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1 Introduction

While idiosyncratic jumps should not be priced according to the classical asset

pricing theory, recent studies find that they are associated with significant risk premi-

ums.1 This paper contributes to the literature by using a new measure to estimate the

idiosyncratic jump risk of individual firms. With this new measure, we quantify the

daily idiosyncratic jump risk for approximately five thousand firms over a twenty-year

period. This allows us to construct the largest sample by far to study the idiosyncratic

jump risk premium.

The key to constructing such a large sample is that our idiosyncratic jump risk

measure is based on an equity option strategy. The return of this strategy is purely

affected by the jump risk of the underlying firm and thus can be used as an idiosyncratic

jump risk measure. This strategy relies on relatively few assumptions and is very

simple to implement. We apply it to every firm that has traded options over the period

of 1996 to 2016. This greatly expands our sample and allows us to be the first to

conduct a comprehensive characterization of the idiosyncratic jump risk of individual

firms. Moreover, because our measure is based on options, we are the first to study the

forward-looking idiosyncratic jump risk of individual firm.

We obtain several new key findings. First, we confirm that idiosyncratic jump risk

earns a negative risk premium. The magnitude is estimated to be approximately -8.8%

per month. The negative sign suggests that investors dislike idiosyncratic jumps and

demand securities that can hedge idiosyncratic jumps. Consistent with this argument,

we find that the option strategy that tracks the idiosyncratic jump risk does pay during

the bad economic conditions.

Second, we find the idiosyncratic jump risk premium is of larger magnitude for

smaller firms, firms with higher idiosyncratic volatility, and firms with lower liquidity.

1See, for example, Xiao and Zhou (2015), Bégin, Dorion, and Gauthier (2016), and Kapadia and
Zekhnini (2016).
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This suggests that the idiosyncratic jump risk is correlated with certain firm charac-

teristics. We also find controlling for the idiosyncratic jump risk help to explain the

idiosyncratic volatility puzzle.

Third, we show that the average idiosyncratic jump risk affects the cross-section

of stock returns. The average idiosyncratic jump risk explains approximately 20% of

total variations of the idiosyncratic jump risk of individual firms, suggesting that it is

a common component. When sorting stocks based on the sensitivity to the average

idiosyncratic jump risk, we find that the stocks with higher sensitivity earn lower

subsequent returns. This result strongly suggests that the common idiosyncratic jump

risk enters the pricing kernel.

Our paper is closely related to three strands of literature. First, it is related to the

recent literature which uses parametric models to study the idiosyncratic jump and its

risk premium. (See, for example, Xiao and Zhou (2015), Bégin, Dorion, and Gauthier

(2016)). While parametric models are informative about the economic channel that

are associated with the idiosyncratic jump risk, the computational burden could limit

the sample size. This paper uses a non-parametric approach to track the idiosyncratic

jump risk of individual firm. We estimate the idiosyncratic jump risk for a large number

of firms.

Our paper is also related to the literature which uses non-parametric methods

to study idiosyncratic jumps (See, for example, Bollerslev, Li, and Todorov (2016),

Bollerslev, Li, and Zhao (2016), and Kapadia and Zekhnini (2016)). Those papers

use high-frequency data or the price data to identify realized price jumps. Thus those

identified jumps are backward-looking. On the contrary, our measure is based on equity

options. We study the forward-looking idiosyncratic jump risk of individual firm.

Finally, our paper is related to the literature which studies the impact of market

jump risk. Previous papers have documented that the jump risk on the market level

is an important risk factor. (See, for example, Bates (1996), Pan (2002), Johannes
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(2004), Broadie, Chernov, and Johannes (2007), Bates (2008), Santa-Clara and Yan

(2010), Yan (2011), Bollerslev and Todorov (2011), Drechsler and Yaron (2011),

Christoffersen, Jacobs, and Ornthanalai (2012), Bollerslev, Todorov, and Xu (2015),

and Cremers, Halling, and Weinbaum (2015)) We contribute by showing that the

average idiosyncratic jump risk is another systematic risk factor affecting the asset

prices.

The remainder of this paper proceeds as follows. Section 2 discusses the methodol-

ogy that we used to measure the idiosyncratic jump risk of individual firms. Section 3

describes the data and the sample statistics. Section 4 studies the idiosyncratic jump risk

of individual firms and its cross-sectional distribution. Section 5 analyzes the common

component of the idiosyncratic jump risk and tests its asset pricing implications. Finally,

section 6 concludes.

2 Measuring Idiosyncratic Jump Risk

We use the return on a Delta-neutral, Vega-neutral, and Gamma-positive equity

option portfolio to track the idiosyncratic jump risk of the underlying firm. The

intuition is that such a portfolio tracks large movements in underlying prices while

hedging the small price and volatility changes. Cremers, Halling, and Weinbaum (2015)

construct this portfolio using S&P 500 futures options to measure the jump risk of the

aggregate market. We apply their approach to equity options to measure the jump risk

of individual stocks.

Specifically, for each stock on each day, we rank all its calls and puts based on

moneyness.2 Then we choose the call and put that are the closest to at-the-money

(ATM) to formulate an ATM delta-neutral straddle. Following Coval and Shumway

2The moneyness is defined as the strike to the underlying price ratio.
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(2001), the weights of the calls and puts are calculated by solving the following

equations:

θCall,t + θPut,t = 1

θCall,t ×∆Call,t + θPut,t ×∆Put,t = 0
(1)

where ∆Call,t is the Delta of the call option in the Black-Scholes model and ∆Put,t is the

Delta of the put option in the Black-Scholes model.3

For each stock on each day, we apply equation (1) to the nearest-month options and

the second nearest-month options, yielding to a short-term straddle and a long-term

straddle. Denoting the weights for the short-term straddle by (θsCall,t, θ
s
Put,t) and the

weights for the long-term straddle by (θlCall,t, θ
l
Put,t), we could express the return on the

straddles as follows:

RetsStraddle,t = θsCall,t × RetsCall,t + θsPut,t × RetsPut,t

RetlStraddle,t = θlCall,t × RetlCall,t + θlPut,t × RetlPut,t

(2)

where RetsStraddle,t denotes the return on the short-term ATM straddle, RetsCall,t denotes

the return on the short-term ATM call option, and RetsPut,t denotes the return on the

short-term ATM put option. Similarly, RetlStraddle,t, RetlCall,t, and RetlPut,t denote the return

on the long-term ATM straddle, call option, and put option respectively.

Next, on each day t, we construct the Delta-neutral, Vega-neutral, and Gamma-

positive option portfolio by longing γt contract of the short-term straddle and shorting

one contract of the long-term straddle, where γt is calculated by solving the following

equation:

γt × νst − νlt = 0 (3)

3While using the Greeks in the Black-Scholes model seems inconsistent with the jump assumption,
existing papers have shown that the impact of this assumption is small. (Cremers, Halling, and Weinbaum
(2015))
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where νst denotes the Vega of the short-term straddle at time t and νlt denotes the Vega

of the long-term straddle, and νst and νlt are calculated as follows:

νst = θsCall,t × νsCall,t + θsPut,t × νsPut,t

νlt = θlCall,t × νlCall,t + θlPut,t × νlPut,t

(4)

where νsCall,t, ν
s
Put,t, ν

l
Call,t, and νlPut,t are the Vega of the short-term ATM call, the short-

term ATM put, the long-term ATM call, and the long-term ATM put respectively. Because

short-term options have larger Gamma than long-term options, equation (3) ensures

that the Gamma of the resulting option portfolio is positive.

