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Abstract

We model the impact of supply and demand on risk premiums in electricity futures,

using daily data for 2003-2014. The model provides a satisfactory fit and allows for

unspanned economic risk not embedded in the futures price. The spot risk premium

and forward bias implied by the model are on average large and negative but highly

time-varying. Risk premiums display strong seasonal patterns, are related to the

variance and skewness of the electricity spot price, and help predict future returns.

The risk premium associated with supply constitutes the largest component of the total

risk premium embedded in electricity futures.
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1 Introduction

The modeling of electricity prices and risk premiums in electricity markets is a long-

standing research question, but the existing literature is relatively limited. Existing studies

(Pirrong and Jermakyan (2008); Cartea and Villaplana (2008)) provide empirical evidence

that risk premia depend on demand and supply variables. Another strand of the literature,

commencing with Lucia and Schwartz (2002), applies no-arbitrage techniques in models

with latent variables to price electricity futures. This approach explicitly distinguishes be-

tween the physical and risk-neutral model dynamics, and therefore allows for the estimation

of risk premia. Heretofore, these literatures have developed independently.

This paper contributes to the understanding of the pricing of electricity derivatives,

and hence of electricity risk premia, by integrating these two approaches. Specifically,

we estimate a no-arbitrage model that provides a good fit to electricity futures prices,

while also quantifying the impact of supply and demand variables on these prices. The

model also allows for unspanned economic risk, which is risk captured by supply and

demand variables but not identified by the futures prices. We use this model to estimate risk

premiums embedded in electricity futures and study their characteristics and implications.

The model allows a decomposition of risk premiums into several components, including the

components due to supply and demand variables. Our empirical analysis reveals several

new findings.

We first document that economic variables contain useful information about the risk

premiums in electricity futures. After controlling for the information in the electricity

futures curve, economic variables such as the natural gas price, load, and temperature

have incremental forecasting power for future spot rates and returns on electricity futures.

Second, while the supply and demand variables contain additional information on electricity

risk premiums, the principal components of the futures curve summarize the majority of

the information on futures prices. Specifically, we show that a model based on the first
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two principal components of the futures curve provides a good fit of the entire electricity

futures curve.

Third, the estimated spot risk premium in the unspanned model is negative and very

large. It is on average -0.84 percent per day, but it is highly time-varying and exhibits very

large negative and positive outliers. For instance, during the 2014 polar vortex the spot

risk premium for the unspanned model fluctuates between -50 percent and 170 percent

per day.

Fourth, the spot risk premium implied by the model displays strong seasonal patterns.

It is much larger (more negative) in the peak demand seasons of winter and summer. The

spot risk premium is positively correlated with the volatility of the spot price and negatively

correlated with the skewness of the spot price, consistent with the model of Bessembinder

and Lemmon (2002). These results are consistent with the insight of Pirrong and Jermakyan

(2008) that electricity futures prices incorporate a premium to compensate for the risk of

price spikes that are more likely during peak demand periods, or when costs spike due to

fuel price shocks.

Fifth, we find that unspanned economic risk associated with supply is the most important

component of the spot risk premium on electricity futures. The estimated spot risk premium

in the unspanned model is very different from the one implied by the spanned model and

it provides better forecasts of future spot prices and returns on electricity futures compared

to the risk premium of models that ignore this unspanned risk.

Sixth, the forward bias is also negative on average, implying that forward prices exceed

expected spot prices. The average forward bias ranges from -$4 for the one-month maturity

to -$7 for the twelve-month maturity, and is highly time-varying regardless of the maturity

of the contract, but with larger fluctuations and outliers for shorter-maturity forwards. For

instance, the day-ahead forward bias reaches a maximum of $340 and a minimum of -$80

during the polar vortex period. For longer maturities, the forward bias is much larger than

the sample average for an extended period between 2006 and mid-2008.
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What is the economic meaning of the large risk premia we find in these markets? The

most likely explanation is that the risk premia are caused by barriers to the entry of risk

bearing capital into these markets (Hirshleifer (1988); Bessembinder and Lemmon (2002)).

The finding that the spot premium depends on the variance and skewness of the spot price,

as predicted by the model of Bessembinder and Lemmon, is also consistent with such

restrictions. This may also suggest that electricity markets are not fully integrated with the

broader financial markets.

This paper is related to several strands of literature. An important literature uses

reduced-form no-arbitrage models with latent variables to price electricity futures (see, for

example, Lucia and Schwartz (2002); Cartea and Figueroa (2005); Deng and Oren (2006);

Geman and Roncoroni (2006); Benth, Cartea, and Kiesel (2008); and Geman (2009)). Our

proposed model nests this class of models but augments them with economic supply and

demand variables. We find that the economic variables are important in explaining the risk

premium associated with the electricity futures.

Another literature uses a more structural approach to price electricity futures. These

papers use a bottom-up approach by first specifying the dynamics for supply and demand

variables and then derive the spot price as a function of those variables. This approach

is more intuitively appealing because it exploits the information contained in supply and

demand variables suggested by economic theory (see, for example, Pirrong and Jermakyan

(2008); Cartea and Villaplana (2008); and Pirrong (2011)). We show that while this

approach is economically appealing and while the economic variables are important for

explaining the risk premium, latent factors significantly improve model fit. We also demon-

strate that it is critical to model the the supply and demand variables as unspanned.

Because our model contains supply and demand variables, it is also related to the

literature which develops equilibrium models to study the determinants of the risk premium

of electricity futures (Bessembinder and Lemmon (2002); Longstaff and Wang (2004);

Dong and Liu (2007); Douglas and Popova (2008); Bunn and Chen (2013)). Finally,

several related papers emphasize the importance of economic variables for modeling the
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risk premium of commodity futures (see, for example, Khan, Khokher, and Simin (2016);

and Heath (2016)).

The remainder of the paper proceeds as follows. Section 2 describes the data and

provides a discussion of the economics of electricity markets. Section 3 outlines the model

specification and estimation. Section 4 discusses the estimation results and Section 5

discusses the model’s implications for risk premiums. Section 6 concludes.

2 Electricity Markets

We estimate the model using electricity data for the PJM (Pennsylvania-New Jersey-

Maryland) Western Hub market. We now discuss the institutional features of the PJM

market, the electricity futures prices and returns we use in the empirical analysis, and the

economic demand and supply variables used to explain these prices.

PJM is a “Regional Transmission Organization" that operates centralized day-ahead and

real time markets for electricity. Operators of generation assets submit offers to the RTO

that indicate the amount of power they are willing to generate as a function of price the

day prior to the operating day. Consumers of electricity (“load") submit bids to purchase

electricity, where bids can vary by time of day. The RTO aggregates the generation offers to

construct a supply curve, and uses the bids to construct a demand curve. For each hour of

the operating day, the RTO sets the day-ahead forward price equal to that which clears the

market, i.e., sets quantity supplied equal to quantity demanded.

In reality, things are somewhat more complicated due to the fact that production

and consumption of electricity are spatially dispersed, and there can be rather complex

constraints on transmitting power over distance to move from generators to load. Based on

the generation offers and load bids, the PJM RTO solves a constrained optimization program

that maximizes the sum of consumer and producer surpluses, subject to the transmission

constraints. The RTO sets the day-ahead forward prices for each transmission constraint

5



location in the network equal to the shadow prices associated with that constraint produced

by the solution to this optimization problem.

In real time, electricity demand can vary randomly, and differ from the amount forecast

the day before, which is represented by the bids. Operation in real time requires exact

balancing of generation and load, and must respect transmission constraints. As load

varies over time and across the PJM region, the RTO dispatches generation to ensure the

system remains in balance. To optimize dispatch, the RTO solves the surplus maximization

constrained optimization problem, and sets market clearing spot price equal to the relevant

shadow price in this optimization problem.

In addition to the day-ahead and real-time markets for physical energy, there are

derivatives markets on PJM electricity. In particular, there are cash-settled futures contracts

on PJM electricity. One such contract is the Peak PJM Western Hub Real Time contract.

This contract has a payoff based on the arithmetic average of the PJM Western Hub market

clearing real time price for each peak hour (8AM-11PM) of the contract calendar month.

The notional quantity in this contract is 2.5 megawatts (MW). This contract is traded on

the CME.

In our empirical analysis, we use the average real-time peak hour spot and day-ahead

average peak hour prices in the PJM Western Hub market, and the prices of PJM Western

Hub real-time peak calendar-month 2.5 MW futures. The real-time and day-ahead price

are downloaded from the PJM website.1 We model the day-ahead price as a short-term

futures contract which matures in one day. Data on the PJM Western Hub real-time peak

calendar-month 2.5 MW futures contracts are obtained from the CME. We include futures

contracts with maturities of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 months. The data

frequency is daily. Each day, the sample therefore consists of thirteen futures prices. The

sample period is from May 1, 2003 to May 30, 2014.

1See https://dataminer.pjm.com/dataminerui/pages/public/lmp.jsf.
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PJM futures markets are quite liquid. Total open interest for PJM futures contracts as

of the end of our sample period was 8,358,662 contracts, on three different exchanges, of

which 76 percent was held by long commercials and 83 percent by short commercials.

The challenges in modeling these markets are apparent from Figure 1 and Table 1.

