

[
EQ

0 [ST logST ]

S0

− logS0

]
(27)

and call the last expression vE0,T , the implied variance of the entropy contract paying

ST logST . The replicating weights in this case are HE
SS(K) = 2

S0K
. The log and entropy

variances are used to define the skewness swap below.

B.5 Skewness Swap

Similar to the derivation of a consistent variance swap, Neuberger (2011) and Kozhan

et al. (2011) also propose an analogue measure for the skewness of the log return over the

period [0, T ] using the 2 previously defined measures of variance. Note that

vL0,T = −2EQ
0

[
log

(
ST
S0

)]
(28)

and similarly, one can show that

vE0,T = 2EQ
0

[(
ST
S0

)
log

(
ST
S0

)]
(29)
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Defining gQ(s, vE) = 3vE(es − 1) + 6(ses − 2es + s+ 2), gQ has the aggregation property.

The implied skewness is

MFIS0,T = EQ
t

[
gQ
(
sT − s0, vE(sT − s0)

)]
(30)

= 6EQ
t

[
(
ST
S0

+ 1) log
ST
S0

]
(31)

= 3(vE0,T − vL0,T ) (32)

The option replicating weights are HQ
SS(K) = 2(K−S0)

S0K2 using the spanning approach. Re-

alized skewness over the period [0, T ] can be computed exactly as

T∑
gQ(δs, δvE) =

T∑[
3δvEeδs + 6

(
δs(eδs + 1)− 2(eδs − 1)

)]
(33)

The second term can be shown to approximate cubed returns, i.e. re-writing returns as

eδs − 1 = rδt,

6 (log(1 + rδt)(rδt + 2)− 2rδt) = r3δt +O(r4δt) (34)

This is closely related to the commonly used definition of skewness as the average skewness

of daily returns. As the frequency of realized returns is increased the second term tends

to become smaller and ultimately vanishes as long as the underlying process is reasonably

close to a continuous diffusion process. In this case, and as it turns out in practice, the

first term is far more important. Using slightly different notation, Kozhan et al. (2011)

write implied skewness under the assumption of continuous rebalancing as

MFIS0,T = 3EQ
[∫ T

0

dvEt,T

(
dSt
St

)]
, (35)

which emphasizes the fact that the skewness of the return over a longer horizon equals

the covariation of returns and changes in expected future variance over the period. Using

a Taylor series expansion, it follows that

MFIS0,T = 3(vE0,T − vL0,T ) = EQ [r30,T +O(r40,T )
]

(36)

In practice, computing realized skewness requires that the entropy contract is traded or,

equivalently, that its price can be constructed from a range of options on the underlying.
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Table 1: Sample Overview

Commodity Futures Options Data COT data

First Last #Exp. w/TTM Concentration Net Exposure
Exp. Exp. ≥ 30 ≥ 90 Long Short OHP ACO

Agricultural

Soybean Oil 1989/05 2010/09 152 139 22% 37% -24% -25%
Corn 1989/05 2010/09 180 108 21% 17% -16% -14%
Oats 1990/12 2010/09 84 78 34% 59% -21% -23%
Rough Rice 1992/09 2010/09 105 108 42% 49% 3% -5%
Soybeans 1989/05 2010/09 201 150 19% 23% -2% -5%
Soybean Meal 1989/05 2010/09 186 163 22% 35% -5% -12%
Wheat (CBOT) 1989/05 2010/09 165 107 29% 28% 9% 0%

Energy

Crude Oil (WTI) 1989/04 2010/09 258 248 21% 19% 6% 9%
Heating Oil No. 2 1989/04 2010/09 258 245 24% 25% 1% -10%
Unl. Gasoline 1989/07 2006/12 209 192 32% 27% 7% 3%
Natural Gas 1992/12 2010/09 214 212 18% 26% 6% 1%
RBOB Gasoline 2007/02 2010/09 44 42 22% 23% 3% 1%

Meat

Feeder Cattle 1987/03 2010/08 186 186 33% 20% 21% 35%
Live Cattle 1991/04 2010/08 122 117 31% 24% 32% 38%
Lean Hogs 1997/02 2010/08 104 104 38% 32% 37% 27%
Pork Bellies 1987/02 2008/02 103 79 31% 30% 5% 13%

Metal

Gold (NYMEX) 1989/04 2010/09 244 128 29% 38% 12% 7%
Copper (HG) 1990/03 2010/09 212 194 33% 43% 14% -10%
Silver (NYMEX) 2001/02 2010/09 116 49 26% 51% 18% 1%