Using equation (3), the return on the Delta-neutral, Vega-neutral, and Gamma-

positive option portfolio, or the idiosyncratic jump option portfolio can be written as

follows:

RetIdio Jump,t = γt × RetsStraddle,t − RetlStraddle,t (5)

In the empirical section, we calculate the return on the idiosyncratic jump portfolio

for each stock on each day. Thus, we get a daily measure for the idiosyncratic jump risk

for each stock.

3 Sample

This section describes the data source and the procedure we follow to construct

the sample. The equity option data is from OptionMetrics. We include all options in

OptionMetrics and impose the following filters: (1) the bid price, ask price, implied

volatility, and all option Greeks are non-missing, (2) the open interest is positive, (3)

the bid price is positive and less than the offer price. (4) the bid-ask price satisfy the

no-arbitrage condition, (5) the term to maturity is larger or equal to 14 days, (6) the

option price, which is defined as the average of the bid and ask price, is greater than
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$0.50, (7) the moneyness is between 0.96 to 1.04, and (8) the maturity is less than six

months.4

The equity data is from CRSP. We include all common shares (i.e. the share code

equals 10 or 11) listed on the AMEX, NASDAQ, or NYSE. For each stock, we collect its

close prices, outstanding number of shares, and daily returns.

We merge the equity and option data based on the permno and the ticker informa-

tion. Our final sample consists of 3,087,639 number of observations over 5,116 days

ranging from January, 1996 to April, 2016.

Table 1 reports the summary statistics of the short-term and long-term options

in the sample. On average, the return on the call option is slightly positive and the

average return on the put option is negative. The average relative bid-ask spread is

approximately 15% for short-term options and 11% for long-term options, suggesting

the equity option market is quite illiquid. The average maturity is approximately 1

month (36 days) for short-term options and approximately 3 months (93 days) for

long-term options.

Equity options are illiquid (Vijh (1990), Jameson and Wilhelm (1992), Cetin, Jarrow,

Protter, and Warachka (2006), Goyal and Saretto (2009), Engle and Neri (2010), Cao

and Wei (2010), Christoffersen, Goyenko, Jacobs, and Karoui (2015), and Choy and

Wei (2016)). To further check the effect of illiquidity, we choose five liquidity measures

and sort options based on each measure. Table 2 shows the distribution of the number

of options for each liquidity measure. For both short-term and long-term calls and puts,

the number of options in the least liquid brackets is small relative to the total sample

size. Thus, we conclude that the liquidity issue of equity options does not have a large

impact on our selected options.

4The last two restrictions are mainly to ensure that the options that are selected are close to ATM and
the difference between the maturity of the short-term and long-term options is not too large. Relaxing
those restrictions yields similar results.

6



4 The Idiosyncratic Jump Risk of Individual Firms

This section presents our results on the idiosyncratic jump risk of individual firms.

We first demonstrate that our option-based idiosyncratic jump risk measure identifies

realized jumps in the underlying stock price. Then we study the statistical properties

of the idiosyncratic jump risk premium. We further investigate the cross-sectional

relationship between the idiosyncratic jump risk premium and the firm characteristics.

Finally, we check whether the idiosyncratic jump can help explain certain return

anomaly.

4.1 Identifying Idiosyncratic Jump Risk

If our option-based idiosyncratic jump risk measure captures the jump risk of the

underlying stock, then it should be consistent with the realized jump of that stock. For

example, our measure should peak when a realized jump occurs because our measure

is positively correlated with the jump probability of the underlying stock.

Figure 1 plots the idiosyncratic jump risk measure of Apple Inc., along with realized

market price jumps (jumps of the S&P 500) and the idiosyncratic jumps of Apple stock.

The realized jumps are calculated using daily prices with Lee and Mykland (2008)

method.5 The top panel shows the portfolio return with the realized jumps of Apple

and the bottom one shows the realized jumps of S&P 500.

The figure shows that the return on the idiosyncratic jump portfolio aligns well with

the jumps in Apple. Our measure in general peaks whenever a jump in Apple occurred,

suggesting our measure does capture the jump of the underlying stock. The bottom

panel shows that our measure also captures some of the market jumps. This reflects

the fact that jumps of individual stock might be caused by the aggregate jump of the

market. However, the stock of Apple experience more jumps than S&P 500, so most

5The details of the empirical implication are given in Appendix A.1.
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of Apple’s jump are idiosyncratic. Based on this observation, we conclude that our

measure is mainly driven by the firm’s idiosyncratic jump risk instead of the market

jump risk.

4.2 The Idiosyncratic Jump Risk Premium

Table 3 reports the summary statistics of the return on the idiosyncratic jump

portfolio. It reports the statistics in each year as well as the statistics over the whole

sample period.

In total, we estimate the idiosyncratic jump risk for approximately 5,000 firms. This

is by far the largest sample that has been studied in the existing literature. On average,

there are around 1,500 firms included in our sample each year. There is no significant

pattern for the number of firms in each year. The available observation for each firm

steadily increases over the period 1996 to 2016.6

The first result in Table 3 is that the average return on the idiosyncratic jump risk

portfolio is negative in most of the years as well as in the overall sample period. We

can reject the null hypothesis that the mean is equal to zero. The median confirms this

conclusion as it is also negative in all years. This suggests that the idiosyncratic jump

risk is priced with a negative risk premium. In addition, we find the idiosyncratic jump

risk premium could be large as it has large extreme values and large kurtosis.

Overall, our results show that idiosyncratic jump bears significant risk premium.

The results are consistent with existing papers which study the idiosyncratic jump risk

in a small sample. We confirm their findings in a much larger sample.

6The number of observations drops in 2016 because there are only four months included in 2016.
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4.3 The Idiosyncratic Jump Risk Premium in Sub-Samples

The negative return on the idiosyncratic jump portfolio suggests that investors would

like to pay to hold the idiosyncratic jump risk portfolio. One potential reason is that

those portfolios can provide valuable hedges against downward idiosyncratic jumps.

To check this argument, we split the sample based on the sign of the underlying stock

return and calculate the return on the idiosyncratic jump risk portfolio in both samples.

If those portfolios indeed provide valuable hedges, then the return on the portfolio

should be higher when the underlying return is negative than when the underlying

return is positive.

The sub-sample results are reported in Table 4. In total, there are 1,528,591

number of observations in the positive underlying return sample and 1,503,651 number

of observations in the negative return sample.7 Thus, the number of observations

are relatively equal in both samples. When we calculate the average return on the

idiosyncratic jump risk portfolio, we find that the return is higher (-0.38%) when the

underlying stock return is negative than when the underlying stock return is positive

(-0.41%). This shows that our idiosyncratic jump security indeed pays when negative

return occurs and thus supports the hedge story. We find the same pattern holds in

most of the years.

4.4 The Idiosyncratic Jump Risk Premium and Firm Characteris-

tics

After investigating the idiosyncratic jump risk premium in different years, we now

turn to study its cross-sectional distribution. The objective is to study if some firm bears

more idiosyncratic jump risk premium than others.

7On each day, we classify every stock based on the sign of its return on that day. If the stock has a
positive return, then it is classified to the positive underlying return sample. If it has a negative return,
then it is classified to the negative underlying return sample. Thus the positive (negative) return sample
is a panel data which contains all the positive (negative) return days of all stocks.
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We consider seven stock characteristics in total. They are the stock return, stock

price, dollar volume, realized volatility, realized skewness, realized kurtosis, the industry

that the stock belongs to, stock size, idiosyncratic volatility, and stock illiquidity.8 For

each characteristic in each month, we sort the stocks into ten bins based on the stock

characteristic in that month. Then for each bin, we calculate the average idiosyncratic

jump risk premium in that month as well as the average idiosyncratic jump risk premium

in next month. We examine the contemporaneous relationship between the stock

characteristic with the average idiosyncratic jump risk premium as well as the out-of-

sample relationship (i.e., the relationship between the current stock characteristic with

the average idiosyncratic jump risk premium in next month).