Panel A of Figure 1 plots the time series of the daily spot prices. Panel A of Table 1 indicates

that the average spot price over the sample is $58.16, but the fluctuations around this

mean are enormous, with a minimum price of $21.21 and a maximum price of $757.42

over the sample period. The first row of Panel B of Table 1 reports descriptive statistics

for log returns. The standard deviation of the daily log return is 30 percent, close to the

34 percent reported by Bessembinder and Lemmon (2002) for percentage returns in the

1997-2000 sample period. For comparison, the standard deviation for daily log returns on

the S&P500 over our sample is half a percent.

Panel A of Table 1 indicates that for futures with a maturity of more than one month,

the futures price on average exceeds the spot price. The price of the twelve-month futures

contract is $61.24 on average, or on average $3.08 higher than the spot price. The

differences in higher moments are larger. Compare the time series of the daily twelve-

month futures price in Panel B of Figure 1 with the spot price in Panel A. The future price

also fluctuates considerably, but these fluctuations are much smaller, resulting in a smaller

standard deviation. An even more important difference is in the fourth moment. The much

lower kurtosis of the twelve-month contract is clearly visible in Figure 1. The spot price in

Panel A is very jagged and the futures price in Panel B is much smoother.

The spot price in Panel A of Figure 1 is characterized by very sharp spikes, with a

maximum of $757.42 during the time of the polar vortex, and other large spikes in 2005,

2006, and 2008. In contrast, the maximum value of the twelve-month futures contract is

$138.39, which occurs in 2008. The maximums for the spot and twelve-month futures

prices therefore occur at different times. Panel C of Figure 1 plots the difference between

the spot price and the twelve-month futures price. We report monthly averages in Panel

C, because for daily differences the extreme observations completely dominate the figure,
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and as a result it is not informative. As indicated in Table 1, the difference is negative on

average, but Panel C indicates that it is also often positive. Similar observations apply to

the other futures contracts.

Panel A of Table 1 presents descriptive statistics on prices, but when we report on

risk premiums we are effectively using (log) returns. Panel B of Table 1 therefore reports

descriptive statistics for the relevant log returns, which have very different statistical

properties. We report on the log return on the spot contract, the log return on the day-

ahead contract, and the natural logarithm of the ratio of the spot price at t+1 and the

day-ahead contract at t. Note that in our sample, the electricity spot price at the end of

the sample is lower than at the start of the sample, which gives a negative average log

spot return. The most important observation is that the spot price as well as the day-ahead

price are characterized by large positive kurtosis, but for the log returns the kurtosis is

much smaller. Also, instead of the large positive skewness in prices, the skewness in returns

is small. These results are partly due to the difference between returns and prices, and

partly due to the use of log returns, because the logarithms effectively reduce the impact of

outliers.

Seasonalities are extremely important in electricity markets. We follow the existing

literature and de-seasonalize the electricity prices as well as the economic variables. The

de-seasonalization method is discussed in Section 3 below. Panels A-D of Figure 2 plot the

raw price, the seasonal component, and the de-seasonalized price for the spot price, the

day-ahead contract and the 6-month and 12-month futures contracts. In order to better

highlight the seasonalities we plot monthly averages rather than daily prices, which contain

much high-frequency variation that is irrelevant for illustrating seasonalities. The seasonal

patterns in the price data are readily evident from Figure 2.

The economic data include demand and supply variables. Following Pirrong and

Jermakyan (2008), we use the natural gas price (PX) as the supply variable. We utilize

the price of natural gas as the supply variable because gas-fired generating units usually

produce the marginal megawatt, and hence the price of gas is a primary determinant of
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the marginal cost of production, given that capacity is fixed in the short run. We obtain

daily spot natural gas middle prices for Columbia Gas and Texas Eastern Pipeline zone

M-3 from Bloomberg. The demand variable is either a load or a temperature variable. For

load, we obtain both the daily average and the maximum load for the PJM Western Hub

market from the PJM website.2 The temperature data is from the National Climatic Data

Center (NCDC). We first get the daily average, maximum, and minimum temperature for

Washington, D.C. and Pittsburgh. Then we calculate the average temperature of the two

cities and use it as a temperature proxy for the PJM Western Hub market. We also compute

the cooling degree days (CDD) and heating degree days (HDD) according to the weather

derivatives literature (see for example Alaton, Djehiche, and Stillberger (2002) and Jewson

and Brix (2005)).3 Table 2 reports summary statistics for the supply and demand variables.

Figure 3 plots the time series of the natural gas price, the maximum load, and the CDD.

We plot the raw as well as the de-seasonalized series. Again the seasonal patterns in the

economic data are readily evident from Figure 3.

In the model, we always use one supply variable and one demand variable. By com-

bining the single supply variable with the seven different demand variables (average load,

maximum load, maximum temperature, minimum temperature, average temperature, CDD,

and HDD), we obtain seven different combinations of supply and demand variables. Em-

pirical results for these seven models are very similar. In the empirical section below, we

report on the model with the natural gas price and CDD as the benchmark model. When

there are no space constraints, we report on two models: the first one uses the natural gas

price and CDD and the second one uses the natural gas price and maximum load. Other

results for the natural gas price and maximum load are relegated to the Online Appendix,

and the Online Appendix also reports some summary results for the other five demand

variables. Note that we choose a temperature variable as our benchmark demand variable

instead of load because the time series for maximum load contains a structural break in
2See http://www.pjm.com/markets-and-operations/ops-analysis/.
3CDD is defined as max(Average Temperature - 18, 0). HDD is defined as max(18 - Average Temperature,

0). Note that we use 18 as the reference temperature because the temperature is expressed in degrees Celsius.
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2004, which is due to a geographical enlargement of the PJM market. In spite of this, the

empirical results are similar when we use the load variable instead of the temperature

variable.

It is instructive to compare the patterns in the spot and futures data in Figure 2 with

those in the economic variables in Figure 3. For the supply variable in Panel A of Figure 3,

the natural gas price, it can be clearly seen that the spike in the natural gas price at the

start of 2014 is accompanied by a large spike in the spot and day-ahead prices, but a much

smaller increase in the twelve-month futures price. On the other hand, increases in the

natural gas price in 2005 and 2008 are accompanied by increases in spot as well as futures

prices in Figure 2. It is less obvious to detect relations between the demand variables,

load and temperature, and the price data, partly because the raw data contain such strong

seasonalities. Both for the load variable in Panel B and the CDD variable in Panel C, the

deseasonalized data contain small spikes in 2011 and 2012, but these are not accompanied

by large price increases in Figure 2.

3 Models For Electricity Futures

This section presents three different models of electricity futures prices. We first outline

a general affine framework which nests these three models. We then discuss the unspanned

model, the spanned model with latent variables, and the spanned model with economic

variables.

3.1 A Class of Affine Models

We outline a class of affine models, which nests the models that we investigate in our

empirical work. Suppose that there are N state variables that fully determine the state

of the electricity market. These variables can be latent variables or economic (demand

and supply) variables. Generally denote this vector of state variables by X . We assume
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X follows a Gaussian VAR under the P measure, where the P-dynamic of X is denoted as

follows:

X t+1 = SeasX ,t+1 + K P
0 + K P

1 × X t +Σ
P × εP

t+1 (1)

where X t is the state vector at time t, SeasX ,t is an N by 1 vector denoting the seasonal

component of the state variables, K P
0 is an N by 1 vector, K P

1 is an N by N matrix, ΣP is an N

by N upper triangular matrix, and εP
t is an N by 1 vector of independent Brownian motions.

The stochastic discount factor (SDF) is assumed to be of the following form:

SDFt+1 = e(Λ0+Λ1×X t )′×εt+1 (2)

where Λ0 is an N by 1 vector and Λ1 is an N by N matrix.

Given these assumptions, we have the following dynamic of the state variables under

the risk-neutral measure Q:

X t+1 = SeasX ,t+1 + KQ
0 + KQ

1 × X t +Σ
Q × εQ

t+1 (3)

where KQ
0 is an N by 1 vector, KQ

1 is an N by N matrix, ΣQ is the upper left N by N matrix

of ΣP , and εQ
t is an NQ by 1 vector of independent Brownian motions.

As in the log price model in Lucia and Schwartz (2002), we assume that the natural

logarithm of the electricity spot price is a linear function of the state variables. Denoting

the natural logarithm of the spot price St at time t as st , this gives:

st = Seass,t +ρ0 +ρ1 × X t (4)

where ρ0 is a scalar, ρ1 is an 1 by N matrix, and Seass,t is a scalar denoting the seasonal

component of the log spot rate. This seasonal component is a scaled version of the seasonal

component of the state vector.
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Based on equation (4), futures prices can be derived recursively. Denoting the log price

of the futures contract with maturity j at time t as f j
t , we can show that f j

t is given by

f j
t = Seas f ,t+ j + A j + B j × X t (5)

where Seas f ,t+ j denotes the seasonal component of the forward contract with maturity t+ j

and

A j = A j−1 + B j−1KQ
0 +

1
2

B j−1Σ
QΣ′QB′j−1 (6)

B j = B j−1(INQ + KQ
1 ) (7)

A0 = ρ0 and B0 = ρ1 (8)

3.2 The Unspanned Model

We now assume that there are N S state variables that fully determine the price of the

electricity futures. Denote the vector of those state variables as X S. The unspanned model

assumes that the information in the futures price can only span part of the information in

the economy. Denote the part that cannot be explained, or the unspanned part, by USt ,

and rewrite X t as follows.