Soft

Cocoa 1990/05 2010/09 208 150 39% 42% -16% -15%
Cotton No. 2 1990/05 2010/09 116 112 27% 35% 14% 8%
Orange Juice 1990/05 2010/09 160 143 34% 52% 3% -2%
Coffee C 1990/05 2010/09 209 162 22% 32% -2% -4%
Lumber 1987/09 2010/09 137 117 32% 36% 37% 12%
Sugar No. 11 1990/05 2010/09 221 160 25% 37% 12% 6%

This table lists all U.S.-exchange listed commodities in the sample. The table contains information on
the first and last expiration month available and the number of option series which have sufficient data
allowing the computation of implied and realized measures up to a time to maturity of at least 30 (90)
days. The last 4 columns list the time series averages of four COT variables: the long and short futures
concentration ratios, i.e. the share of total interest held by the largest 8 traders on either side of the
futures market; the short net exposure of hedgers in the options market (delta-weighted and scaled by
hedgers’ total open interest) and the long net exposure of arbitrageurs (delta-weighted and scaled by
arbitrageurs’ total open interest).
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Table 2: Volatility and Variance Risk Premium

Commodity # Implied Realized Variance Premium
Obs. Vol. Vol. avg. t-stat

Equity Market

S&P 500 105 22.0% 18.3% -0.96 [-1.07]
S&P 500 (30 days) 238 19.8% 16.2% -1.11 ***[-2.99]

Agricultural

Soybean Oil 130 25.3% 22.6% -1.23 ***[-3.44]
Corn 107 26.1% 21.7% -2.07 ***[-6.50]
Oats 72 32.9% 29.1% -2.01 ***[-2.80]
Rough Rice 97 28.0% 22.6% -2.92 ***[-7.33]
Soybeans 149 25.3% 21.8% -1.63 ***[-5.21]
Soybean Meal 160 25.4% 23.8% -0.87 *[-1.87]
Wheat (CBOT) 106 26.5% 24.7% -0.86 **[-2.57]

Energy

Crude Oil (WTI) 244 34.3% 31.0% -2.00 **[-2.34]
Heating Oil No. 2 236 33.3% 30.6% -1.88 ***[-3.73]
Unl. Gasoline 184 31.4% 29.6% -1.08 **[-2.58]
Natural Gas 205 47.3% 44.8% -2.16 *[-1.92]
RBOB Gasoline 41 42.3% 37.9% -2.93 [-0.86]

Meat

Feeder Cattle 185 14.4% 11.4% -0.82 ***[-8.20]
Live Cattle 117 15.5% 13.2% -0.73 ***[-5.18]
Lean Hogs 103 25.9% 22.9% -1.35 ***[-2.94]
Pork Bellies 74 39.7% 33.4% -4.47 ***[-6.85]

Metal

Gold (NYMEX) 126 17.9% 14.4% -1.17 ***[-4.49]
Copper (HG) 187 30.1% 26.3% -2.26 ***[-2.73]
Silver (NYMEX) 47 32.5% 29.4% -1.25 [-1.00]

Soft

Cocoa 147 34.2% 29.7% -2.78 ***[-6.54]
Cotton No. 2 110 25.1% 23.9% -0.53 [-1.52]
Orange Juice 138 34.4% 29.1% -3.74 ***[-4.58]
Coffee C 161 40.5% 33.1% -5.14 ***[-4.99]
Lumber 102 30.4% 27.6% -1.76 ***[-3.77]
Sugar No. 11 159 33.5% 30.2% -2.18 ***[-4.00]

This table depicts time series averages of annualized option-implied and realized volatility for the sample
of commodities as well as the S&P 500 Equity Index. Implied volatility is the square root of the MFIV
measures (as in Jiang and Tian, 2005; Britten-Jones and Neuberger, 2000) and realized volatility is the
square root of realized variance (RV), i.e. the sum of daily square returns of the underlying futures
contract. The last two columns show the sample estimates and the Newey-West adjusted t-statistics
of the variance risk premium (VRP), defined as the difference between RV and MFIV (annualized and
multiplied by a factor of 100). All measures are derived from options with a remaining maturity of 90 to
99 days.
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Table 3: Implied vs. Realized Skewness