Table 5 reports the unconditional cross-sectional distribution of the idiosyncratic

jump risk premium. Except for the industry, portfolio 1 means the portfolio with

the lowest value and the portfolio 10 means the portfolio with the highest value.9

The contemporaneous relationship is reported in the top panel. We find that there

is a monotonic relationship between the firm’s idiosyncratic jump risk premium with

the average stock price, dollar volume, realized volatility, market size, idiosyncratic

volatility, and stock liquidity. The relationship is consistent with economic intuitions.

For example, because stocks with lower prices, smaller trade volume or market size, and

higher volatility or higher illiquidity tend to have larger idiosyncratic jump probabilities,

those stocks should have larger idiosyncratic jump risk premium.

On the contrary, we find that there is a U-shape between the idiosyncratic jump

risk premium with stock return, realized skewness, and realized kurtosis. This suggests

that the idiosyncratic jump risk premium is related to both positive and negative price

jumps.

8The definition of the idiosyncratic volatility and the illiquidity are given in the Appendix A.2 and
A.3 respectively.

9For industry, 1 means the consumer non-durables industry, 2 means the consumer durables industry,
3 means the manufacturing industry, 4 means the energy industry, 5 means the high tech industry, 6
means the telecoms industry, 7 means the wholesale and retail industry, 8 means the health-care industry,
9 means the utility industry, and 10 means other industries. The 10 industry codes are obtained on
Kenneth French’s website.
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For the industry, the overall results suggest that the idiosyncratic jump risk premium

is of larger magnitude for stocks in non-durable industry (industry 1), in the health-care

industry (industry 8), and in the other industries (such as the finance industry, industry

10). This result is consistent with the fact that investor pays more for the stocks that in

more volatile industries.

We conduct several additional tests to verify the contemporaneous relationship. The

bottom panel reports the out-of-sample relationship between the idiosyncratic jump risk

premium and firm characteristics. We find most of the contemporaneous relationship

in the top panel also holds out-of-sample.10

Table 6 reports a Fama-MacBeth (Fama and MacBeth (1973)) type of regression

where the idiosyncratic jump risk premium is regressed against the firm size, the

idiosyncratic volatility, and stock illquidity. We find the coefficients in front of all the

selected firm characteristics are significant, even after controlling for several other

variables. This supports previous findings. Moreover, for each characteristics, Figure 2

and 3 plot the average and the cumulative return on the portfolio 1 and portfolio 10,

where the portfolios are the ones used in Table 5. For the average return, we find that

the return on the portfolio with higher idiosyncratic jump risks has a larger (more

negative) risk premium, which is in line with previous findings. Interestingly, Figure 2

shows the idiosyncratic risk premium first increases and even becomes to positive in

the financial crisis. This time-series pattern is consistent with the sub-sample statistics

shown in Table 4. For the cumulative returns, Figure 3 shows the difference between

the return on the firms with the lowest idiosyncratic jump risk premium and the ones

with the highest idiosyncratic jump risk premium is quite large. It shows that the return

on the portfolio which has highest idiosyncratic jump risk decrease below to -10%

rapidly, while the return on the portfolio which has lowest idiosyncratic jump risk only

moves around 0%.

10The cross-sectional statistics are exactly same for the industry portfolio in two panels because most
of the firm is in the same industry as the one in previous month.
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In sum, we find that the idiosyncratic jump risk premium is related to certain firm

characteristics. Given that those characteristics have been used in the studies for the

arbitrage risk (Lakonishok, Shleifer, and Vishny (1994), Shleifer and Vishny (1997), and

Pontiff (2006)) or the idiosyncratic risk (Spiegel and Wang (2005) and Ang, Hodrick,

Xing, and Zhang (2006)), it would be interesting to further study their relationship

with the idiosyncratic jumps. Here we provide some preliminary empirical evidence.

We will leave the detailed study for future work.

4.5 Idiosyncratic Jump Risk and the Cross-Section of Stock Re-

turns

Now that we have established that the idiosyncratic jump risk bears a significant

risk premium, we proceed to study its asset pricing implication. This section focuses

on the relationship between the idiosyncratic jump risk and the cross-section of stock

returns.

Our empirical procedure is as follows. On each month, we sort stocks into five

quintile portfolios based on their average monthly idiosyncratic jump risk premiums.

Then we calculate the return in the next month for each of the five portfolio. We control

for the Fama-French 3-factors (Fama and French (1993)) and the momentum factor

(Carhart (1997)) when examining the alpha. If the idiosyncratic jump risk affects the

stock returns, then there would be a monotonic relationship between the return on the

sorted portfolios with its idiosyncratic jump risk premium and the alphas should be

significant.

Table 7 reports the results. First, we find the average return is decreasing from

portfolio 1 to portfolio 5, suggesting that the firms with high idiosyncratic jump risk

earn low returns. The difference between the return on portfolio 5 and the one of

portfolio 1 is also significantly negative. The pattern holds after controlling for the

market return, the Fama-French 3 factors, and the Cahart 4 factors. These results
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confirm that there is a negative market price of risk associated with idiosyncratic

jumpss. Our estimates show that longing portfolio 5 and shorting portfolio 1 generates

about -0.6% return per day.

After establishing that the idiosyncratic risk is priced, we study whether it could

help to explain other return anomalies. We focus on the idiosyncratic volatility puzzle

given the close relationship between the idiosyncratic jump risk and the idiosyncratic

volatility risk.

Table 8 reports the value-weighted return on double-sorted portfolios on both

idiosyncratic jump risks and idiosyncratic volatilities. We find the difference between

the return of high idiosyncratic volatility portfolio with the one of low idiosyncratic

volatility portfolios becomes insignificant in three of the five idiosyncratic jump quintiles.

Thus, idiosyncratic jump risk premiums can explain part of the idiosyncratic volatility

risk premium, which is consistent with the fact that the price changes contain both

the diffusive part and the jump part. On the other hand, idiosyncratic volatility risk

premium cannot completely explain the idiosyncratic jump risk premium, as the return

differences between the two extreme portfolios are still significant in three of the five

idiosyncratic volatilities quintiles. Overall, the result shows that the idiosyncratic jump

risk help to explain part of the idiosyncratic volatility risk.

5 The Commonality in Idiosyncratic Jump Risk

Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016) documents that the id-

iosyncratic volatilities of different firms share a common component and this common

component affects the cross-section of stock returns. Here we check if the idiosyncratic

jump risks of different firms also have a common component.

To motivate the common component of the idiosyncratic jump risk of different firms,

Figure 4 plots the time series of the annual idiosyncratic jump risk of five portfolios
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that are sorted based on the firm size and five portfolios that sorted are based on the

industry of the firm. Both panels show that the general trend of the idiosyncratic jump

risk of different portfolios is very similar. This motives us to focus on the cross-sectional

mean of the idiosyncratic jump risk of different firms.

