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Abstract

Due to their importance in industry and mathematical complexity, dynamic demand lot-sizing problems are frequently studied.
In this article, we consider coordinated lot-size problems, their variants and exact and heuristic solutions approaches. The
problem class provides a comprehensive approach for representing single and multiple items, coordinated and uncoordinated
setup cost structures, and capacitated and uncapacitated problem characteristics. While efficient solution approaches have eluded
researchers, recent advances in problem formulation and algorithms are enabling large-scale problems to be effectively solved.
This paper updates a 1988 review of the coordinated lot-sizing problem and complements recent reviews on the single-item
lot-sizing problem and the capacitated lot-sizing problem. It provides a state-of-the-art review of the research and future research
projections. It is a starting point for anyone conducting research in the deterministic dynamic demand lot-sizing field.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamic demand, coordinated lot-size problem
determines the time-phased replenishment schedule
(i.e., timing and order quantity) that minimizes the sum
of inventory and ordering costs for a family of items.
A joint shared fixed setup cost is incurred each time
one or more items of the product family are replen-
ished, and a minor setup cost is charged for each item
replenished. In addition, a unit cost is applied to each
item ordered. Demand is assumed to be deterministic
but dynamic over the planning horizon and must be
met through current orders or inventory. Coordinated
lot-size problems are often encountered in production,
procurement, and transportation planning [1-4].

The mathematical complexity of the coordinated
lot-size problem is NP-complete indicating that it is
unlikely that a polynomial bound algorithm will be
discovered for its solution. For this reason, a significant
literature base detailing alternative mathematical formu-
lations and exact solution approaches for the problem
is rapidly evolving in an effort to solve large industry
problems, which may include over one hundred items
and time periods. However, the most recent review of
this rapidly evolving literature is by Aksoy and Eren-
guc [5] in 1988. This review focuses on the literature
for the deterministic, dynamic demand, coordinated
lot-sizing problems since 1988. We begin by providing
a brief overview of lot-sizing research, which positions
this study within the broad context of the lot-sizing
literature. Next, we examine alternative problem for-
mulations, exact and heuristic solution approaches, and
experimental findings for the uncapacitated and capac-
itated coordinated lot-size problems, respectively. We
conclude with future research directions. This research
extends the recent surveys by Brahimi et al. [6] on

single-item lot-sizing problems and Karimi et al. [7] on
the capacitated lot-sizing problem.

2. Overview of lot-sizing problems and paper
scope

A variety of taxonomies are proposed for classifying
lot-sizing problems (see [5,7-9]). Karimi et al. [7] re-
view the problem characteristics that affect classifying,
modeling and solving lot-sizing problems. An important
problem characteristic is the nature of demand. Static
demand problems assume a stationary or constant de-
mand pattern, while dynamic demand problems permit
demand to vary. If all demand values are known for the
duration of the planning horizon, the demand stream is
defined as deterministic. Otherwise, the demand is con-
sidered to be stochastic. Due to the vastness of the lot-
sizing literature, this review only addresses single-level
lot-sizing decisions with deterministic demand.

2.1. Deterministic static demand models

Harris [10] introduces the single-item economic or-
der quantity (EOQ) model, which assumes determin-
istic static demand, continuous time, and an unlimited
replenishment lot-size. The objective is to minimize the
sum of ordering and inventory holding costs. Numerous
extensions of this basic model are proposed including
models with gradual replenishment of stock, quantity
discounts, and periodic setup costs, among others (see
Silver et al. [9]).

The economic lot scheduling problem (ELSP) gen-
eralizes the EOQ model to consider multiple items that
share a constrained resource. While the EOQ model is
simple to solve, the ELSP is NP-hard [11,12].



P. Robinson et al./Omega 37 (2009) 3—15 5

Capacitated Uncapacitated

CCLSP CULSP

Coordinated

MCLSP MULSP Multi-item
A\ 4 v
CLSP ULSP Single-item

Fig. 1. Taxonomy of deterministic dynamic demand lot-sizing prob-
lems.