Commodity # Implied Realized Skewness Premium
Obs. BKM MFIS r3 RSkew avg. t-stat

Equity Market

S&P 500 105 -1.91 -1.24 -0.01 -1.11 0.13 [0.37]
S&P 500 (30 days) 238 -1.93 -0.60 0.00 -0.36 0.25 ***[3.31]

Agricultural

Soybean Oil 130 0.29 0.50 0.01 0.30 -0.20 ***[-3.12]
Corn 107 0.31 0.76 -0.01 0.47 -0.29 ***[-4.59]
Oats 72 0.41 1.30 -0.02 0.30 -1.00 ***[-5.07]
Rough Rice 97 0.18 0.69 0.00 0.42 -0.28 **[-2.21]
Soybeans 149 0.48 0.78 -0.01 0.55 -0.23 ***[-3.27]
Soybean Meal 160 0.28 0.01 -0.01 0.40 0.38 [0.80]
Wheat (CBOT) 106 0.13 0.57 0.00 0.58 0.01 [0.08]

Energy

Crude Oil (WTI) 244 -0.49 -0.32 -0.16 0.02 0.33 [0.89]
Heating Oil No. 2 236 -0.09 0.47 -0.02 0.09 -0.38 ***[-3.55]
Unl. Gasoline 184 -0.17 0.25 -0.05 0.18 -0.07 [-0.49]
Natural Gas 205 -0.05 2.05 0.12 2.99 0.94 *[1.94]
RBOB Gasoline 41 -0.11 0.16 -0.11 -0.76 -0.92 **[-2.14]

Meat

Feeder Cattle 185 -1.73 -0.21 0.00 -0.04 0.18 ***[3.58]
Live Cattle 117 -1.46 -0.23 0.00 -0.05 0.18 ***[3.42]
Lean Hogs 103 -0.95 -0.65 -0.02 -0.28 0.37 ***[3.70]
Pork Bellies 74 -0.47 -1.03 0.00 -0.25 0.78 **[2.38]

Metal

Gold (NYMEX) 126 -0.18 0.30 0.00 0.13 -0.18 ***[-3.29]
Copper (HG) 187 -0.30 -0.11 -0.01 -0.05 0.06 [0.29]
Silver (NYMEX) 47 0.59 1.54 -0.19 0.06 -1.48 ***[-5.64]

Soft

Cocoa 147 0.01 0.52 -0.01 0.28 -0.25 *[-1.82]
Cotton No. 2 110 -0.25 0.14 -0.01 0.02 -0.12 *[-1.85]
Orange Juice 138 0.22 3.17 0.04 0.40 -2.78 *[-1.95]
Coffee C 161 0.61 4.30 0.08 1.83 -2.47 ***[-5.28]
Lumber 102 -0.26 0.05 0.01 0.11 0.06 [1.25]
Sugar No. 11 159 -0.18 0.36 -0.02 -0.01 -0.37 *[-1.94]

This table depicts time series averages of a number of measures of implied and realized skewness: ‘BKM’
skewness is the unit-free, normalized skewness of log returns computed as in Bakshi, Kapadia, and Madan
(2003). ‘MFIS’ is the model-free implied skewness and ‘RSkew’ is the realized skewness, both computed
following Kozhan, Neuberger, and Schneider (2011), ‘r3’ is the part of RSkew that consists of the sum
of cubed returns only. The table further shows the sample estimates and the Newey-West adjusted t-
statistics of the skewness risk premium (SRP), defined as the difference between RSkew and MFIS. All
estimates except BKM skewness are annualized and multiplied by 100. Measures are derived from options
with a remaining maturity of 90 to 99 days.
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Table 4: Demand Pressure and Skewness

Panel A: Implied skewness

HP 0.11
[0.69]

AC 0.06
[0.63]

OHP -0.23 -0.05
**[-2.44] [-0.41]

ACO -0.38 -0.35 -0.47
***[-3.74] **[-2.54] ***[-4.99]

ACO+ -0.57
***[-3.22]

ACO− -0.24
*[-1.77]

ACO2 -0.43
**[-2.55]

R2 12.8% 12.8% 11.6% 12.5% 12.5% 12.7% 13.3%

Panel B: Skewness risk premium

HP -0.11
[-1.00]

AC -0.04
[-0.51]

OHP 0.19 -0.04
***[2.85] [-0.65]

ACO 0.40 0.42 0.45
***[3.59] ***[3.38] ***[3.88]

ACO+ 0.43
***[2.98]

ACO− 0.37
***[3.57]

ACO2 0.24
***[4.24]