5.1 Defining the Common Idiosyncratic Jump Risk

The common idiosyncratic jump (CIJ) is defined as the cross-sectional mean of the

idiosyncratic jump risk of different firms. The specific formula is as follows:

CIJt =
1

Nt

Nt∑
i=1

Adjusted Idiosyncratic Jump Riski,t (6)

whereNt is the total number of stocks in month t and Adjusted Idiosyncratic Jump Riski,t

is the adjusted idiosyncratic jump risk of stock i. The adjustment is to remove the impact

of the market jump risk on the firm’s idiosyncratic jump risk. Adjusted Idiosyncratic Jump Riski,t

is defined as follows:11

Idio. Jump Riski,t = αi + βi ×Market Jump Riskt + εi,t

= βi ×Market Jump Riskt + Adj. Idio. Jump Riski,t

(7)

Market Jump Risk is estimated by applying the methodology in Section 2 on S&P 500

index options. We run the regression (7) for every stock in every month. Because the

intercept also contains relevant information, we define the adjusted idiosyncratic jump

risk as the residuals plus the intercept.12

Figure 5 plots the cross-sectional average of the regression estimates of equation (7).

From the top to bottom, it reports the average intercept αi, the coefficient of the market

11Because there is no established procedure about how to conduct this exercise, we adopt the most
straightforward procedure, i.e. regressing the idiosyncratic jump risk against the market jump risk and
take the constant with the residual.

12Dropping the intercept mainly affects the absolute value of the idiosyncratic jump risk, but does not
affect the relative value of the idiosyncratic jump risk across different firms.

14



jump risk, βi, the R2, and the number of observations in each month. From the figure,

we can find that the average coefficient in front of the market jump risk ranges around

0, suggesting that the correlation between the market jump risk and the idiosyncratic

jump risk is low. The pattern of the average R2 suggests that the correlation varies

across the time. The average R2 is about 20% and seems decrease in the latter sample

period. The average number of observations used in each regression is above 10. In

sum, Figure 5 shows the estimation of equation (7) is normal-behaved.

Next, we check whether our method indeed clears impacts from market jump risks.

We calculate as the average of the pairwise correlation between the market jump risk

and the idiosyncratic jump risk of individual firms. If equation (7) does not purify all

systematic shocks, then there should be positive correlations between idiosyncratic

jump risks with market jump risks.

The correlations are plotted in Figure 6. It shows that while the correlation between

market jump risks with the raw idiosyncratic jump risk is non-zero, the correlation

between market jump risks with the adjusted idiosyncratic jump risk is zero. Thus, we

conclude that the linear regression removes some of the impacts from the market jump

risk.

5.2 The Common Idiosyncratic Jump Risk and the Market Jump

Risk

We could also run the following regression to directly check the correlation between

the CIJ and the market jump risk:

CIJt = Constant + βMarket Jump ×Market Jumpt + εt (8)

If the market jump risk has a large impact on CIJ, then βMarket Jump should be significant

and the adjusted R2 should be high.
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The estimation result is reported in in Table 9. The Pearson correlation coefficients

among CIJ, the market jump risk, and the residuals are reported. Table 9 shows

βMarket Jump is significant, the adjusted R2 is around 32%. Thus about two-third of the

variation in CIJ cannot be explained by the market jump. Moreover, the correlation

between the estimated residuals with market jump is zero but highly correlated with

the CIJ. Figure 7 plots the time series of CIJ and the residuals of equation (8). It

clearly shows the CIJ and the residuals are closely correlated. Given the non-correlation

between the residual and the market jump risk, we conclude that CIJ is a common

factor that different than the market jump factor.

5.3 The Common Idiosyncratic Jump Risk and the Idiosyncratic

Jump Risk of Individual Firms

After calculating CIJ, we run the following regression to test the explanatory power

of CIJ on the indiosyncratic jump risk of individual firms:

Adj. Idio. Jumpi,t = Constanti + βi × CIJt + Controls + εi,t

Idio. Jumpi,t = Constanti + βi × CIJt + Controls + εi,t

(9)

where Adj. Idio. Jumpi,t is the adjusted idiosyncratic jump risk of firm i at time t,

Idio. Jumpi,t denotes the raw idiosyncratic jump risk of firm i at time t, CIJt is the

common idiosyncratic jump risk at time t. We run the regression for each firm over

the entire sample period. We control for the market jump risk in the regression. The

average estimated R2 represents how much of total variations that CIJ could explain.

The regression results are reported in Table 10. We find two findings. First, the

average adjusted R2 in the adjusted idiosyncratic jump regression is approximately

18% (21%) for the monthly regression and is approximately 38% (41%) for the annual

regression. It shows that CIJ factor itself explain a significant proportion of the firm’s

idiosyncratic jump risk. Second, After adding market jumps to the regression, the
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adjusted R2 is only approved by 8% (18%) in the monthly (annual) specification. Thus,

CIJ has more explanatory power to the idiosyncratic jump of individual firms than the

market jump.

5.4 The Common Idiosyncratic Jump Risk and the Cross-Section

of Stock Returns

After identifying that CIJ is different from the market jump risk, we study its asset

pricing implication. We focus on whether CIJ is a systematic risk factor that affects the

cross-section of stock returns.

The empirical procedure is as follows. On each month, we regress the excess return

of individual equities on CIJ using the data of past six months, while controlling for the

market returns.13 The regression specification is as follows:

Excess Reti,t = Constant + βMKT,i ×Market Rett + βCIJ,i × CIJt + εi,t (10)

Then we sort the stocks into five portfolios based on estimated βCIJ,i and calculate the

equal-weight return on each portfolio. We also report difference of the return on two

extreme portfolios and the alphas that after controlling for the Fama-French 3 factor

and the Carhart 4 factor.

Table 11 reports the sorting results. It clearly shows a decreasing pattern between

the portfolio returns and the βCIJ. This is intuitive because an increment of CIJ means

an increase in the average probability of an idiosyncratic jump would occur. Although it

would not affect the whole market, it should affect the individual firms. If investors have

limits to arbitrage (Shleifer and Vishny (1997)), hold too concentrated portfolios (Be-

nartzi (2001) and Cohen (2009)), or have little protection against the unemployment
13We don not control for other factors such as the Fama-French factors when estimating βCIJ,i. This is

to make sure that βCIJ,i can be estimated accurately. We do control for the other factors when calculating
the alpha. This procedure is consistent with the ones in existing studies. See, for example, Ang, Hodrick,
Xing, and Zhang (2006) and Cremers, Halling, and Weinbaum (2015) for more details.
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risk (Berk, Stanton, and Zechner (2010) and Lustig, Syverson, and Van Nieuwerburgh

(2011)), then the shocks to individual firms would severely impacts the consumption

of individuals. Thus investors demand assets with high βCIJ because those assets can

hedge against the individual consumption risk. This demand would bid up the asset

prices and lower the asset return. Thus the common idiosyncratic jump risk should

carry a negative risk premium.

To control for the effect of the market jump risk, we construct double sorted port-

folios on βCIJ and βMarket Jump. The βCIJ and βMKT Jump are calculated from the following

regression:

Excess Reti,t = Constant+βMKT,i×Market Rett+βCIJ,i×CIJt+βMKT Jump,i×MKT Jumpt+εi,t

(11)

where Excess Reti,t, Market Rett, and CIJt have the same definitions as in regres-

sion (10). MKT Jumpt has the same definition as in regression (7).

Table 12 reports the alphas after controlling for the Fama-French 3 factors. We find

the decreasing pattern persists for certain portfolios, even after controlling for βMKT Jump.

This results show βMKT Jump cannot fully absorb the impact of βCIJ, suggesting that CIJ is

a systematic risk factor that independent of the market jump.