The joint replenishment problem (JRP) considers a
setup cost that is shared among all replenished items,
in addition to individual item setup costs. The replen-
ishment quantity of each item is unlimited. Goyal and
Satir [13] review the optimal and heuristic procedures
proposed for solving the problem up to 1989. More re-
cent and effective heuristic approaches are discussed
in [14-17], optimization procedures are proposed in
[18,19], and genetic algorithms are investigated in [20].

2.2. Deterministic dynamic demand models

Fig. 1 presents the six most commonly researched
deterministic dynamic demand lot-sizing models. The
problems are classified according to three factors: (1)
single or multiple items, (2) capacitated or uncapaci-
tated replenishment quantities, and (3) joint or inde-
pendent setup cost structures. The problem classes are
represented by nodes and their structural relationships
by arcs, where a problem node originating an arc is a
generalization of the problem node terminating the arc.

The coordinated capacitated lot-sizing problem
(CCLSP) is the most general problem class consider-
ing multiple items, product family and individual item
setup costs, and a capacity limitation on the maximum
number of items that can be replenished in a time
period. Relaxing the capacity constraint yields the co-
ordinated uncapacitated lot-sizing problem (CULSP),
while removing the joint setup cost yields the multi-
item capacitated lot-sizing problem (MCLSP). Limit-
ing the number of items to one, while simultaneously

relaxing the joint setup cost and capacity constraint
yields the uncapacitated lot-sizing problem (ULSP),
the most elemental dynamic demand lot-sizing problem
class.

Moving to a more general problem representation
complicates the problem’s mathematical structure,
which requires a more robust solution approach and
increases the computational difficulty. The logical goal
is to develop an efficient exact solution approach for
the CCLSP, which would provide a comprehensive
modeling and algorithmic approach for the six problem
classes. However, as Karimi et al. [7] indicate, “there is
little literature for problems such as CLSP with single-
family or multi-family joint setup, in both capacitated
and uncapacitated cases. Developing heuristics with
reasonable speed and solution quality for these kinds
of problems is another interesting research area.”

Brahimi et al. [6] provide a current literature review
of the single-item uncapacitated (ULSP) and capacitated
(CLSP) lot-size problem. Karimi et al. [7] survey the
literature for single and multiple item capacitated lot-
sizing problems (CLSP and MCLSP). We synthesize
the literature on the CULSP focusing on research since
the 1988 survey by Aksoy and Erenguc [5] and then
examine the rapidly developing body of work on the
CCLSP.

3. Coordinated uncapacitated lot-sizing problem
(CULSP)

The CULSP’s objective is to minimize total system
costs, which includes a joint setup cost for each time
period any item in the product family is replenished, an
item setup cost for each item replenished in each time
period and inventory costs. The joint setup cost com-
plicates the solution of the CULSP, which is known to
be NP-complete [21,22]. However, researchers have ex-
ploited specialized problem formulations to obtain ef-
ficient algorithms. We present the four most significant
problem formulations; the algorithms associated with
each, and summarize studies comparing their solution
efficiency.

3.1. Problem formulations

Boctor et al. [23] and Narayanan and Robinson [24]
study alternative formulations for the CULSP. The more
effective formulations use ‘disaggregate’ variable upper
bound constraints on the setup decision variables, which
yields a ‘tight’ linear programming (LP) relaxation and
lower bound on the problem.
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3.1.1. Traditional (TRAD) product unit formulation
Consider a T-period planning horizon. For i =
1,...,17andr=1,..., T, define, d;;, the demand for
the item 7 in period #; s;;, setup cost for item 7 in period
t; S;, joint setup cost in period #; c;;, variable per unit
cost for item i in period t; and k;;, the per unit inven-
tory holding cost for item i in period t. The decision
variables include: x;;, order size for item i in period f;
I;;, ending inventory of item i in period f; Y;; =1 if item
i is replenished in period ¢ and Z; =1 if a joint setup
occurs in period ¢. The mathematical formulation is

v(TRAD)