X t =





X S
t

USt



 (9)

where X S
t ∪USt = X t and X S

t ∩USt = ∅. Substituting equation (9) into equation (1), we

get the P-dynamic of the unspanned model.





X S
t+1

USt+1



 = SeasX ,t+1 + K P
0 + K P

1 ×





X S
t

USt



+ΣP × εP
t+1 (10)

In these models, the variables can be rotated, which means that we can re-define an

equivalent model that is written in terms of different variables. In our empirical work, we
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rotate the unspanned part of economic variables to the economic variables ECt themselves

in order to provide a more intuitive interpretation of the estimated coefficients. We therefore

estimate the following version of the unspanned model:

X t =





X S
t

ECt



 (11)





X S
t+1

ECt+1



 = SeasX ,t+1 + K P
0 + K P

1 ×





X S
t

ECt



+ΣP × εP
t+1 (12)

X S
t+1 = SeasX S ,t+1 + KQ

0 + KQ
1 × X S

t +Σ
Q × εQ

t+1 (13)

SDFt+1 = e(Λ0+Λ1×X t )′×εt+1 (14)

st = Seass,t +ρ0 +ρ1 × X S
t (15)

Joslin, Priebsch, and Singleton (2014) show that under certain assumptions, one can use

principal components (PCs) of the futures data to estimate the unspanned model. Moreover,

they show that it is possible to obtain consistent estimates of the P- and Q-parameters by

breaking up the estimation problem in two parts. We follow Joslin, Priebsch, and Singleton

(2014) and use the PCs of the electricity futures prices as the state variables under the

risk neutral measure Q. We augment the PCs with economic variables to get the state

vector under the physical measure P. Because the PCs and the economic variables are both

observed, we can use a vector autoregressive approach to estimate the physical dynamic

given in equation (12). Subsequently, we estimate the Q parameters in equation (13) by

minimizing the root mean squared error based on the difference between observed futures

prices and model prices.
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3.3 The Spanned Model with Latent Factors

To highlight the importance of the unspanned relation between the demand and supply

variables and the latent variables, we consider two alternative models which remove

the unspanned economic component. The first model removes the unspanned economic

component by dropping the economic variables. We refer to this model as the spanned

model with latent factors. In this model with latent factors, the state variables under both

the P- and Q-dynamics are equal to X S. The dynamics for this model are:

X S
t+1 = SeasX S ,t+1 + K P

0 + K P
1 × X S

t +Σ
P × εP

t+1 (16)

X S
t+1 = SeasX S ,t+1 + KQ

0 + KQ
1 × X S

t +Σ
Q × εQ

t+1 (17)

SDFt+1 = e(Λ0+Λ1×X S
t )
′×εt+1 (18)

st = Seass,t +ρ0 +ρ1 × X S
t (19)

This model belongs to a class of reduced-form models that only use latent factors to

price futures. In this class of models, Lucia and Schwartz (2002) propose two models that

are based on the log power price. Either of these models can be seen as a special case of

the model in this section. To benchmark the performance of our models, we therefore also

estimate the two-factor model of Lucia and Schwartz (2002). Details on the specification

and estimation of this model are given in the Appendix.

We estimate the spanned model with latent factors using a method very similar to the

one used for the unspanned model. First, use the PCs of the futures curve to estimate the

P-parameters in equation (16) using a vector autoregressive approach. Subsequently the Q

parameters in equation (17) are estimated by minimizing the root mean squared error.
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3.4 The Spanned Model with Economic Variables

Another special case of the unspanned model is a model without latent variables. In this

case, the state variables under the physical measure only consist of economic variables.4

The same economic variables are also the state variables under the risk-neutral measure Q

and thus fully determine the prices of electricity futures. The futures prices fully span the

economy, and conversely the economic variables are fully spanned by the electricity futures.

We refer to this model as the spanned model with economic variables. The resulting model

is related to the framework of Pirrong and Jermakyan (2008) and Pirrong (2011), who

exclusively use demand and supply variables to price electricity futures. In summary, this

model is given by:

ECt+1 = SeasEC ,t+1 + K P
0 + K P

1 × ECt +Σ
P × εP

t+1 (20)

ECt+1 = SeasEC ,t+1 + KQ
0 + KQ

1 × ECt +Σ
Q × εQ

t+1 (21)

SDFt+1 = e(Λ0+Λ1×ECt )′×εt+1 (22)

st = Seass,t +ρ0 +ρ1 × ECt (23)

The economic variables are observed and thus we can estimate the P dynamic in

equation (20) using a vector autoregressive approach. Then, we use the economic variables

as the state variables under Q and we estimate the Q dynamic in equation (21) by minimizing

the dollar root mean squared errors.

4Strictly speaking, it is incorrect to refer to this model as being nested by the unspanned model. In the
unspanned model, the state variables under P consist of the unspanned part of the economic variables, whereas
in a spanned model with economic variables, the state variables are the economic variables themselves. We
can refer to the unspanned part of the economic variables as the economic variables due to the rotation.
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3.5 Modeling the Seasonal Component

We specify the seasonal component of the log of the electricity spot price and the

economic variables following Lucia and Schwartz (2002). For instance, for the log spot

rate:

Seass,t = β1 ×M1(t) + β2 ×M2(t) + ...+ β12 ×M12(t) (24)

where Mi(t), i = 1, 2, ..., 12 are monthly dummies. For example, M1(t) is defined as follows.

M1(t) =







1, if t is in January

0, otherwise
(25)

The other Mi(t), i = 2, 3, ..., 12 are defined similarly.

Following Lucia and Schwartz (2002), we first use OLS to estimate the following

regression to get the seasonal component of both the log spot price and the economic

variables.
st = β1 + β2 ×M2(t) + β3 ×M3(t) + ...+ β12 ×M12(t) + εt

ECt = γ1 + γ2 ×M2(t) + γ3 ×M3(t) + ...+ γ12 ×M12(t) + εt

(26)

Then we de-seasonalize the log spot price and the economic variables and obtain the

corresponding de-seasonalized series.

De-Seasonalized st = st − (β̂1 + β̂2 ×M2(t) + ...+ β̂12 ×M12(t))

De-Seasonalized ECt = ECt − (γ̂1 + γ̂2 ×M2(t) + ...+ γ̂12 ×M12(t))
(27)

The de-seasonalized log futures prices are obtained by adjusting the raw log futures

prices with the value of the seasonal component of the spot rate in the month when the

futures mature. The definition of de-seasonalized futures price is thus as follows.

De-Seasonalized f j
t = f j

t − (β̂1 + β̂2 ×M2(t + j) + ...+ β̂12 ×M12(t + j)) (28)

16



We use the de-seasonalized series in equations (27) and (28) to estimate the model

parameters.

This de-seasonalization approach deserves some comment. Theory suggests that the risk

premiums in futures prices, and hence futures prices themselves, depend on the likelihood

and magnitude of price spikes (Bessembinder and Lemmon (2002); Pirrong and Jermakyan

(2008)). Furthermore, the likelihood of price spikes is seasonal because spikes are more

likely to occur when capacity utilization is high, which is most likely during seasonal

demand peaks that occur in the summer and winter in the United States. Thus, risk premia

are likely to be seasonal.

Deseasonalizing futures prices themselves using standard techniques would make it

impossible to detect any such seasonality in risk premia. The approach we implement

quantifies the seasonality in the expectation of the spot price under the physical measure,

and by removing this seasonal component we can identify seasonalities in the risk premium.

4 Model Estimates

We first establish that electricity futures prices can be adequately summarized by their

first two principal components (PCs). Then we show that the demand and supply variables

contain additional information beyond the PCs, suggesting that they are unspanned by the

electricity futures. We then estimate the model, discuss the fit and economic implications of

the unspanned model, and compare it with other models. We also discuss the implications

of the spanning assumption.
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4.1 The Information in the Principal Components and the Economic

Variables

We investigate if the supply and demand variables are spanned by the electricity futures.

To this end we first need to parsimoniously represent the information in the electricity

futures. We use principal component analysis to analyze the electricity futures curve.

Figure 4 shows the loadings of the first two principal components (PCs) and the fraction of

total variance explained by each PC. The first two PCs explain more than 92% of the total

variation of the price of electricity futures. We therefore conclude that most information in

the electricity futures curve can be adequately summarized by the first two PCs.

The interpretation of these two PCs is similar to that of yield curve PCs. The loading on

the first PC is virtually identical for all maturities from one day to 12 months as well as the

spot, meaning that this first component affects the prices of all maturities similarly, and

therefore causes parallel shifts in the forward curve; this is a level effect. The loading of

PC2 is large and positive for short maturities, and negative and relatively small (in absolute

value) for longer maturities. Thus, this PC basically drives the slope of the forward curve.

The time series of PC1 is therefore very similar to Panel B of Figure 1. The time series

of PC2 is highly correlated with Panel C of Figure 1, but note that Panel C of Figure 1

reports monthly averages. The time series of PC2 therefore contains much more short-term

variation.