R2 2.9% 2.8% 4.5% 5.6% 5.6% 5.6% 5.8%

# comm. 25 25 24 24 24 24 24
# months 257 257 183 183 183 183 183
Total # Obs. 3,563 3,562 2,768 2,771 2,767 2,771 2,771

This table shows the results from a panel regression of implied skewness and the skewness risk premium
on a number of variables related to demand pressure. The dependent variable in Panel A is MFIS1/3,
the signed third root of average implied skewness (as in Neuberger, 2011), based on option quotes with
a remaining maturity of between 90 and 99 days. In panel B, the dependent variable is the difference
between RSkew1/3 and MFIS1/3 averaged over the same range of maturities, where RSkew1/3 is the
signed third root of realized skewness (as in Neuberger, 2011). HP (AC) is the scaled net short (long)
exposure of hedgers (speculators) in futures. OHP (ACO) is the scaled net short (long) exposure of
hedgers (speculators) in options, delta-weighted. ACO+ (ACO−) is ACO conditional on it being positive
(negative). Coefficients from control variables are omitted. Standard errors are clustered by month and
commodity following Thompson (2011).
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Table 5: Trader Concentration and Skewness

Panel A: Implied Skewness

logCRL -0.21 -0.22 -0.21
**[-2.52] **[-2.73] **[-2.37]

logCRS -0.02 0.02 -0.05
[-0.18] [0.23] [-0.45]

logCRL+ -0.17
*[-1.96]

logCRL- -0.28
**[-2.31]

dCRL(3m) -0.36 0.02
[-1.69] [0.05]

dCRS(3m) 0.64 0.70
**[2.40] **[2.43]

R2 11.1% 10.2% 11.2% 11.2% 10.8% 11.7%

Panel B: Skewness Risk Premium

logCRL 0.18 0.18 0.16
***[3.33] ***[3.41] **[2.75]

logCRS 0.08 0.04 0.11
[0.99] [0.57] [1.07]

logCRL+ 0.20
***[2.83]

logCRL- 0.14
[1.28]

dCRL(3m) 0.39 0.10
*[1.73] [0.41]

dCRS(3m) -0.47 -0.61
*[-2.02] *[-1.92]

R2 4.6% 4.1% 4.6% 4.6% 4.4% 4.9%

# comm. 24 24 24 24 24 24
# months 183 183 183 183 183 183
Total # Obs. 2,637 2,631 2,631 2,637 2,626 2,626

This table shows the results from a panel regression of implied skewness and the skewness risk premium on
a number of variables related to the concentration of traders on the long and short side in the underlying
futures market. The dependent variable in Panel A is MFIS1/3, the signed third root of average implied
skewness (as in Neuberger, 2011), based on option quotes with a remaining maturity of between 90 and

99 days. In panel B, the dependent variable is the difference between RSkew1/3 and MFIS1/3 averaged
over the same range of maturities, where RSkew1/3 is the signed third root of realized skewness (as in
Neuberger, 2011). logCRL (logCRS) is the log of the concentration ratio of traders being long (short)
in the futures market. logCRL+ (logCRL-) is logCRL conditional on speculators being net long (short)
in futures. dCRL (dCRS) is the net change in the long (short) concentration ratio relative to 3 months
earlier. Coefficients from control variables are omitted. Standard errors are clustered by month and
commodity following Thompson (2011).
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Table 6: Financial Constraints and Skewness

Panel A: Implied Skewness

ACO -0.39 -0.37 -0.37 -0.39 -0.35 -0.34 -0.36
***[-3.91] ***[-3.51] ***[-3.42] ***[-3.90] ***[-3.35] ***[-3.17] ***[-3.48]

Φ̂ -0.13 -0.13
*[-1.90] *[-1.91]

dΦ̂ -0.11 -0.11
*[-1.96] *[-1.89]

Rel. AG -0.48 -0.46
*[-1.86] *[-1.85]

RVol(3m) -0.01
[-0.02]

X-term w/ ACO -0.01 -0.34 -1.24 -2.04
[-0.10] **[-2.74] **[-2.47] **[-2.37]

R2 12.3% 12.3% 12.2% 12.3% 12.8% 12.5% 11.7%

Panel B: Skewness Risk Premium

ACO 0.40 0.39 0.38 0.40 0.37 0.35 0.40
***[3.67] ***[3.45] ***[3.36] ***[3.68] ***[3.63] ***[3.35] ***[3.68]