=Minimize Z = Z S Z, + Z Z SitYis

= i=1 t=1

1 T 1
+ Z Z CitXir+ Z
i=1

i=1 t=1

T
hit Lt
=1
(1)
Subject to I;; = Ij;_1 + xi; — djy
Gi=1,....I;t=1,....T), (2

T
X< Y dirYy

r=t
G=1,....I:t=1,....T), (3

I
Y Yu<iz, (t=1,....T), &

i=1

X120, I1;20
(i=1,...,I;t=1,...,T), 5
i[E{OOr ]}

G(=1,....0;t=1,...,T), (6)
Z,e{Oorl} t=1,....T). (7

The TRAD formulation models product unit flows
and employs the ‘aggregate’ or ‘weak’ variable upper
bound constraint sets (3) and (4) to prevent replenish-
ment unless the appropriate setup costs are incurred.
Early researchers exploit the ‘single sourcing’ and
‘exact requirement’ characteristics of an optimal prob-
lem solution with dynamic programming procedures
[25-27]. However, computation times increase ex-
ponentially with problem size limiting usefulness to
problems with only a few items [1]. Haseborg [28]
proposes joint ordering policies to mitigate the im-
pact of the number of items. Raghavan [29] proposes
a branch-and-cut procedure for a slight modification
of the above formulation. Erenguc [30] develops a
combined branch-and-bound/dynamic programming
procedure based on Veinott’s [26] ‘major setup pat-
tern’ concepts. Federgruen and Tzur [31] describe a

branch-and-bound technique whose upper bound is gen-
erated by a greedy-add heuristic and a tight lower bound
is provided by a partitioning heuristic.

3.1.2. Shortest path (SPATH) formulation

Joneja [22] proposes an integer programming for-
mulation, which models the problem as / independent
ULSPs that are coupled by the joint setup decision vari-
ables. The formulation exploits the ‘exact requirements’
property of Wagner and Whitin [32] to provide a more
compact model than the TRAD formulation. For a spec-
ified setting of the joint setup variables, the resulting
ULSPs are easily solved as I independent shortest path
problems. Building upon earlier defined parameters and
variables, the problem considers / items over a T-period
planning horizon with 7/=T + 1. The demand for item
i in periods ¢’ through ¢ — 1 is D;,,. The total cost of
ordering D;,, units in period ¢’ and serving demand
through period t — 1 for item i is C;p; = ;7 +¢;y» Djys +
> thiv—1Diy;. The decision variable Y;,, = 1 if
D, units of item i are ordered in period #’, and 0 oth-
erwise. Z, = 1 if a major setup is scheduled in period
t', and O otherwise. The SPATH formulation is

v(SPATH)
T
=Minimize Z = Z Sy Zy

t'=1

I T T’
+ Z Z Z CivtYiry ®)
i=1 t'=1 t=t'+1

t—1

T/
Subject to Z Yy — Z Y;y: =0
t'=1 t=t'+1

Gi=1,....,1;t=2,....T), (9

T
Y Y=l (=1,...01.  (10)

t'=1

Zy — E ztt/

t=t'+1
(i=1,....I;t'=1,..., 1), an
Y;y, € {0 or 1}
i=1,....t'=1,...,T;
t=t'+1,...,7), (12)

Zpel0or 1} (H'=1,...,T). (13)

A notable feature of the SPATH formulation is the
‘disaggregate’ upper bound constraint set (11). This
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yields more constraints than the ‘aggregate’ formula-
tion, but provides a tighter LP relaxation. Kirca [33]
develops a dual-based branch-and-bound procedure
solving problems with 24 time periods and 50 items.