We next verify if the PCs can span the supply and demand variables. We run the

following regression:

ECt = γ0 + γpcPC1−5
t + unECt (29)

Equation (29) projects the demand and supply variables on the first five PCs of the

electricity futures curve. If the economic variable is spanned, we expect a high explanatory

power of PCs for the demand and supply variables, and therefore a high adjusted R2.
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Panel A of Table 3 reports the regression results for the natural gas price (PX), the

maximum load, and the temperature. The adjusted R2 is approximately 44% for PX, 11%

for maximum load, and 29% for CDD. Thus, the first five PCs at most explain half of the

variation of the economic variables. Note that this is not due to the fact that the PCs do a

poor job of summarizing the information in the electricity futures; instead the explanation

is that the demand and supply variables contain additional information.

The residuals from the regression, unEC, represent the unspanned component of the

economic variables. We now proceed to show that they are important factors that affect

the risk premium in electricity futures, rather than random noises. To determine if the

unspanned component of the demand and supply variables (unEC) affects the risk premium

in electricity futures, we use the unspanned component to forecast changes in the first two

PCs. The regression is specified as follows:

∆PC1−2
t→t+1 = Const.+ βpcPC1−5

t + βunECunECt + εt (30)

If the unspanned components are unspanned by the electricity futures, the loading on

unEC in this forecasting regression should be statistically significant and the adjusted R2

should increase when adding the unspanned components to the regression.

The results in Panel B of Table 3 indicate that this is indeed the case. The loading on the

unspanned component of the natural gas price (unPX) and the maximum load (unMax Load)

are significant and positive for both PC1 and PC2, suggesting that the unspanned components

of the economic variables impact the future realized changes in the PCs. Moreover, after

including the unspanned components, the adjusted R2 substantially increase. Higher

adjusted R2s mean that the unspanned components of the demand and supply variables

contain useful information about future changes in electricity prices, which provides strong

support for the hypothesis that the demand and supply variables are unspanned by the

electricity futures.
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4.2 The Dynamics of the Unspanned Model

Now that we have established that the demand and supply variables are unspanned

by the electricity futures, we proceed to estimate the physical (P) and risk neutral (Q)

dynamics of the unspanned model.

Panel A of Table 4 reports the risk-neutral model estimates. The upper left entry of the

KQ
1 matrix is very close to one and highly statistically significant. This parameter captures

the persistence of the model implied spot price under the risk neutral measure. The spot

price is close to a unit root process under this measure. This of course reflects not only the

dynamic of the spot price under the physical measure, but also the risk premium.

The loading of PC1 on PC2 is negative and statistically significant. A larger PC2 indicates

a flatter slope, thus the negative sign indicates that the level of the electricity price will

decrease when the slope flattens. The bottom left entry of KQ
1 is insignificant, indicating

that the level of the futures curve does not predict its slope. Finally, the bottom right entry

of KQ
1 indicates that the futures slope is mean reverting.

Panel B of Table 4 reports the estimated P dynamic of the unspanned model. Not

surprisingly, the first PC, which captures the level of the futures prices, is much more

persistent than the second PC, which captures the slope. Nevertheless, the loading of PC1
t+1

on PC1
t is 0.96, which is not very high given that the data are daily and we are investigating

the pricing implications of this factor one month or one year ahead. The supply and demand

variables are stationary: indeed, temperature and load are rapidly mean reverting. This

means that shocks to the supply and demand variables do not persist, and have a bigger

impact in the short term than over longer horizons. Put differently, shocks to the supply

and demand variables may be informative about short-term movements in prices, but have

little information about longer term movements.

The estimates in Panel B of Table 4 also capture the interaction between the electricity

prices and the demand and supply variables under the physical measure. The estimates

reflect that natural gas is the marginal fuel for electricity production, and consequently
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the natural gas price is closely tied to electricity prices. The loading of the level of the

electricity price PC1 on PXt is positive and highly statistically significant. The positive sign

reflects the economic relation between production cost and electricity price.

The natural gas price not only affects the spot price but also the slope of the electricity

futures curve, as the loading of PC2
t+1 on PXt is also positive and significant. A smaller PC2

indicates a steeper futures slope, so a higher natural gas price predicts a flatter slope. This

reflects that the natural gas price mainly affects the short-term electricity price.

The model also indicates that the electricity price affects the natural gas price. The

loadings of PXt+1 on PC1
t are positive and significant. These positive signs indicate that

higher electricity spot prices lead to higher natural gas prices. The high electricity price

might result from high demand for electricity, which in turn leads to a higher usage of

natural gas and thus higher prices.

Temperature is a proxy for electricity demand. The results in Table 4 are therefore

consistent with economic intuition. First, CDD positively affects the PC1. This reflects the

fact that higher temperature generally leads to higher electricity demand. Second, because

a higher PC2
t+1 implies a flatter futures curve, the positive impact of CDD on PC2

t+1 implies

that CDD negatively affects the slope of the futures curve. Third, we find that temperature

is autoregressive but that none of the variables (except for the PC2) can predict temperature.

This is consistent with the fact that changes in temperature are very difficult to predict.

4.3 Model Fit

Table 5 reports the fit of the unspanned model and compares its performance with that

of the spanned model with economic variables. We also compare the model’s fit with the

two-factor log price model of Lucia and Schwartz (2002), which is a benchmark model in

the literature. We do not report on the fit of the spanned model, because by definition it is

identical to the fit of the unspanned model. For each of these three models, Table 5 reports

the root mean squared error (RMSE) and the relative root mean squared error (RRMSE)
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for the spot and each futures contract, as well as the overall RMSE and RRMSE. Figure 5

graphically illustrates the fit of the unspanned model for the spot, the day-ahead price, the

6-month futures contract, and the 12-month futures contract.

The unspanned model has the smallest RMSE and RRMSE among the three models.

The overall RMSE (RRMSE) is 5.57 (0.0649) for the unspanned model, compared to 52.83

(0.7487) for the spanned model and 6.10 (0.0800) for the Lucia and Schwartz model. The

poor fit of the spanned model with economic variables is not surprising: the spanning

assumption forces all the information in the economic variables to enter the futures prices,

which results in a poor fit. The main objective of a model with economic variables only

is not to provide the best possible fit, but rather to provide the best possible economic

intuition. The Lucia and Schwartz model overall results in a good fit, but it is outperformed

by the unspanned model.5 This is also not surprising: the Lucia and Schwartz model

imposes constraints on the dynamics of the state variables, while the unspanned model

does not impose such constraints.

5 Analyzing Risk Premiums

The main conclusion from Table 5 is that the unspanned model provides a good fit for

the futures price. It must be emphasized that this fit is identical to the fit of the spanned

model. The difference between the two modeling approaches emerges when studying risk

premiums. This highlights the fact that the demand and supply variables contain additional

information that is relevant for the futures prices under the physical measure, and hence

the risk premiums. It is important to separate this information, and it is to this task that

we now turn. We first discuss the estimates and properties of the spot premium. We then

discuss the forward bias.
5To benchmark the models’ performance, note that Lucia and Schwartz (2002) report a RRMSE of more

than 0.10 for this model. The fit in our application is somewhat better, presumably due to the use of a
different and longer sample period.
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5.1 The Spot Premium in the Unspanned Model

We analyze the spot premium implied by the unspanned model and compare it with spot

premiums implied by alternative models. The spot premium measures the compensation

required by investors for investing in electricity futures. It is defined as the expectation under

the physical measure of the difference between the log spot price and the log day-ahead

price.

Spot Premiumt = EP
t [Log(St+1)− Log(FDA

t )] (31)

Table 6 reports the average spot premium for the unspanned model. We report results

for the entire sample period as well as by season. The average estimated spot premium is

approximately -0.84 percent per day. It is negative on average in every season, but it is

larger (more negative) in the winter and the summer. This is consistent with the intuition

that there is a greater risk of power price spikes in the peak seasons (summer and winter).

Those who are short power (i.e., distribution companies that must buy power at the market

price to sell to customers at fixed rates) are at risk to these price spikes, which can impose

large losses on them. Risk averse physical shorts can hedge these risks by purchasing

futures, thereby creating hedging pressure on prices: this pressure tends to cause upward

biased futures prices, which in the context of the model means a negative risk premium.6 In

the non-peak seasons, price spikes are less likely, and the need to hedge is commensurately

less. The lower hedging pressure from power consumers reduces the upward bias in futures

prices. Indeed, since there can be short hedging pressure from generation operators looking

to hedge electricity price risk, prices can actually be biased downwards, especially in the

low-demand “shoulder" months of the spring and fall.

6See Keynes (1923), Hirshleifer (1988), or Hirshleifer (1990) for models of commodity markets in which
hedging pressure is a determinant of price bias and risk premia. Upward bias is associated with a negative risk
premium because a negative risk premium means that spot prices drift up more (down less) in the equivalent
(pricing) measure than the physical measure.
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Figure 6 highlights the differences between the spot risk premiums for the different

models. It plots the time series of the spot premium for the unspanned model (Panel A),

the spanned model (Panel B), and the model with economic variables (Panel C). Panel

D compares the three models; here we report weekly averages because the three daily

plots are too noisy in one panel. The properties of the spot premium for the unspanned

model are quite different from the other two models. Figure 6 clearly indicates that the risk

premium in the unspanned model is most variable, followed by the spanned model, and

the model with economic variables. More importantly, Figure 6 shows that the unspanned

model is capable of generating occasional large positive spikes in the spot risk premium,

most notably in 2014, at the time of the polar vortex. The two other models generate large

negative risk premiums on that occasion. The unspanned model is able to capture this spike

due to the spike in the natural gas price, evident from Figure 3. While the model with

economic variables of course also includes the natural gas price, it is constrained because

it does not allow for pricing factors other than the economic variables, which restricts its

flexibility to capture atypical patterns in risk premiums in the polar vortex period.