Φ̂ 0.10 0.10
**[2.28] **[2.33]

dΦ̂ 0.09 0.08
**[2.42] **[2.29]

Rel. AG 0.45 0.43
**[2.69] **[2.67]

RVol(3m) -0.40
**[-2.58]

X-term w/ ACO 0.04 0.28 1.28 0.99
[0.33] **[2.24] **[2.22] [0.96]

R2 5.1% 5.1% 5.3% 5.1% 5.4% 5.6% 5.0%

# comm. 24 24 24 24 24 24 24
# months 183 183 183 183 183 183 183
Total # Obs. 2,637 2,637 2,637 2,637 2,637 2,637 2,637

This table shows the results from a panel regression of implied skewness and the skewness risk premium on
a number of variables and interaction terms related to the degree of financial constraints of arbitrageurs.
The dependent variable in Panel A is MFIS1/3, the signed third root of average implied skewness (as in
Neuberger, 2011), based on option quotes with a remaining maturity of between 90 and 99 days. In panel

B, the dependent variable is the difference between RSkew1/3 and MFIS1/3 averaged over the same range
of maturities, where RSkew1/3 is the signed third root of realized skewness (as in Neuberger, 2011). ACO
is the scaled, delta-weighted net long exposure of arbitrageurs in options. Φ̂ is the most recent quarterly
value for the effective risk-aversion of broker-dealers as in Etula (2010), dΦ̂ is its year-over-year change.
Rel. AG is the year-over-year asset growth in balance sheets of households relative to that of broker-
dealers as in Acharya et al. (2011). RVol is the realized futures volatility over the last 3 months. X-term
is the interaction term between ACO and the other variable included in the same column. Coefficients
from control variables are omitted. Standard errors are clustered by month and commodity following
Thompson (2011).
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Table 7: Lagged Realized Skewness
Panel A: Implied Skewness

Rskew
1/3
t−m 0.26 0.26 0.24 0.24 0.27

***[4.90] ***[4.80] ***[4.67] ***[4.46] ***[5.13]

Φ̂ -0.12
*[-1.83]

dΦ̂ -0.11
*[-1.97]

Rel. AG -0.46
*[-1.83]

ACt−m -0.03
[-0.34]

X-term w/ Rskew
1/3
t−m 0.13 0.12 0.47 0.09

*[1.93] **[2.47] **[2.51] [0.58]

Rskew
1/3
t−m|(ACt−m > 0) 0.33

***[4.33]

Rskew
1/3
t−m|(ACt−m < 0) 0.20

***[3.53]

R2 11.1% 12.8% 12.8% 12.6% 11.2% 11.5%

Panel B: Skewness Risk Premium

Rskew
1/3
t−m -0.10 -0.10 -0.09 -0.08 -0.12

***[-2.99] ***[-3.10] **[-2.42] **[-2.14] ***[-3.52]

Φ̂ 0.09
**[2.26]

dΦ̂ 0.09
**[2.24]

Rel. AG 0.43
**[2.54]

ACt−m 0.11
[1.25]

X-term w/ Rskew
1/3
t−m -0.05 -0.10 -0.40 -0.25

[-0.68] *[-1.91] [-1.60] *[-1.83]

Rskew
1/3
t−m|(ACt−m > 0) -0.20

***[-3.71]

Rskew
1/3
t−m|(ACt−m < 0) -0.02

[-0.38]

R2 4.6% 5.2% 5.4% 5.5% 5.2% 5.3%

# comm. 24 24 24 24 24 24
# months 183 183 183 183 183 183
Total # Obs. 2,637 2,637 2,637 2,637 2,637 2,637

This table shows the results from a panel regression of implied skewness and the skewness risk premium on lagged realized skewness and

interaction terms related to the degree of financial constraints of arbitrageurs. The dependent variable in Panel A is MFIS1/3, the signed

third root of average implied skewness (as in Neuberger, 2011), based on option quotes with a remaining maturity of between 90 and 99

days. In panel B, the dependent variable is the difference between RSkew1/3 and MFIS1/3 averaged over the same range of maturities, where

RSkew1/3 is the signed third root of realized skewness (as in Neuberger, 2011). Rskew
1/3
t−m is the most recent lagged value of RSkew1/3. The

next three variables are as in the previous table. ACt−m is the mean speculator net exposure in futures during the time that Rskew
1/3
t−m was

measured. X-term is the interaction term between Rskew
1/3
t−m and the other variable included in the same column. The last two variables are