3.1.3. Arborescent network (ARBNET) formulation

Robinson and Gao [34] present an arborescent
fixed-charge network programming formulation for
the problem. Supplementing earlier notation, define
hip, = Z;;i/hir as the per unit inventory holding cost
for serving demand for item i in period ¢ from a re-
plenishment order in period ¢'; Y; = 1 if item i is
replenished period ¢, and O otherwise; and X/, is the
portion of demand for item i in period ¢ that is served
from a replenishment order in period ¢'. The ARBNET
formulation is

v(ARBNET)

T 1 T
=Minimize Z=Y  SyZe Y ¥ si¥iy

t'=1 i=1 t'=1

I T-1 T
_|_Z Z Z(Cit’+hil’t)dilxit/f

i=1 t'=1 t=t

(14)

13
Subject to Z Xi=1
t'=1

@G=1,....1,t=1,...,T), (15)

Y,y <Zy
(i=1,....,1,{'=1,...,T), (16)
X <Yip
i=1,....1,t'=1,...,T,
t=t,...,T), (17)
Zy €{0or 1}
(t'=1,...,T), (18)
Y;; € {0 or 1}

i=1,....1,/'=1,...,T), (19
Xy €{0or 1}

i=1,....1,/'=1,...,T,

t=t,....T). (20)

The attractive feature of this model is the hierarchical
linking of the decision variables by the disaggregate
variable upper bound constraints (16)—(18). This tightly
constrains the setup variables to take on a value of O or 1
in the optimal solution of the LP relaxation. Robinson

and Gao [34] exploit this structure with a dual-ascent-
based branch-and-bound method and solve problems
with up to 24 (36) time periods and 40 (20) items. In-
cluding backorders requires a 30% increase in compu-
tational time. Raghavan [29] proposes a Dantzig—Wolfe
decomposition approach for the formulation but pro-
vides limited results.

3.1.4. Exact requirements (EXREQ) formulation
Boctor et al. [23] also view the CULSP as I linked
Wagner and Whitin [32] problems. Their formulation
further exploits the ‘exact requirements’ property of
Wagner and Whitin [32] yielding a more compact prob-
lem representation than the SPATH model. The binary
decision variable w;,;, =1 if and only if a replenish-
ment is scheduled in time ¢’ to cover the demand for

item 7 from period #' through period 7. Define C;, =

t t -1
Sit + Cip' Do pprir + D —y 1 Oy hik)dir as the sum

of the item production and inventory costs associated
with w;,,. Boctor et al. [23] formulation, with disag-
gregate variable upper bound constraints (23) for tight-
ening the LP lower bound as suggested by Narayanan
and Robinson [24] is

v(EXREQ)
T

=Minimize Z = Z Sy Zy

t'=1

T T
+ Z Z Z Ciyywiyy (21

i=1 t'=1 t=t

w;,; € {0 or 1}
i=1,....1,'=1,...,T,
t=1,...,7), (24)
Zpel0or 1} (#'=1,...,T). (25)
EXREQ tightly constrains the joint setup variable Z,
to take on a value of 1 when any item is replenished in

time 7’ and is a potentially attractive, but unexplored,
formulation for algorithm development.
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3.2. Solving CULSP with general-purpose software

In contrast to specialized solution methods, general-
purpose mathematical programming software provides
an off-the-shelf approach for the problem. Boctor
et al. [23], Narayanan and Robinson [24] and Gao
et al. [35] evaluate the effectiveness of solving CULSP
with CLPEX and Xpress-MP finding that the particular
problem formulation has a significant impact on com-
putational efficiency. Specifically, the aggregate repre-
sentation of the variable upper bound constraints, such
as in TRAD, provides a computationally inefficient
problem representation due to the weak lower bound
provided by the LP relaxation. On the other hand, the
equally tight SPATH, ARBNET, and EXREQ formula-
tions, each of which provides a different approach for
defining the convex-hull relaxation of CULSP, have an
average LP optimality gap of 0.001% with approxi-
mately 97.75% of the LP solutions being integer and
thus optimal [24]. However, solutions times for the
tight formulations also vary considerably.