6 Conclusion

We contribute to the literature by using an option-based approach to study the

idiosyncratic jump risk of individual firms, which we implement for a large number of

firms over a twenty-year period. We find the idiosyncratic jump risk carries a significant

negative risk premium and is related to firm characteristics. It also helps to explain part

of the idiosyncratic volatility puzzle.
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Moreover, we show the existence of a common idiosyncratic jump risk factor that

explains a significant portion of the idiosyncratic jump risk of different firms. This

common factor is different from the market jump risk and affects the cross-section of

stock returns. Sorting exercise verifies that this common factor has a negative risk

premium, suggesting that investors would like to pay to hedge both the market jump

risk and the common idiosyncratic jump risk.
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Table 1
Summary Statistics of the Selected Options

We report the summary statistics of the options. We report the mean, standard deviation, minimum, and maximum of
option returns, price, bid-ask spread, trade volume, open interest, days to maturity, and moneyness. Short-term options
are the options that maturing in the nearest month. Long-term options are the ones that maturing in the second nearest
month. The data is on daily frequency. The sample period is from January, 1996 to April, 2016.

Short-Term Call Short-Term Put
N. Obs Mean STD Min Max Mean STD Min Max

Option Return 3087639 0.10% 26.92% -98.66% 1407.14% -0.78% 25.09% -97.75% 878.95%
Option Price 3087639 1.99 1.92 0.50 85.56 1.94 1.88 0.50 76.75
Relative Spread 3087639 14.47% 8.87% 0.29% 50.00% 14.95% 9.14% 0.25% 50.00%
Volume 3087639 166.98 748.89 0 90,497 109.74 565.36 0 114965
Open Interest 3087639 1,437.95 4,239.46 1 385,836 944.99 3,063.36 1 231268
Days to Maturity 3087639 35.77 16.72 14 152 35.77 16.72 14 152
Moneyness 3087639 1.00 0.02 0.96 1.04 1.00 0.02 0.96 1.04

Long-Term Call Long-Term Put
N. Obs Mean STD Min Max Mean STD Min Max

Option Return 3087639 0.20% 16.60% -96.01% 965.00% -0.32% 14.89% -94.62% 397.56%
Option Price 3087639 3.25 2.99 0.5 102.25 3.12 2.88 0.50 92.88
Relative Spread 3087639 10.79% 6.48% 0.20% 50.00% 10.98% 6.55% 0.25% 50.00%
Volume 3087639 66.74 425.67 0 118959 43.84767 340.9091 0 98360
Open Interest 3087639 1,185.37 3,983.38 1 395452 777.79 3,009.89 1 252166
Days to Maturity 3087639 93.69 37.70 42 180 93.69 37.70 42 180
Moneyness 3087639 1.00 0.02 0.96 1.04 1.00 0.02 0.96 1.04
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Table 2
Distribution of the Options on Five Option Characteristics

We report the the distribution of options on five option characteristics. The characteris-
tics are the moneyness, the maturity, the trading volume, the open interest, and the
relative bid-ask spread. For each characteristics, we divide the sample into several bins
and report the number of observations and the corresponding percentage for each bin.
The data is on daily frequency. The sample period is from January, 1996 to April, 2016.

Moneyness

[0.96,0.98] (0.98,1.02] (1.02,1.04]
Short-Term Call / Put

N. Options 623400 1885300 578939
Percentage 20.19% 61.06% 18.75%

Long-Term Call / Put
N. Options 628720 1872917 586002
Percentage 20.36% 60.66% 18.98%

Days to Maturity

(0,30] (30,60] (60,90] (90,120] (120,150] (150,180]
Short-Term Call / Put

N. Options 1305602 1528316 231882 15743 5869 227
Percentage 42.28% 49.50% 7.51% 0.51% 0.19% 0.01%

Long-Term Call /Put
N. Options 0 888329 651150 646078 625696 276386
Percentage 0% 28.77% 21.09% 20.92% 20.26% 8.95%

Volume

0 (0,100] (100,500] (500,1000] (1000,1500] (1500, Max]
Short-Term Call

N. Options 989614 1429461 450761 104250 43594 69959
Percentage 32.05% 46.30% 14.60% 3.38% 1.41% 2.27%

Short-Term Put
N. Options 1396571 1221449 324219 71092 30058 44250
Percentage 45.23% 39.56% 10.50% 2.30% 0.97% 1.43%

Long-Term Call
N. Options 1443728 1321434 242167 42082 16187 22041
Percentage 46.76% 42.80% 7.84% 1.36% 0.52% 0.71%

Long-Term Put
N. Options 1882347 995121 159125 26070 10637 14339
Percentage 60.96% 32.23% 5.15% 0.84% 0.34% 0.46%

25



Open Interest

(0,1] (1,100] (100,500] (500,1000] (1000,1500] (1500,]
Short-Term Call

N. Options 16571 811686 977439 421512 219236 641195
Percentage 0.54% 26.29% 31.66% 13.65% 7.10% 20.77%

Short-Term Put
N. Options 28945 1185153 938567 336759 167679 430536
Percentage 0.94% 38.38% 30.40% 10.91% 5.43% 13.94%

Long-Term Call
N. Options 21435 965048 1015206 391696 188130 506124
Percentage 0.69% 31.26% 32.88% 12.69% 6.09% 16.39%

Long-Term Put
N. Options 36925 1348194 944024 297953 134919 325624
Percentage 1.20% 43.66% 30.57% 9.65% 4.37% 10.55%

Relative Bid-Ask Spread

(0,0.05] (0.05, 0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5]
Short-Term Call

N. Options 289375 839813 1283229 461468 168036 45718
Percentage 9.37% 27.20% 41.56% 14.95% 5.44% 1.48%

Short-Term Put
N. Options 271169 806079 1276123 490635 191032 52601
Percentage 8.78% 26.11% 41.33% 15.89% 6.19% 1.70%

Long-Term Call
N. Options 481106 1199339 1145840 208019 43596 9739
Percentage 15.58% 38.84% 37.11% 6.74% 1.41% 0.32%

Long-Term Put
N. Options 472240 1156739 1181449 223907 43863 9441
Percentage 15.29% 37.46% 38.26% 7.25% 1.42% 0.31%
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Table 3
Summary Statistics of the Return of the Idiosyncratic Jump Portfolio

We report the summary statistics of the return on the idiosyncratic jump option portfolio. The idiosyncratic jump option
portfolio is a Delta-neutral, Vega-neutral, and Gamma-positive option portfolio that constructed with ATM equity options.
We report the statistics in each year as well as in the entire sample period. The sample period is from January, 1996 to
April, 2016.

Year N. Firms N. Obs Mean Std Min Median Max Skewness Kurtosis
1996 1185 98365 -0.43% 6.11% -48.57% -0.81% 241.21% 3.37 61.46
1997 1472 124157 -0.45% 6.00% -46.47% -0.85% 167.67% 2.50 28.68
1998 1613 128723 -0.28% 6.23% -43.93% -0.78% 155.01% 2.82 29.87
1999 1718 130070 -0.49% 5.69% -62.80% -0.87% 179.16% 2.80 34.18
2000 1619 125690 -0.20% 5.97% -47.41% -0.76% 248.82% 3.93 65.43
2001 1516 116066 -0.62% 5.02% -38.56% -0.98% 95.69% 2.70 25.14
2002 1485 116101 -0.43% 5.08% -40.58% -0.82% 333.63% 5.67 199.31
2003 1425 123425 -0.65% 4.84% -35.98% -0.92% 234.62% 3.99 85.45
2004 1561 148615 -0.57% 4.91% -42.51% -0.86% 259.58% 4.36 97.69
2005 1595 156685 -0.55% 5.07% -45.71% -0.87% 182.30% 3.93 67.35
2006 1678 181102 -0.49% 4.93% -50.83% -0.84% 195.72% 3.74 67.11
2007 1777 197787 -0.35% 5.41% -44.77% -0.81% 168.03% 3.01 37.27
2008 1723 171628 0.05% 5.81% -46.69% -0.64% 279.67% 3.20 53.67
2009 1598 152272 -0.57% 4.68% -39.27% -0.96% 122.03% 2.68 32.26
2010 1642 161047 -0.46% 5.01% -54.86% -0.87% 237.81% 3.34 70.22
2011 1579 154915 -0.21% 5.75% -42.34% -0.83% 159.11% 3.15 32.01
2012 1474 144386 -0.51% 5.07% -44.56% -0.87% 166.16% 3.22 49.96
2013 1701 171879 -0.44% 4.98% -47.96% -0.82% 181.28% 3.75 69.90
2014 1805 206120 -0.36% 4.94% -45.32% -0.75% 254.84% 3.69 79.49
2015 1855 216245 -0.29% 5.14% -42.31% -0.73% 186.81% 2.95 45.09
2016 1519 62361 -0.15% 4.97% -37.44% -0.59% 109.62% 2.44 29.46