Figure 6 illustrates that the spot risk premium in the unspanned model is highly time-

varying. Figure 7 provides more perspective on these fluctuations and the differences

with other models by plotting the spot premiums of the different models during the 2014

polar vortex period. The models with economic variables (the unspanned model and the

spanned model with economic variables) exhibit dramatic changes in risk premiums during

this period, whereas models without economic variables (the spanned model with latent

variables) cannot. While the estimated spot risk premium in the unspanned model is on

average -0.84 % per day, during the polar vortex period it fluctuates between approximately

-50 percent and 175 percent per day.

Finally, to further investigate the dynamics of the spot premium, we decompose the

spot premium into four components plus a constant. The four components represent

the component associated with the level of the electricity futures curve, the component

associated with the slope of the electricity futures curve, the component associated with

24



the natural gas price, and the component associated with the temperature. The Appendix

provides details on this decomposition.

Figure 8 depicts the time-series of these four components. Several conclusions obtain.

First, the components associated with the electricity level and the slope are time-varying.

They are sometimes positive and sometimes negative, indicating that investors sometimes

require compensation to bear this risk while at times paying to hedge this risk. Second, the

risk premiums associated with the natural gas price are much larger than the ones associated

with the CDD. This suggests that the impact of economic variables on risk premiums mainly

originates on the supply side rather than the demand side, confirming the evidence in

Figures 2 and 3 .

5.2 The Distribution of Spot Prices and the Spot Premium

The model of Bessembinder and Lemmon (2002) implies that the spot premium should

be related to the statistical properties of spot prices. Specifically, they predict that the spot

premium should be negatively correlated with the variance of spot prices and positively

correlated with the skewness of spot prices. To verify if the unspanned model can capture

this stylized fact, we regress the estimated spot premium for the unspanned model against

the variance and skewness of spot prices. The regression specification is as follows:

Spot Premiumt = α+ βVariance × Variancet + βSkewness × Skewnesst + εt (32)

where Spot Premiumt is the average daily spot premium of the unspanned model in period

t. Variancet is the variance of daily real-time electricity prices in period t, and Skewnesst

is the skewness of real-time electricity prices in period t. Note that our definition of the

spot premium implies that these signs are the opposite of the signs in Bessembinder and

Lemmon (2002). We expect a positive βVariance and a negative βSkewness.
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Table 7 reports the estimates of equation (32). We report on three different implemen-

tations of this regression, where a period is defined to be either a month, a season, or a year.

The results are consistent with the model of Bessembinder and Lemmon (2002). For all

estimates of the spot premiums, the spot premium is positively related with variance and

negatively related with skewness. Of course, when using years as the observation period,

the estimates are imprecise because our sample is very small.

This again reflects the effects of hedging pressures. As Bessembinder and Lemmon

(2002) show, long hedgers (i.e., those with commitments to sell power at fixed prices who

must buy at spot prices to cover those commitments) are primarily at risk to price spikes,

and greater frequency and intensity of price spikes cause greater skewness in prices. Long

hedging pressure increases upward bias in futures prices (reduces the risk premium/makes

the risk premium more negative). Conversely, power generators who sell at spot prices

benefit from price spikes, but incur greater risk when price variances are larger. Thus, short

hedging pressure depends primarily on variance, meaning that higher variance increases

short hedging pressure, thereby causing the bias in futures prices to fall and the risk

premium to rise. Thus, the empirical estimates we present here are consistent with the

economics of hedging pressure in the electricity market.

5.3 Predicting Returns with the Estimated Spot Premium

Our results indicate that the spot premiums from different models have different prop-

erties. While the spot premium from the unspanned model seems to have some plausible

properties, strictly speaking this does prove it is a superior measure of the risk preferences

of investors in electricity markets. We therefore conduct an out-of-sample exercise in which

we use the estimated spot premium to predict the future realized changes of the log spot

price. The regression specification is as follows:

st − st−1 = Const.+ β × Spot Premiumt−1 + εt (33)
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If the spot premium of the unspanned model is a better indicator of the risk premium

people pay for electricity futures, then the prediction of the unspanned model should be

statistically significant and more importantly, the adjusted R2 should be higher compared

to the other models.

Table 8 shows results for the regression (33) for the entire sample period and two

sub-samples. We also control for lagged returns. Among the three models we consider,

the unspanned model has the highest adjusted R2. This results holds when we discuss the

forecasting power of the estimated spot premiums separately as well as jointly. The same

result holds for the sub-samples, and when including control variables. These findings

suggest that the spot premium of the unspanned model better captures the risk preferences

of investors in electricity markets. The Online Appendix contains results for an additional

out-of-sample exercise where we predict the future log day-ahead price instead of the future

log spot price. Once again the unspanned model outperforms the other models.

5.4 Measuring the Forward Bias

There are several ways to characterize the risk premiums in forward contracts. We

follow the existing literature on electricity markets and define the forward bias as the

difference between the expected average spot price and the futures price. More precisely, it

is defined as follows:

Forward Biasi
t = EP

t [S̄t+i]− Fi
t (34)

where Fi
t denotes the price of the i-th month futures contract at time t and EP

t [S̄t+i] denotes

the time-t average expected spot price in the maturity month t+i, where the expectation is

under the P measure.

Figure 9 plots time series of the forward bias. Panel A plots the forward bias for the

day-ahead contract, Panel B for the 1-month futures contract, and Panel C for the 12-month

futures contract. Note that the forward bias is expressed in dollar terms, whereas the spot

premium in Figure 6 is expressed in daily percentage returns. We report weekly averages,
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because for daily differences the extreme observations completely dominate the figure in

Panel A, and as a result it is not informative.

Figure 9 reports on the unspanned model. The differences between the spanned model

and the unspanned model with economic variables are more pronounced for short maturities

than for long maturities. The forward bias in Panels B and C is therefore highly correlated

with the forward bias in the spanned model. For the forward bias in the day ahead contract,

the correlation with the forward bias in the spanned model is only 35%. These findings are

due to the fact that the supply and demand variables are rapidly mean reverting. Shocks to

the supply and demand variables do not persist, and have a bigger impact in the short term

than over longer horizons. Put differently, shocks to the supply and demand variables are

informative about short-term risk premia but have little information about longer term risk

premia. To some extent these findings may also be due to the fact that we estimate the

model using daily data. Estimating the same models using mildly autoregressive economic

variables at the weekly or monthly frequency may yield different implications for longer

horizons.

The forward biases for the 1-month futures contract in Panel B and the 12-month

futures contract in Panel C are positively correlated, at 32%. The correlations between

the time series of the forward bias for contracts with a maturity of one month and more

(not reported) are all positive, and not surprisingly the correlations are high for contracts

with similar maturities. This is not the case for the forward bias in the day-ahead contract.

The correlation between the forward bias in Panels A and C is 1%, and the correlation

between Panels A and B is even lower. This result once again follows from the fact that

the unspanned feature of the model mainly has implications for risk premiums at shorter

maturities.

Although the one-month forward bias and the twelve-month forward bias are positively

correlated, Panels B and C highlight some important differences. There is a large positive

spike in the one-month forward bias at the time of the polar vortex in 2014, which is much

less pronounced for the twelve-month contract. The twelve-month forward bias on the
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other hand is positive and large for an extended period of time during 2005-2009, and this

is not the case for on one-month forward bias. As expected from the small correlations, the

patterns in the one-day ahead forward bias in Panel A are entirely different from those in

Panels B and C. In 2014, we first have a large negative spike in the day-ahead forward bias,

followed by a smaller positive one.

The most important difference between the forward bias in the day-ahead and 1-month

contract on the one hand, and the twelve-month contract on the other hand, is that for

the forward bias for the twelve-month contract in Panel C, reversion to the mean is a lot

slower. The forward bias first increases (becomes more negative) between 2004 and 2006,

stays at this heightened level between 2006 and mid-2008, and then decreases in absolute

value, eventually turning positive. No such patterns are evident in Panels A and B. It is also

worth pointing out that no such patterns are evident from the slope of the futures curve

in Panel C of Figure 1. The time series of the forward bias for contracts with maturities

between one month and one year (not reported) show that as the maturity of the contract

gets longer, the pattern in the time series of the forward bias increasingly resembles the

pattern in Panel C

Figure 10 plots the average difference between the expected average spot rate and

the forward rate in each season (Panels A-D) and for the entire sample (Panel E). In each

panel, we plot this difference as a function of the time to maturity of the forward contract,

which ranges up to twelve months. Note that the horizontal axis refers to the contract

number, with 1 denoting the spot rate and 13 the twelve-month forward. This analysis

follows Pirrong and Jermakyan (2008), who conduct a similar exercise for a single day.

Figure 10 indicates that this premium increases (becomes more negative) as a function of

maturity. When considering the entire sample in Panel E, this increase is almost monotonic,

but not surprisingly this is not the case in a given season. This finding is consistent with

Pirrong and Jermakyan (2008) and with our findings on the seasonality of risk premiums

in Table 6.
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Finally, the forward bias is very large and economically significant. Recall from Table 1

that over our sample period the average spot and futures price is approximately $60. Panel E

of Figure 10 indicates that on average the forward bias is -$4 for the one-month maturity and

-$7 for the twelve-month maturity, which in both cases represents a significant percentage

of the price. However, Figure 9 shows that the forward bias dramatically fluctuates around

the sample average, with larger fluctuations and outliers for shorter-maturity contracts.