When using general-purpose software, Gao et al. [35]
find that the ARBNET formulation is more efficient than
the SPATH formulation, while Narayanan and Robinson
[24] document the superiority of EXREQ over ARBNET.
Using XpressMP running on a Pentium 4 at 1.9 GHz to
solve problem sizes with (/, T) ranging from (5, 6) to (40,
48) average solution times for EXREQ are 0.53 CPU
seconds while the longest solution time for a specific
combination of factors is 12.44 CPU seconds.

Table 1

Comparing general-purpose and specialized solution
approaches, general-purpose software requires approx-
imately 35 times more effort than Robinson and Gao’s
[34] dual-ascent-based procedure, which is the best
known exact approach for CULSP [35].

3.3. CULSP heuristics

Heuristic approaches for CULSP are classified as
common sense or specialized heuristics, meta-heuristics
and mathematical programming-based heuristics.
Table 1 lists the major articles reviewed in this section
and their associated research methodologies.

3.3.1. Common sense or specialized heuristics for
CULSP

Common sense heuristics include myopic single-
strategy, period-by-period and improvement heuristics.

Myopic single-strategy heuristics: Recognizing that
the allocation of the joint setup cost among the items
is minimized when all items are simultaneously re-
plenished, the myopic single-strategy heuristics order
each item every time there is a joint setup. Fogarty and
Barringer [36] propose a Wagner and Whitin [32] type
model and dynamic programming algorithm assuming
all items are ordered at each joint setup. As expected,
the heuristic produces high quality solutions under rel-
atively high fixed cost ratios (i.e., the joint setup cost
divided by the sum of the item setup costs), but solution
quality suffers under low fixed cost ratios. Atkins and

Coordinated uncapacitated lot-sizing problem—exact and heuristic methods

Authors Solution method

Zangwill [25]

Veinott [26]

Kao [27]

Silver [1]

Haseborg [28]

Fogarty and Barringer [36]
Silver and Kelle [37]
Atkins and Iyogun [38]
Erenguc [30]

Joneja [22]

Iyogun [39]

Raghavan [29]
Federgruen and Tzur [31]

Dynamic programming using dominant extreme point sets

Leontief substitution models and dynamic programming

Dynamic programming using regenerations points to limit the search for optimality
Dynamic programming using four optimality properties to limit the search
Dynamic programming

Dynamic programming

Right shift improvement procedure

Silver and Meal-based forward-pass heuristic

Branch-and-bound with shortest path sub-problems

Branch-and-bound using cost covering heuristics

Part-period balancing-based forward-pass heuristic

Branch-and-cut and Dantzig/Wolfe

Branch-and-bound using a partitioning heuristic for lower bounding and a greedy-add

heuristic for upper bounding

Kirca [33]

Robinson and Gao [34]
Boctor et al. [23]
Robinson et al. [40]

Dual-based branch-and-bound

Dual-ascent-based branch-and-bound

Perturbation meta-heuristic

Forward-pass, two-phase improvement, and simulated annealing meta-heuristic
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Iyogun [38] extend the Silver and Meal [41] single-item
heuristic to the problem assuming that each item is pro-
duced at every joint setup. Similarly, Iyogun [39] adapts
the part-period balancing method [42] to the problem
and provides an improved version of the Atkins and
Iyogun [38] heuristic.

Federgruen and Tzur’s [31] greedy-add heuristic
starts with a replenishment in period 1 that covers the
demand for all items over the planning horizon. Next,
a greedy-add procedure iteratively schedules additional
replenishment periods, if they yield cost savings. Boc-
tor et al. [23] propose a greedy-drop heuristic, which
starts with a replenishment in each time period and
iteratively eliminates the replenishments generating the
greatest cost savings.

Period-by-period: Period-by-period heuristics shift
orders into earlier time periods if the setup cost sav-
ing exceeds the increase in inventory holding costs.
Forward-pass heuristics begin in period 1 and construct
replenishment schedules moving forward through time.
A savings-based decision criterion guides the selec-
tion of which demand to move into the lot-sizes being
scheduled. Robinson et al. [40] propose forward-pass
heuristics based on modified Eisenhut [43] and Lam-
brecht and Vanderveken [44] decision criterion.