1996 - 2016 4993 3087639 -0.40% 5.31% -62.80% -0.82% 333.63% 3.39 57.61
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Table 4
The Idiosyncratic Jump Risk in Sub-Samples

We report the summary statistics of the idiosyncratic jump risk in two sub-samples.
The first sub-sample contains all the days when the return on the underlying stock
is positive. The second contains the days when the return on the underlying stock is
negative. We calculate average idiosyncratic jump risk in both samples to see how it
relates to the direction of the underlying price movement. The sample period is from
January, 1996 to April, 2016.

Return on the Underlying is Positive Return on the Underlying is Negative
Year N.Obs Mean Std Year N.Obs Mean Std

1996 43657 -0.45% 6.08% 1996 45460 -0.36% 6.26%
1997 57387 -0.45% 6.02% 1997 58449 -0.40% 6.02%
1998 60238 -0.39% 6.11% 1998 62776 -0.12% 6.39%
1999 59661 -0.52% 5.86% 1999 64916 -0.43% 5.57%
2000 59076 -0.31% 5.98% 2000 62594 -0.07% 5.96%
2001 56671 -0.71% 4.80% 2001 57850 -0.52% 5.23%
2002 55422 -0.47% 5.18% 2002 59629 -0.37% 4.99%
2003 63119 -0.54% 4.94% 2003 58842 -0.77% 4.73%
2004 74764 -0.57% 5.00% 2004 72174 -0.56% 4.84%
2005 77867 -0.57% 5.07% 2005 77042 -0.53% 5.06%
2006 90638 -0.39% 5.05% 2006 88628 -0.59% 4.81%
2007 99539 -0.34% 5.44% 2007 96518 -0.35% 5.39%
2008 82662 0.07% 5.71% 2008 87861 0.05% 5.91%
2009 79126 -0.49% 4.79% 2009 71863 -0.65% 4.55%
2010 82236 -0.47% 4.94% 2010 77310 -0.44% 5.09%
2011 77653 -0.23% 5.74% 2011 76148 -0.19% 5.76%
2012 72003 -0.43% 5.11% 2012 71051 -0.60% 5.02%
2013 90411 -0.44% 4.90% 2013 79885 -0.44% 5.06%
2014 105832 -0.44% 4.94% 2014 98563 -0.27% 4.96%
2015 107702 -0.34% 5.02% 2015 107003 -0.23% 5.26%
2016 32927 -0.18% 5.05% 2016 29089 -0.11% 4.87%

1996-2016 1528591 -0.41% 5.29% 1996-2016 1503651 -0.38% 5.33%
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Table 5
The Cross-Sectional Relationship Between the Idiosyncratic Jump Risk and the Firm Characteristics

We report the cross-sectional relationship between the idiosyncratic jump risk and the firm characteristics. Panel A
reports the contemporaneous relationship and Panel B reports the out-of-sample relationship. The sample period is from
January, 1996 to April, 2016.

Contemporaneous Relationship
1 2 3 4 5 6 7 8 9 10

Stock Return -0.14% -0.45% -0.52% -0.53% -0.54% -0.53% -0.47% -0.41% -0.27% 0.02%
Stock Price -0.59% -0.46% -0.46% -0.41% -0.32% -0.32% -0.33% -0.34% -0.32% -0.29%
Stock Dollar Volume -0.77% -0.65% -0.56% -0.46% -0.43% -0.36% -0.27% -0.21% -0.13% -0.01%
Realized Vol -0.94% -0.72% -0.61% -0.51% -0.43% -0.38% -0.32% -0.21% -0.04% 0.31%
Realized Skew -0.21% -0.45% -0.46% -0.47% -0.46% -0.45% -0.43% -0.40% -0.35% -0.17%
Realized Kurt -0.46% -0.49% -0.47% -0.45% -0.44% -0.43% -0.42% -0.34% -0.23% -0.11%
Industry -0.46% -0.37% -0.35% -0.29% -0.35% -0.35% -0.38% -0.58% -0.40% -0.39%
Market Size -0.64% -0.53% -0.46% -0.42% -0.38% -0.38% -0.36% -0.30% -0.23% -0.14%
Idio. Vol -0.79% -0.67% -0.58% -0.50% -0.46% -0.39% -0.35% -0.22% -0.11% 0.25%
Stock Illiquidity -0.22% -0.25% -0.28% -0.31% -0.37% -0.38% -0.43% -0.45% -0.52% -0.63%

Out-of-Sample Relationship
1 2 3 4 5 6 7 8 9 10

Stock Return -0.43% -0.40% -0.38% -0.38% -0.38% -0.41% -0.35% -0.38% -0.37% -0.40%
Stock Price -0.60% -0.44% -0.43% -0.43% -0.34% -0.34% -0.35% -0.31% -0.33% -0.29%
Stock Dollar Volume -0.63% -0.58% -0.51% -0.46% -0.40% -0.37% -0.31% -0.26% -0.21% -0.12%
Realized Vol -0.44% -0.40% -0.39% -0.36% -0.38% -0.37% -0.35% -0.36% -0.36% -0.46%
Realized Skew -0.50% -0.38% -0.36% -0.36% -0.34% -0.34% -0.37% -0.35% -0.38% -0.49%
Realized Kurt -0.33% -0.33% -0.34% -0.34% -0.34% -0.36% -0.37% -0.43% -0.45% -0.56%
Industry -0.46% -0.37% -0.35% -0.29% -0.35% -0.35% -0.38% -0.58% -0.40% -0.39%
Market Size -0.61% -0.56% -0.46% -0.41% -0.40% -0.38% -0.34% -0.31% -0.24% -0.14%
Idio. Vol -0.41% -0.37% -0.36% -0.37% -0.39% -0.34% -0.36% -0.37% -0.40% -0.50%
Stock Illiquidity -0.16% -0.22% -0.29% -0.33% -0.38% -0.36% -0.46% -0.47% -0.56% -0.63%
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Table 6
Fama-MacBeth Regression of Idiosyncratic Jump Risks and the Firm

Characteristics

We report the results of a Fama-MacBeth type of regression where the idiosyncratic jump
risk is regressed against the firm size, idiosyncratic volatility, and stock illiquidity. The
results of both univariate and multivariate regression are reported. In the multivariate
regression, we control for the share price of last month, the average bid-ask spread,
the realized skewness, coskewness, the upside beta, and the downside beta. Standard
errors are adjusted by Newey-West (1987) method with lag of one period. T-statistics
are reported in the parenthesis. The sample period is from January, 1996 to April, 2016.