For instance, the day-ahead forward bias contains a positive outlier of $340 and a negative

outlier of -$80 during the polar vortex period. The one-month forward bias has negative

outliers of approximately -$60 in 2014 and -$40 in 2005 and 2008. Note that these are

weekly averages and therefore the daily outliers are even larger.

6 Concluding Remarks

We model the impact of supply and demand on the price of electricity futures in a

no-arbitrage model, using daily data between 2003 and 2014. By design, the model

fits electricity futures as well as a fully latent model. Additionally, the model allows for

unspanned economic risk which is captured by the supply and demand variables but not

identified by the futures prices.

We find that demand and supply variables contain valuable information about the spot

risk premiums embedded in electricity futures prices. The spot risk premiums implied

by the unspanned model are on average negative, very different from the risk premiums

implied by the spanned model, display strong seasonal patterns, are related to the variance

and skewness of the electricity spot price, and better predict future changes in spot prices.

We decompose the spot risk premium into components associated with demand and supply.

The unspanned risk premium associated with supply is economically large and highly

time-varying and constitutes the most important component of the total spot risk premium

embedded in electricity futures. The forward bias implied by the model is also on average

negative and large. It is highly time-varying and increases as a function of maturity.
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Our findings thus suggest that the use of latent variables to model electricity prices

provides a good fit to the data, but additionally including unspanned economic variables

generates more plausible economic implications.

Several extensions of our approach may prove interesting. Our out-of-sample analysis

uses the estimated spot premium to predict the future realized changes of the log spot

price and the log day-ahead price, but this analysis uses estimates obtained using the

entire sample. It may prove interesting to repeat this exercise using a recursive estimation.

We could also estimate a quadratic model to investigate the robustness of our results on

spanning and the measurement of risk premiums to the assumption that the log spot price

is linear in the state variables. Finally, as discussed above, our use of daily data makes it

likely that the model implications for the forward bias are similar to those of the unspanned

model for longer horizons. Implementing the model with weekly or monthly data may

yield different results at longer horizons.
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Table 1: Descriptive Statistics. Electricity Prices

We report descriptive statistics for electricity prices. Panel A reports the number of observa-
tions, the sample mean, standard deviation, skewness, kurtosis, the minimum, maximum,
and autocorrelation coefficient of order 1 for the spot and futures prices. We report on
PJM Western Hub real-time spot, day-ahead futures (FDA), and PJM Western Hub real-time
peak calendar-month 2.5 MW futures with maturities between 1 month and 12 months (F1

to F12). The unit of the price is Dollar per MWh. Panel B reports on log returns in daily
percentage returns, where st denotes the log of the spot price at time t and f DA

t denotes the
log of the day-ahead price at time t. The sample period is from May 2003 to May 2014.

Panel A: Prices

Nobs Mean Std Skew Kurt Min Max AC1

Spot 2767 58.1649 32.4250 6.5112 101.9091 21.2089 757.4217 0.6136
FDA 2767 58.0342 29.8561 6.8500 105.4550 20.6838 683.1615 0.7566
F1 2767 58.0873 18.6850 1.7388 7.3168 31.3500 164.7500 0.9866
F2 2767 58.9385 19.3147 1.7136 6.9351 33.0600 154.3300 0.9932
F3 2767 59.5083 19.1678 1.5195 5.5145 35.1700 140.0000 0.9937
F4 2767 59.8302 18.9369 1.3944 4.8339 34.1700 139.2300 0.9937
F5 2767 59.9655 18.2606 1.1540 3.8122 35.0400 128.2900 0.9932
F6 2767 60.1071 17.9742 1.0423 3.3712 34.1100 128.4200 0.9928
F7 2767 60.4287 18.1264 1.0697 3.7185 34.3200 128.4200 0.9932
F8 2767 61.0319 18.5374 1.0138 3.5116 35.3600 127.0800 0.9939
F9 2767 61.3238 18.5972 0.9314 3.0770 35.3200 116.2500 0.9943
F10 2767 61.3462 18.1073 0.8598 2.8350 35.0000 114.3300 0.9935
F11 2767 61.2828 17.7731 0.8668 2.8897 34.3000 119.5000 0.9930
F12 2767 61.2449 17.9752 1.0133 3.6591 34.2600 138.4900 0.9932

Panel B: Log Returns

Nobs Mean Std Skew Kurt Min Max AC1

s 2766 -0.0156% 0.2988 0.0551 6.3799 -1.7030 1.8596 -0.2873
fDA 2766 -0.0028% 0.1845 -0.1748 11.2055 -1.4306 1.2689 -0.0552
st+1 − fDA

t 2766 -1.3691% 0.2738 0.1567 6.6494 -1.6341 1.8042 0.1277
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Table 2: Descriptive Statistics. Demand and Supply Variables

We report descriptive statistics for the raw economic variables. The economic variables
are the natural gas price (PX), the average load (Avg Load), the maximum load (Max
Load), the maximum temperature (Max T), the minimum temperature (Min T), the average
temperature (Avg T), the cooling degree days (CDD), and the heating degree days (HDD).
The sample period is from May 2003 to May 2014.

Nobs Mean Std Skew Kurt Min Max AC1

PX 2767 6.3659 4.1495 10.6412 211.3608 1.9900 99.6600 0.7445

Avg Load 2767 39.9420 13.4143 -1.1067 4.3669 5.4614 74.0745 0.9820

Max Load 2767 42.4714 14.5917 -0.9495 4.1839 5.6450 80.1791 0.9772

Max T 2767 17.8765 10.3798 -0.3876 2.0988 -11.6000 38.1000 0.9008

Min T 2767 7.0997 9.3482 -0.2546 2.1015 -19.9000 24.4500 0.9105

Avg T 2767 12.4881 9.6920 -0.3302 2.0892 -15.7500 30.7000 0.9258

CDD 2767 1.6956 2.7615 1.4701 3.9566 0.0000 12.7000 0.8800

HDD 2767 7.2075 7.8649 0.7892 2.4767 0.0000 33.7500 0.9077
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Table 3: Spanning Regressions

In Panel A, we report the results if projecting the economic variables ECt on the first five
principal components (PC1−5

t ) of the electricity futures. The regression is specified as
follows:

ECt = Const.+ γpcPC1−5
t + unECt

In Panel B, we forecast changes in the first two principal components using the unspanned
component of demand and supply variables, controlling for lagged values of the PCs. The
regression is specified as follows:

∆PC1−2
t→t+1 = Const.+ βpcPC1−5

t + βunECunECt + εt

For both regressions, standard errors are reported in parentheses. The sample period is
from May 2003 to May 2014.

Panel A: Projecting ECs on PCs

Const. PC1t PC2t PC3t PC4t PC5t Adj. R2 N.Obs.

PXt -0.1916 2.4991 2.6934 4.9415 -1.0160 2.4471 0.4410 2767

(0.0653) (0.0605) (0.1612) (0.3730) (0.4307) (0.5168)

Max Loadt -0.3187 1.1686 8.3349 -11.5129 -17.0962 -16.5058 0.1072 2767

(0.2891) (0.2678) (0.7131) (1.6503) (1.9055) (2.2864)

CDDt 0.1654 0.1157 2.3044 -1.0969 -1.0573 -1.8853 0.2878 2767

(0.0300) (0.0278) (0.0739) (0.1710) (0.1975) (0.2370)

Panel B: Forecasting Changes in PCs

∆PC1t→t+1 ∆PC1t→t+1 ∆PC1t→t+1 ∆PC2t→t+1 ∆PC2t→t+1 ∆PC2t→t+1

unPXt 1.1555 1.1509 2.4028 2.3770

(0.0755) (0.0768) 0.1495 0.1522

unMax Loadt 0.0975 0.2232

(0.0171) 0.0338

unCDDt 0.6041 1.2273

(0.1674) 0.3318

PC1−5
t Yes Yes Yes Yes Yes Yes

Adj. R2 0.1357 0.2059 0.2003 0.1914 0.2646 0.2566

N.Obs. 2766 2766 2766 2766 2766 2766
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Table 4: Estimates of the Unspanned Model

We report the estimated Q- and P-dynamics of the unspanned model. The Q- and P-dynamics
are specified as follows:

States in Qt+1 = KQ
0 + KQ

1 × States in Qt +Σ
Q × εQ

t+1

States in Pt+1 = K P
0 + K P

1 × States in Pt +Σ
P × εP

t+1

where εQ
t and εP

t are standard Brownian motions, and ΣQ is the left upper 2 by 2 sub-matrix
of ΣP . The state variables in the Q-dynamic are the PC1 and the PC2. The state variables
in the P-dynamic are the PC1, the PC2, the natural gas price, and the CDD. Standard errors
are reported in parentheses. The sample period is from May 2003 to May 2014.