Joneja [22] develops a forward-pass ‘cost covering’
heuristic that places an item order in time ¢ when the
inventory holding cost for serving the demand of a can-
didate item in time ¢ exceeds its ordering cost. Sim-
ilarly, a joint order is scheduled in time ¢# when the
total inventory holding costs of all the candidate items
exceeds their total ordering cost plus the joint setup
cost.

Improvement heuristics: Improvement approaches
attempt to improve upon an existing solution. Robin-
son et al. [40] propose a two-phase greedy heuristic
extending the concepts of Dogramaci et al. [45] to
consider joint setup costs. The heuristic begins with
an initial lot-for-lot solution. Next, operating in a
greedy iterative manner, Phase I attempts to shift or-
ders into earlier time periods, not necessarily moving
sequentially through time. Upon completion of Phase
I, Phase II attempts to improve upon the solution by
right-shifting orders later in time to lower inventory
costs.

Silver and Kelle [37] describe an improvement
heuristic, considers whether a cost saving can be
achieved by incorporating the production of each
item into its prior scheduled order. When applied
as an improvement step for the myopic Fogarty and
Barringer [36] heuristic, solution quality improves
considerably.

3.3.2. Meta-heuristics for CULSP

Traditional heuristics tend to converge at a local op-
timum, leaving neighborhoods of the problem’s state
space unexplored. In such cases, meta-heuristics, which
coordinate the search process to escape from local op-
tima and perform a more robust search of the problem’s
feasible region, are attractive. Boctor et al. [23] pro-
pose a perturbation meta-heuristic based on the Fogarty
and Barringer (FB) and Silver and Kelle (SK) heuris-
tics. The perturbation meta-heuristic contains four basic
components: (1) the FB—SK heuristics provide a start-
ing solution, (2) a perturbation procedure jumps to other
regions of the solution state space, (3) a greedy-drop
heuristic eliminates joint setups that are not economi-
cally justified, and (4) the SK improvement heuristic.
The perturbation procedure provides a 5.5% improve-
ment over the stand alone FB—SK heuristic [40].

Robinson et al. [40] propose a simulated annealing
meta-heuristic that uses the two-phase heuristic to gen-
erate the starting solution and to find a high quality
solution in each newly generated neighborhood of the
feasible region. The simulated annealing meta-heuristic
is particularly effective improving upon the initial two-
phase solution by 63.6%. Koulamas et al. [46] survey
simulated annealing applications to other operations re-
search problems.

3.3.3. Mathematical programming-based heuristics

Robinson and Gao [34] propose using their dual-
ascent-based procedures as a heuristic by terminating
the solution procedure at node zero of the branch-and-
bound tree and reporting the candidate solution. The
heuristic provides a feasible and lower bound solution,
thereby permitting a statement of the worst case quality
of the heuristic solution. Other mathematical program-
ming heuristics are described in [22,31,33].

3.3.4. Comparison of CULSP heuristics

Boctor et al. [23] and Robinson et al. [40] evaluate
the performance of the CULSP heuristics. The opti-
mality gaps and the number of optimal solutions found
by the best performing heuristics as presented in [40]
are summarized in Table 2 for 1600 problem instances,
which vary from 5 to 40 items and 6 to 48 time pe-
riods. The simulated annealing meta-heuristic’s perfor-
mance is superior on all performance metrics with an
average optimality gap of 0.21%, a maximum optimal-
ity gap of 3.95%, and finding 780 optimal solutions
to the 1600 test problems. Even though Robinson and
Gao [34] dual-ascent heuristic finds the second highest
number of optimal solutions, it has the worst overall av-
erage and maximum optimality gaps. Using a personal
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Table 2
Experimental results for CULSP heuristic procedures

CULSP heuristic Optimality gap®

Number of optimal solutions®

Average (%)

Maximum® (%)

FB-SK heuristic 0.92
Dual-ascent heuristic 1.95
Two-phase heuristic 0.56
Perturbation meta-heuristic 0.87
Simulated annealing meta-heuristic 0.21

12.64
35.43
9.12
9.56
3.95

502
725
602
517
780

4Optimality gap = 100(heuristic objective value — optimal objective value)/optimal objective value.
PLargest optimality gap associated with a combination of experimental factors.