Idio. Jump Idio. Jump Idio. Jump Idio. Jump Idio. Jump

Market Size 0.0008*** 0.0007*** 0.0002**

(9.7074) (9.0620) (2.5039)

Idio. Vol -0.0006*** -0.0002** -0.0015***

(-5.4718) (-2.3484) (-4.2155)

Stock Illiquidity -0.0020*** -0.0016*** -0.0015***

(-9.1970) (-8.0162) (-7.4947)

Constant -0.0038*** -0.0040*** -0.0040*** -0.0041*** -0.0038***

(-12.3900) (-12.7860) (-12.8770) (-13.0730) (-10.6880)

Controls No No No No Yes

Adj. R2 0.0014 0.0022 0.0034 0.0060 0.0122

N.Obs 278511 278511 278511 278511 278490
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Table 7
Returns of the Value-Weighted Portfolios that are Single-Sorted on Idiosyncratic

Jumps

We report the average return, CAPM alpha, Fama-French 3-factor alpha, and Carhart 4-
factor alpha of the portfolios that are sorted on the magnitude of the idiosyncratic jump
risk. In each month, we sort stocks into five portfolios based on the average return on
their idiosyncratic jump option portfolio. Then we calculate the realized average daily
return in the next month. Portfolio 1 has the lowest idiosyncratic jump risk and Portfolio
5 has the highest idiosyncratic jump risk. The numbers are in percentages. Standard
errors are adjusted by Newey-West (1987) method with lag of one period. T-statistics
are reported in the parenthesis. The sample period is from January, 1996 to April, 2016.

Average Return CAPM Alpha FF3 Alpha Carhart4 Alpha

1 1.0035 0.3761 0.3512 0.2940

Low IJump (3.0135) (2.2142) (2.2825) (1.8932)

2 0.8439 0.1358 0.1634 0.1329

(2.8227) (1.1741) (1.4737) (1.0977)

3 0.7412 0.0449 0.0852 0.0088

(2.3747) (0.3918) (0.8509) (0.0920)

4 0.7821 0.0298 0.0669 0.0562

(2.5450) (0.3015) (0.6545) (0.5542)

5 0.4259 -0.3805 -0.3668 -0.3054

High IJump (1.1591) (-3.0807) (-2.8813) (-2.2334)

High - Low -0.5776*** -0.7566*** -0.7180*** -0.5993**

(-2.7479) (-3.2302) (-3.1941) (-2.4892)
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Table 8
Returns of the Value-Weighted Portfolios that are Double-Sorted on the

Idiosyncratic Jump Risk and the Idiosyncratic Volatility Risk

We report the Fama-French 3-factor alpha of double-sorted portfolios that are
based on the idiosyncratic jump risk and idiosyncratic volatility risk. In each
month, we calculate the average return on the idiosyncratic jump portfolio and
the realized idiosyncratic volatility. We first form five quintile groups based on
the average return on the idiosyncratic jump portfolio. Then we further form five
groups based on the realized idiosyncratic volatility for each quintile group. We
calculate the value-weighted average returns for each of the 25 portfolios. The
Fama-French 3-factor alpha is the intercept of regressing the portfolio return on
the Fama-French 3 factors. The numbers are in percentages. Standard errors
are adjusted by Newey-West (1987) method with lag of one period. T-statistics
are reported in the parenthesis. The sample period is from January, 1996 to April, 2016.

Low IVol High IVol

FF3 Alpha 1 2 3 4 5 High - Low

1 0.3084 0.4596 0.0114 0.1711 -0.0418 -0.3502

Low IJump (1.5093) (2.0613) (0.0500) (0.5203) (-0.1040) (-0.8212)

2 0.3773 0.1133 0.2899 0.0235 -0.4315 -0.8088*

(2.2514) (0.5960) (1.0488) (0.0861) (-1.2314) (-1.9215)

3 0.2691 -0.1265 0.1518 -0.0314 -0.6930 -0.9621***

(1.6354) (-0.6756) (0.6802) (-0.1370) (-2.1831) (-2.6157)

4 0.1514 0.1941 0.0979 -0.2969 -0.2374 -0.3888

(0.8125) (1.1495) (0.4816) (-0.9818) (-0.5785) (-0.8511)

5 -0.3889 -0.1071 -0.1537 -0.6622 -1.0745 -0.6856

High IJump (-1.9027) (-0.5022) (-0.6612) (-1.6916) (-2.4930) (-1.3756)

High - Low -0.6972*** -0.5668* -0.1651 -0.8333 -1.0327* -0.3355

(-2.6228) (-1.7488) (-0.5190) (-1.4855) (-1.7178) (-0.5552)
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Table 9
The Relationship Between the Common Idiosyncratic Jump Risk and the Market

Jump Risk

We report the estimation results of following regressions.

CIJt = Constant + βMarket Jump ×Market Jumpt + εt

where CIJt denotes the common idiosyncratic jump risk at time t and Market Jumpt

denotes the market jump risk at time t. The regressions are conducted using monthly
observations. Panel A reports the regression estimates. Panel B reports the correlation
between the common idiosyncratic jump risk, the market jump risk, and the residual of
the above regression. The sample period is from January, 1996 to April, 2016.

Panel A: Regression Estimates

Constant βMarket Jump Adjusted R2 N. Obs

Estimated Coefficients -0.0009 0.3032 0.3272 236
T-Stats (-3.71) (48.86)

Panel B: Correlation Matrix

CIJt Market Jumpt εt

CIJt 1
Market Jumpt 0.5722 1
εt 0.8201 0.0000 1
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Table 10
The Explanatory Power of CIJ

We report the results about the explanatory power of CIJ on the idiosyncratic jump risk
of individual firms. The explanatory regression is specified as follow.

Adj. Idio. Jumpi,t = Constanti + βi × CIJt + Controls + εi,t

Idio. Jumpi,t = Constanti + βi × CIJt + Controls + εi,t

where Adj. Idio. Jumpi,t denotes the adjusted idiosyncratic jump risk of stock i at time
t and Idio. Jumpi,t denotes the return on the idiosyncratic jump risk portfolio of stock i
at time t. Adj. Idio. Jumpi,t is defined in equation (7). The regressions are conducted
for every stock in every month (year). Panel A reports the monthly regression results
and panel B reports the annual regression results. The cross-sectional average of the
estimates are reported. The control variable is the market jump risk. The sample period
is from January, 1996 to April, 2016.

Panel A: Monthly Regressions

Adj. Idio. Jump Adj. Idio. Jump Idio. Jump Idio. Jump

Average Constant -0.0090 -0.0022 -0.0023 -0.0027
Average β -0.9118 0.4676 0.7556 0.3479
Average R2 0.1802 0.2625 0.2101 0.2911
Average N.Obs 823 822 823 822
With Market Jumps? No Yes No Yes

Panel B: Annual Regressions

Adj. Idio. Jump Adj. Idio. Jump Idio. Jump Idio. Jump

Average Constant -0.0145 -0.0086 -0.0025 -0.0030
Average β -1.9549 -0.9712 0.6951 1.0068
Average R2 0.3890 0.5779 0.4144 0.5991
Average N.Obs 7 6 7 6
With Market Jumps? No Yes No Yes
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Table 11
Returns of Value-Weighted Portfolios that are Single-Sorted on βCIJ

We report the average return, CAPM alpha, Fama-French 3-factor alpha, and
Carhart 4-factor alpha of the stock portfolios sorted on βCIJ. In each month, we
sort stocks into five portfolios based on the estimated βCIJ, where βCIJ are estimated
using the returns of the past six months. Then we calculate the value-weighted
return for each portfolio in the next month. Portfolio 1 has the lowest βCIJ and
Portfolio 5 has the highest βCIJ. The numbers are in percentages. Standard errors
are adjusted by Newey-West (1987) method with lag of six periods. T-statistics
are reported in the parenthesis. The sample period is from January, 1996 to April, 2016.