Panel A: Q-Dynamic

KQ
0 KQ

1

PC1t PC2t

PC1t+1 -0.0577 0.9991 -0.0269
(0.0094) (0.0004) (0.0006)

PC2t+1 0.0152 -0.0016 0.9475
(0.0090) (0.0014) (0.0017)

Panel B: P-Dynamic

K P
0 K P

1

PC1t PC2t PXt CDDt

PC1t+1 -0.0096 0.9588 -0.1713 0.0123 0.0054
(0.0025) (0.0031) (0.0079) (0.0007) (0.0016)

PC2t+1 -0.0242 -0.0871 0.6078 0.0268 0.0110
(0.0050) (0.0061) (0.0158) (0.0015) (0.0033)

PXt+1 -0.2439 0.9379 0.1182 0.5965 -0.0606
(0.0566) (0.0689) (0.1777) (0.0168) (0.0370)

CDDt+1 0.0250 0.0260 0.2678 -0.0097 0.6071
(0.0267) (0.0325) (0.0838) (0.0079) (0.0175)

Panel C: Estimates of ΣP(ΣP)′

PC1t PC2t PXt CDDt

PC1t 0.0141 0.0250 0.0481 0.0684
PC2t 0.0566 0.0915 0.1523
PXt 7.1277 0.0157
CDDt 1.5859
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Table 5: Model Fit

We report the fit of the unspanned model (Panel A), the spanned model with economic variables (Panel B), and the Lucia and
Schwartz model (Panel C) for futures prices. The economic variables are the natural gas price and CDD. For each model, we
report both the root mean squared error (RMSE) and relative root mean squared error (RRMSE), defined as follows:

RMSE =

√

√

√1
n

n
∑

i=1

(F̂
i − Fi)2 RRMSE =

√

√

√1
n

n
∑

i=1

(F̂
i − Fi)2

(Fi)2

where F̂
i

is the fitted futures price and Fi is the realized futures price. FDA denotes the day-ahead futures price. F1 to F12

denote the futures maturing in 1 month to 12 months respectively. Overall RMSE and RRMSE are calculated as simple
averages of the RMSE and RRMSE over all futures contracts. The sample period is from May 2003 to May 2014.

Panel A: The Unspanned Model

Spot FDA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Overall

RMSE 9.8509 11.0573 6.1483 5.4906 4.8749 4.5452 4.0922 3.9061 3.9283 4.4184 4.7793 4.7363 5.0133 5.1126 5.5681

RRMSE 0.0953 0.1125 0.0933 0.0785 0.0662 0.0588 0.0567 0.0567 0.0584 0.0642 0.0691 0.0670 0.0721 0.0772 0.0733

Panel B: The Spanned Model with Economic Variables

Spot FDA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Overall

RMSE 161.9312 137.6671 49.5725 46.8987 42.5467 41.3189 39.2372 42.5299 37.9617 31.0323 28.8998 27.1105 26.1147 26.8088 52.8307

RRMSE 1.5846 0.7146 0.5713 0.8756 0.9035 0.8711 0.7722 0.6352 0.6485 0.6712 0.6757 0.6096 0.5198 0.4294 0.7487

Panel C: The Lucia and Schwartz Model

Spot FDA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Overall

RMSE 14.0016 8.6296 7.8107 6.0312 6.3501 6.2814 5.2817 3.8809 2.3308 4.0228 5.5056 5.8228 5.3645 4.0535 6.0977

RRMSE 0.1388 0.0762 0.1219 0.0899 0.0873 0.0833 0.0722 0.0541 0.0337 0.0582 0.0795 0.0831 0.0790 0.0627 0.0800
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Table 6: Estimated Spot Premiums

We report the daily average of the spot premiums of the unspanned model. The spot
premium is defined as follows:

Spot Premiumt = EP
t [Log(St+1)− Log(FDA

t )]

For each model, we report the average spot premium in each season as well as over the
entire sample period. The definition of the seasons is as follows: Winter is defined as
December, January, and February. Spring is defined as March, April, and May. Summer is
defined as June, July, and August. Fall is defined as September, October, and November.
The economic variables that are used to calculate the spot premium of the unspanned
model are the natural gas prices and CDD. The reported numbers are raw daily log returns.
The sample period is from May 2003 to May 2014.

Nobs Mean Std Skew Kurt Min Max AC1

Winter 657 -0.0158 0.1344 5.9916 74.5678 -0.5230 1.7777 0.3148

Spring 722 -0.0026 0.0661 -1.6762 11.9224 -0.5095 0.2103 0.4794

Summer 709 -0.0101 0.0789 -1.2472 5.7594 -0.3753 0.1812 0.6255

Fall 679 -0.0059 0.0573 -0.2633 4.3276 -0.2691 0.1787 0.5851

All Seasons 2767 -0.0084 0.0886 4.4316 94.1437 -0.5230 1.7777 0.4426
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Table 7: Regressing Spot Premiums on Variance and Skewness of Real-Time Spot Prices

We report the estimates of regressing spot premiums on the variance and skewness of
real-time prices. The regression specification is as follows:

Spot Premiumt = Const.+ βVariance × Variancet + βSkewness × Skewnesst + εt

where Spot Premiumt is the average spot premium of the unspanned model in period
t, Variancet is the variance of the daily electricity real-time price in period t, and
Skewnesst is the skewness of the daily electricity real-time price in period t. We consider
three frequencies when calculating those numbers, i.e. a month, a season, and a year.
Spot Premiumt , Variancet , and Skewnesst are all standardized. The economic variables
that are used in the unspanned model are natural gas price and CDD. Standard errors are
reported in parentheses. The sample period is from May 2003 to May 2014.

Const. βVariance βSkewness Adj. R2 N.Obs.

By Month 0.0000 0.2051 -0.1367 0.0442 133

(0.0848) (0.0852) (0.0852)

By Season 0.0000 0.1782 -0.2958 0.0889 46

(0.1407) (0.1430) (0.1430)

By Year 0.0000 0.0459 -0.4156 0.0032 12

(0.2882) (0.3110) (0.3110)
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Table 8: Predicting the Log Spot Return with the Estimated Spot Premium

We compare the predictive power of the spot premium implied by different models for the
log spot return. The predictive regression is specified as follows:

st − st−1 = Const.+ β × Spot Premiumt−1 + εt

where st is the log of the spot price at time t. The economic variables that are used in the
unspanned model and the spanned model with economic variables are the natural gas
price and CDD. Standard errors are reported in parentheses. The sample period is from
May 2003 to May 2014.

Panel A: Baseline Regression

Unspan 1.5176 1.1057

(0.0574) (0.1077)

Span with Latents 2.0789 1.0228

0.0943 0.2020

Span with Econs (0.2047) -(0.0864)

0.0967 0.1502

Const. 0.0127 0.0174 0.0015 0.0171

(0.0051) (0.0053) (0.0057) (0.0051)

Adj. R2 0.2017 0.1493 0.0013 0.2192

N.Obs. 2766 2766 2766 2766

Panel B: Sub-Samples

2003 - 2008 2009 - 2014

Unspan 1.8557 1.1875 1.3970 1.1490

(0.0980) (0.1877) (0.0728) (0.1879)

Span with Latents 2.3210 1.4081 1.9396 0.8474

(0.1424) (0.3180) (0.1277) (0.3793)

Span with Econs 0.5441 -0.8086 0.0643 0.1067

(0.1651) (0.2059) (0.1326) (0.3221)

Const. -0.0037 0.0111 0.0146 -0.0172 0.0269 0.0237 -0.0008 0.0313

(0.0067) (0.0070) (0.0087) (0.0081) (0.0077) (0.0081) (0.0087) (0.0090)

Adj. R2 0.2025 0.1583 0.0070 0.2133 0.2134 0.1450 -0.0006 0.2382

N.Obs. 1409 1409 1409 1409 1356 1356 1356 1356

Panel C: Controlling for Lagged Returns

Unspan 1.3636 1.0918

(0.0579) (0.1061)

Span with Latents 1.7574 0.7228

(0.0989) (0.2016)

Span with Econs -0.0294 -0.0691

(0.0940) (0.1480)

Lagged Returns -0.2863 -0.1888 -0.1737 -0.2872 -0.1641

(0.0182) (0.0171) (0.0184) (0.0185) (0.0176)

Const. -0.0001 0.0114 0.0147 -0.0004 0.0146

(0.0054) (0.0050) (0.0052) (0.0055) (0.0050)

Adj. R2 0.0816 0.2349 0.1756 0.0813 0.2426

N.Obs. 2765 2765 2765 2765 2765
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Figure 1: Electricity Spot Prices and Futures Prices

We plot the daily spot price (Panel A), the price of the 12-month futures contract (Panel B),
and the difference between them (Panel C) over the entire sample period. The difference is
calculated as the average of daily differences in each month. The sample period is from
May 2003 to May 2014.
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Figure 2: Electricity Prices

We plot the average spot price (Panel A), the day-ahead price (Panel B), the price of the
6-month futures contract (Panel C), and the price of the 12-month futures contract (Panel
D) in each month of the sample period. In each panel, we plot the raw price (the blue solid
line), the seasonal component (the dotted line), and the de-seasonalized price (the green
solid line). The sample period is from May 2003 to May 2014.
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Figure 3: Demand and Supply Variables

We plot the average natural gas price (Panel A), the maximum load (Panel B), and
the CDD (Panel C) in each month of the sample period. In each panel, we plot the
raw series (the blue solid line), the seasonal component (the dotted line), and the de-
seasonalized series (the green solid line). The sample period is from May 2003 to May 2014.
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Figure 4: Principal Components of Electricity Prices