Rskew
1/3
t−m conditioned on the sign of ACt−m. Coefficients from control variables are omitted. Standard errors are clustered by month and

commodity following Thompson (2011).
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Table 8: Financial Constraints and Variance

Panel A: Implied Variance

Conv. Yield(6m) -2.56 -2.49 -1.51 -1.53 -3.43
[-1.67] [-1.56] [-1.04] [-1.07] *[-2.04]

∆OI(6m) -1.10 -1.09 -1.00 -0.91 1.10
[-1.20] [-1.18] [-1.15] [-1.08] [1.58]

Ret(3m) 0.33 0.36 -0.61 -0.80 1.66
[0.14] [0.16] [-0.26] [-0.35] [1.11]

Φ̂ -0.38
[-0.53]

dΦ̂ 2.68
***[4.35]

Rel. AG 11.37
***[4.55]

RVol(3m) 41.88
***[9.12]

R2 0.6% 0.7% 4.5% 5.1% 39.0%

Panel B: Variance Risk Premium

Conv. Yield (6m) 3.06 3.23 2.57 2.61 3.38
***[3.77] ***[4.09] ***[3.08] ***[3.20] ***[3.45]

∆OI(6m) -0.67 -0.65 -0.81 -0.80 -1.49
[-1.51] [-1.50] *[-1.75] *[-1.74] ***[-3.15]

Ret(3m) -2.05 -1.91 -1.55 -1.54 -2.54
*[-1.83] *[-1.75] [-1.41] [-1.39] **[-2.21]

Φ̂ -1.08
*[-1.96]

dΦ̂ -1.48
***[-3.11]

Rel. AG -4.98
**[-2.79]

RVol(3m) -15.60
***[-7.24]

R2 0.9% 1.7% 2.7% 2.2% 8.7%

# comm. 25 25 25 25 25
# months 257 254 242 254 257
Total # Obs. 3,436 3,425 3,360 3,425 3,436

This table shows the results from a panel regression of implied variance and the variance risk premium on
variables related to the degree of financial constraints of arbitrageurs. The dependent variable in Panel
A is MFIV, the average implied variance (as in e.g. Jiang and Tian, 2005), based on option quotes with
a remaining maturity of between 90 and 99 days. In panel B, the dependent variable is the difference
between realized variance RV and MFIV averaged over the same range of maturities. Φ̂ is the most recent
quarterly value for the effective risk-aversion of broker-dealers as in Etula (2010), dΦ̂ is its year-over-year
change. Rel. AG is the year-over-year asset growth in balance sheets of households relative to that of
broker-dealers as in Acharya et al. (2011). RVol is the realized futures volatility over the last 3 months.
Control variables are the convenience yield (implied by 6-month futures rel. to front month), the lagged
growth in open interest and the lagged 3-month return. Standard errors are clustered by month and
commodity following Thompson (2011).
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(a) Exchange-traded commodity derivatives (b) OTC commodity derivatives

Figure 1: Comparison of exchange-traded open interest and OTC notional amounts for
commodity derivatives. The left figure shows the aggregate open interest (in $B) of the 25 exchange-
traded commodities in my sample. The data is derived from the CFTC commmitment of trader (COT)
reports. For each commodity in the sample, the open interest in number of contracts is multiplied by
the price of the Futures front contract and the contract multiplier. The difference between open interest
reported in Futures-only data and the combined report constitutes the open interest in the options market
in delta-weighted Futures equivalents. The right figure shows the aggregate notional amounts outstanding
(in $T) of OTC commodity derivatives excluding Gold, separated into OTC Forwards & Swaps and OTC
Options. The data is taken directly from the ’Semiannual OTC derivatives statistics’ of the Bank of
International Settlements.
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Figure 2: Scatter plots of skewness measures vs. traders’ net options exposure. The X-axis
for the top two figures shows the sample period average of the relative net short exposure of hedgers (as
a proportion of their total open interest) via options (OHP) for each of 25 commodities, while the X-axis
for the bottom figures shows the sample period average of the relative net long exposure of arbitrageurs
(as a proportion of their total open interest) via options (ACO). Against these measures of exposure, the
figures on the left plot the time series average of implied skewness (as defined by Bakshi et al. (2003)),
while the figures on the right plot the (t-statistics of the) skewness risk premium as defined by Kozhan
et al. (2011). Both measures are based on options data with a remaining maturity of 90 to 99 days.
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