Average Return CAPM Alpha FF3 Alpha Carhart4 Alpha

1 0.0516 0.0086 0.0105 0.0068

Low βCIJ (2.1883) (0.7552) (1.0018) (0.6320)

2 0.0419 0.0055 0.0059 0.0020

(2.4701) (1.1936) (1.2846) (0.4449)

3 0.0450 0.0098 0.0100 0.0084

(2.9218) (2.8367) (3.0391) (2.4629)

4 0.0390 0.0019 0.0015 0.0041

(2.2854) (0.4446) (0.3452) (0.9236)

5 0.0287 (0.0169) (0.0215) (0.0071)

High βCIJ (1.1815) (-1.5314) (-2.0504) (-0.7186)

High - Low -0.0229 -0.0256 -0.0321* -0.0139

(-1.3308) (-1.4910) (-1.8998) (-0.8360)
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Table 12
Returns of Value-Weighted Portfolios that are Double-Sorted on βCIJ and

βMarket Jump

We report the Fama-French 3-factor alpha of double-sorted portfolios on βCIJ and
βMKT Jump. In each month, we estimate βCIJ and βMKT Jump using the daily returns of past
six months. We first form five quintile portfolios based on βCIJ. Then for each portfolio,
we form another five groups based on βMKT Jump. We calculate the value-weighted
return in the next month for each of the 25 portfolios. The numbers are in percentages.
Standard errors are adjusted by Newey-West (1987) method with lag of six periods.
T-statistics are reported in the parenthesis. The sample period is from January, 1996 to
April, 2016.

Low βMKT Jump High βMKT Jump

FF3 Alpha 1 2 3 4 5 High - Low

1 -0.0162 0.0252 0.0148 0.0208 -0.0077 0.0085

Low βCIJ (-0.8282) (1.6477) (1.1766) (1.6165) (-0.4921) (0.3875)

2 0.0067 0.0136 -0.0069 0.0025 0.0058 -0.0009

(0.5648) (1.5248) (-0.9302) (0.3572) (0.5323) (-0.0563)

3 -0.0075 0.0125 0.0055 0.0168 0.0063 0.0138

(-0.7030) (1.8296) (0.9645) (2.5603) (0.6955) (0.8959)

4 0.0037 -0.0065 0.0071 0.008 0.0006 -0.0031

(0.3499) (-0.8197) (1.0236) (1.1052) (0.0550) (-0.1940)

5 -0.0165 -0.0098 -0.0147 -0.0275 -0.0042 0.0122

High βCIJ (-0.9135) (-0.8093) (-1.2860) (-2.0506) (-0.2419) -0.5569

High - Low -0.0003 -0.0350* -0.0295 -0.0483** 0.0035

(-0.0114) (-1.6730) (-1.5049) (-2.4144) (0.1562)
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Figure 1
Daily Returns of the Idiosyncratic Jump Portfolio of Apple

We plot daily returns of the idiosyncratic jump portfolio of Apple. Vertical dashed lines
in the top panel represent realized jumps of Apple stocks. Vertical dashed lines in the
bottom panel represent realized jumps of S&P 500. Realized jumps are detected by
using the Lee and Mykland (2008) method with daily data. The sample period is from
January, 1996 to April, 2016.
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Figure 2
Average Return of the Idiosyncratic Jump Portfolio

We plot the monthly average idiosyncratic jump risk premiums of portfolios
sorted on the market size (the top panel), the idiosyncratic volatility (the middle
panel), and Amihud illiquidity (the bottom panel). Each panel plots the return on
portfolios on two extreme ends. The sample period is from January, 1996 to April, 2016.
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Figure 3
Cumulative Return of the Idiosyncratic Jump Portfolio

We plot the cumulative return on the idiosyncratic jump risk portfolio that are sorted
on size (the top panel), the idiosyncratic volatility (the middle panel), and Amihud
Illiquidity (the bottom panel). Each panel plots the return on portfolios on two extreme
ends. The sample period is from January, 1996 to April, 2016.
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Figure 4
Commonality of Idiosyncratic Jump Risks

We plot the monthly average idiosyncratic jump risks of 5 portfolios that sorted by the
market size (the top panel) and the industry code (the bottom panel). The industry
code is based on Fama and French’s 5 industry portfolio. The sample period is from
January, 1996 to April, 2016.
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Figure 5
Regressing Idiosyncratic Jump Risks on Market Jump Risks

We plot the estimation result of regressing the idiosyncratic jump risk on the market
jump risk. For each stock i and in each month, we run the following regression.

Idio. Jump Riski,t = Intercepti + Slopei ×Market Jump Riskt + εi,t

Then we take the average of the estimates across all stocks. From the top to bottom,
the panel plots the cross-sectional average intercept., the average slope, the average
R2, and the average number of observations respectively. The sample period is from
January, 1996 to April, 2016.
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Figure 6
Correlation between the Adjusted Idio. Jump Risk and Market Jump Risk

We plot the correlation between the idiosyncratic jump risk and the market jump risk
and the adjusted idiosyncratic jump risk and the market jump risk. The adjusted
idiosyncratic jump risk is defined as in equation (7). The sample period is from January,
1996 to April, 2016.
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Figure 7
The Common Idiosyncratic Jump Risk

We plot the common idiosyncratic jump risk (the solid line) and the residuals from
regressing CIJ on the market jump risk (the dashed line). The sample period is from
January, 1996 to April, 2016.
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Appendix

A.1 Lee and Mykland (2008) Non-Parametric Method

Following Lee and Mykland (2008), we calculate the statistics L(i) as follows.

L(i) =
logS(ti)/S(ti−1)

σ̂(ti)
(A.1)

where

σ̂(ti) =
1

K − 2

i−1∑
j=i−K+2

|logS(tj)/S(tj−1)|logS(tj−1)/S(tj−2)| (A.2)

S(ti) is the stock price at time ti and K is the length of the rolling window. Because we

use daily observations, we let K = 16 as suggested by the original paper. The threshold

for |L(i)−Cn|
Sn

is β, where

Cn =
(2logn)0.5

c
− logπ + log(logn)

2c(2logn)0.5
(A.3)

and

Sn =
1

c(2logn)0.5
(A.4)

.

n is the number of observations, β = −log(−log(1− Significance Level)).

A.2 Idiosyncratic Volatility

Following Ang, Hodrick, Xing, and Zhang (2006), we run the following estimation

and define the idiosyncratic volatility as the standard deviation of the residuals.

Excess Reti,t = αi + βMKT,iMKTt + βSMB,iSMBt + +βHML,iHMLt + εi,t (A.5)
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where Excess Reti,t is the excess return on stock i at time t, MKTt is the return on the

market portfolio, SMBt is the return on the small minus big portfolio, and the HMLt

is the return on the high minus low portfolio. Those three portfolios are downloaded

from French’s website. The regression is conducted for each stocks on each month,

using all daily observations in that month.

A.3 Amihud (2002) Illiuqidity

The Amihud illiquidity measure is proposed by Amihud (2002). It measures how

the trade volume affects price changes. The intuition is that a large amount of trading

should have more impacts on the prices of an illiquid asset than the price of a liquid

asset. We calculate the Amihud measure as follows.

Amihud Illiquidityi,t =
|Daily Returni,t|

Daily Traded Volumei,t

, i = 1, 2, ..., N (A.6)

where Daily Returni,t is the daily return on stock i at time t and Daily Traded Volumei,t

is the daily total traded volume.
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