We plot the loadings of the first two principal components (PCs) of log electricity prices.
The first PC is represented by the dashed line and the second PC is represented by the
dotted line. The legend displays the fraction of the total variance explained by each of the
principal components. The sample period is from May 2003 to May 2014.
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Figure 5: Model Fit

For each month of the sample period, we plot the raw data (the solid line), the model price
(the dotted line), and the difference between the data with the model price (the dashed
line) for the spot price (Panel A), the day-ahead price (Panel B), the price of 6-month
futures (Panel C), and the price of 12-month futures (Panel D). The sample period is from
May 2003 to May 2014.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
-50

0

50

100

150

200

D
o

lla
r 

p
er

 M
W

h

Panel A: Spot Price

Data Model Price Data Minus Model

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
-50

0

50

100

150

200

D
o

lla
r 

p
er

 M
W

h

Panel B: Day-Ahead Price

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
-50

0

50

100

150

D
o

lla
r 

p
er

 M
W

h

Panel C: 6-Month Futures Price

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
-50

0

50

100

150

D
o

lla
r 

p
er

 M
W

h

Panel D: 12-Month Futures Price

46



Figure 6: Spot Premiums. Various Models

We plot the model-implied spot premium for the unspanned model (Panel A), the model
with latent variables (Panel B), the model with economic variables (Panel C), and their
weekly averages (Panel D). The economic variables that are used to calculate the spot
premium are the natural gas price and CDD. The sample period is from May 2003 to May
2014.
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Figure 7: Spot Premiums During the 2014 Polar Vortex Period

We plot the estimated spot premium during the 2014 Polar Vortex period for various
models. The economic variables that are used in the unspanned model and the spanned
model with economic variables are the natural gas price and CDD. The sample period is
from November 2013 to April 2014.
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Figure 8: Decomposing the Spot Premium of the Unspanned Model

We decompose the spot premium of the unspanned model. Panel A plots the spot premium
associated with PC1, Panel B plots the spot premium associated with PC2, Panel C plots the
spot premium associated with the natural gas price, and Panel D plots the spot premium
associated with the CDD. The details of the decomposition are given in the Appendix. The
sample period is from May 2003 to May 2014.
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Figure 9: The Forward Bias. Various Contracts

We plot the forward bias in the unspanned model. For a futures contract maturing in month
i, the forward bias is defined as follows:

Forward Biasi
t = EP

t [S̄t+i]− Fi
t

Fi
t denotes the price of the i-th month futures contract at time t and EP

t [S̄t+i] denotes the
time-t average expected spot price in the maturity month (t+i), where the expectation
is under the P measure. Panels A to C plot the weekly averages of the forward bias for
contracts with maturities equal to 1 day, 1 month, and 12 months respectively. The
economic variables that are used to calculate the expected spot price under P are the
natural gas price and CDD. The sample period is from May 2003 to May 2014.
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Figure 10: The Forward Bias in Different Seasons

We plot the average forward bias in winter (Panel A), spring (Panel B), summer (Panel C),
and fall (Panel D). Panel E plots the average forward bias over the entire sample period. In
each panel, the maturity ranges from 1 month (contract number = 2) up to 12 months
(contract number = 13). For contract number 1, the maturity equals 1 day. The economic
variables that are used to calculate the expected spot price under P are the natural gas
price and CDD. The sample period is from May 2003 to May 2014.
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Appendix

A.1 Decomposing the Spot Premium of the Unspanned

Model

We define the spot risk premium as the expected log return of holding a day-ahead

contract. Then the spot premium is defined as follows:

Spot Premiumt = EP
t [Log(St+1)− Log(FDA

t )] (A.1.1)

where St+1 denotes the electricity spot price at time t+1 and FDA
t denotes the day-ahead

price at time t. We can show that the spot premium is equal to the difference between the

log expected spot under the P measure and the one under the Q measure plus a constant.

The derivation is as follows:

Spot Premiumt = EP
t [Log(St+1)− Log(FDA

t )]

= EP
t [st+1 − f DA

t ]

= EP
t [st+1]− f DA

t

= EP
t [st+1]− (EQ

t [st+1] +
1
2
σ2

s )

= EP
t [st+1]− EQ

t [st+1]−
1
2
σ2

s

(A.1.2)

where st+1 denotes the log of the spot price at time t+1, f DA
t denotes the log of the day-ahead

price at time t, and σs denotes the volatility of the log spot price.

Suppose that we use [PC1, PC2, PX, CDD] as the state variables for the unspanned

model, where PC1 denotes the first principal component of the log electricity prices (log

spot price and log futures price), PC2 denotes the second principal component of the log

electricity prices, PX denotes the natural gas price, and CDD denotes the cooling degree
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days. Then based on equation (12), the expected log spot price under P can be expressed

as:

EP
t [st+1] = Seass,t+1 + K P

0 (1) + K P
1 (1,PC1)× PC1t + K P

1 (1, PC2)× PC2
t

+ K P
1 (1,PX)× PXt + K P

1 (1, CDD)×CDDt

(A.1.3)

where K P
0 (1) denotes the first element of the column vector K P

0 , K P
1 (1, PC1) is the element

at row one and column one of the matrix K P
1 , K P

1 (1,PC2) is the element at row one and

column two of the matrix K P
1 , K P

1 (1,PX) is the element at row one and column three of the

matrix K P
1 , and K P

1 (1, CDD) is the element at row one and column four of the matrix K P
1 .

Similarly, equation (13) implies that the expected price under Q can be expressed as:

EQ
t [st+1] = Seass,t+1 + KQ

0 (1) + KQ
1 (1,PC1)× PC1t + KQ

1 (1, PC2)× PC2
t (A.1.4)

where KQ
0 (1) is the first element of the column vector KQ

0 , KQ
1 (1,PC1) and KQ

1 (1, PC2) are

the first and second element of the first row of the matrix KQ
1 respectively.

Substituting equation (A.1.3) and (A.1.4) into equation (A.1.2) and, we can get

Spot Premiumt = EP
t [st+1]− EQ

t [st+1]−
1
2
σ2

s

= Seass,t+1 + K P
0 (1) + K P

1 (1, PC1)× PC1t + K P
1 (1,PC2)× PC2

t

+ K P
1 (1, PX)× PXt + K P

1 (1,CDD)×CDDt − (Seast+1 + KQ
0 (1)

+ KQ
1 (1, PC1)× PC1t + KQ

1 (1,PC2)× PC2
t )−

1
2
σ2

s

= (K P
0 (1)− KQ

0 (1))−
1
2
σ2

s
︸ ︷︷ ︸

Constant

+ (K P
1 (1, PC1)− KQ

1 (1, PC1))× PC1t
︸ ︷︷ ︸

Spot premium associated with the PC1

+(K P
1 (1, PC2)− KQ

1 (1,PC2))× PC2t
︸ ︷︷ ︸

Spot premium associated with the PC2

+ K P
1 (1, PX)× PXt
︸ ︷︷ ︸

Spot premium associated with the PX

+ K P
1 (1, CDD)×CDDt
︸ ︷︷ ︸

Spot premium associated with the CDD

(A.1.5)
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A.2 The Lucia and Schwartz Model

This section discusses the two-factor log price model that proposed by Lucia and

Schwartz (2002). We first explain the model specification. Then we discuss its relationship

with the spanned model with latent variables.

A.2.1 Model Specification

The log price is assumed to be consisted of a seasonal component with two latent factors.

Denote the log spot price at time t as st , then st can be written as follows:

st = Seass,t + Lt + εt (A.2.6)

The seasonal component Seast is specified according to equation (24). Lt and εt are

assumed to have the following P-dynamic:

d Lt = −κLt d t +σLdz L
t (A.2.7)

and

dεt = µεd t +σεdzεt (A.2.8)

dz L
t and dzεt are two standard Brownian motions. The correlation between dz L

t and dzεt is

equal to ρLε, i.e.

dz L
t × dzεt = ρLεd t (A.2.9)

The market price of risk are assumed to be constant for both dz L
t and dzεt . Thus, the

Q-dynamic can be written as follows:

d Lt = (−κLt −λL)d t +σLdz L
t (A.2.10)
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dεt = (µε −λε)d t +σεdzεt (A.2.11)

where λL and λε are two scalars that represent the market price of risk of dz L
t and dzεt ,

respectively.

The log futures price can be expressed in closed form and the formula is

f j
t = EQ

t [st+ j] +
1
2

VarQ
t [st+ j]

= Seass,t+ j + e−κ× j Lt + εt +µ
∗
ε
× j − (1− eκ× j)

λL

κ

+
1
2
((1− e−2κ× j)

σ2
L

2κ
+σ2

ε
× j + 2(1− e−κ× j)

ρLεσLσε
κ

)

(A.2.12)

where f j
t denotes the log of the j-month futures price at time t. µ∗

ε
= µε −λε. We estimate

the model using the Kalman filter.

A.2.2 Relationship with the Spanned Model with Latent Variables

The Lucia and Schwartz model can be written in the framework of the spanned model

with the following matrices:

X S
t =





Lt

εt



 , K P
0 =





0

µε



 , KQ
0 =





−λL

µε −λε



 (A.2.13)

K P
1 =





1−κ 0

0 1



 , KQ
1 =





1− κ 0

0 1



 (A.2.14)

and

ΣP = ΣQ =





σ2
L 2ρLεσLσε

2ρLεσLσε σ2
ε





1
2

(A.2.15)
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