“Each cell represents the results for 1600 test problems.

computer with a Pentium 4 processor at running at
1.9 GHz with the Windows 2000 Professional operat-
ing system, solution times for each of the stand alone
heuristics average less than 0.05 CPU seconds per prob-
lem. The simulated annealing meta-heuristic is the most
time intensive procedure and averages 0.18 CPU sec-
onds with a maximum of 1.8 CPU seconds.

4. Coordinated capacitated lot-sizing problem
(CCLSP)

The CCLSP contains both the complicating con-
straints associated with capacitated replenishment and
the joint setup decision variables resulting in a NP-
complete problem. We present four alternative math-
ematical formulations, the algorithms associated with
each, and compare their computational efficiency.

4.1. CCLSP problem formulations

The mixed integer programming formulations dis-
cussed in this section build upon the notation described
in the previous section.

4.1.1. TRAD-C formulation

Federgruen et al. [47] extend the TRAD formulation
to consider capacity constraints on the replenishment
quantity available in each time period. Define, P, as
the available capacity in period ¢ and Dt:Zl-Izld,-, as
the aggregate demand in period ¢. 1 t(,) is the minimum
total inventory on hand at the end of period ¢’ that
is required to guarantee that a feasible replenishment
schedule exists for periods t'+1, ..., T. The values for
It(? are calculated by recursion starting from period T
and moving backwards using the following definition,

)= (D), — Pryy + 1) )" forall /' =1,....T

with I? = 0. The TRAD-C formulation is

v(TRAD-C)

T 1 T
=Minimize Z=Y  SyZy+ Y 3 siv¥iy

t'=1 i=1 t'=1

I T
+§ E Cit' Xir'

i=1 t'=1

1 T
+ Z Zhit’lit’ (26)

i=1 t'=1

Subject to I;y =Ly + x;p — d;yr

i=1,....1;¢'=1,...,T), (27
Xy < PrYp

(i=1,....0;{'=1,...,T), (28)

1

S Xy <PeZy ('=1,...T), (29)
i=1

Yip <Zy
i=1,....I;{'=1,...,T), (30

1
Zlit’>ltg (t/:l""’T)’ 3D

i=1

Ly=20 (=1,...,1;
t'=1,...,T), (32)
x;ip 20 (=1, WA
t'=1,...,T), (33)

Y;» € {0 or 1}
i=1,...0;/=1,...T), (34
Zyef0or 1} (¢'=1,...,T). (35)
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4.1.2. ARBNET-C1 and ARBNET-C2 formulations

Robinson and Lawrence [4] append the following ca-
pacity constraint set to the ARBNET formulation to ob-
tain ARBNET-C1:

T 1
Z Z Xipdiy <Py ('=1,...,T). (36)

t=t" i=1

Gao and Robinson [48] tighten the formulation by
incorporating the joint setup decision variable, Z,/, into
the right-hand side of the capacity constraint yielding
constraint set (37) and the ARBNET-C2 formulation

T 1

szit’tdilgpt’zﬂ t'=1,...,7). (37)

t=t" i=1

ARBNET-C2 provides the convex envelope relax-
ation, E(C2), as shown below, which gives a tighter
LP relaxation than the ARBNET-C1 convex envelope
relaxation, E(C1). Gao and Robinson [48] and Denizel
et al. [49] provide addition details:

T
E(C2) =MinZ S, Max {Xi,/,, Vi=1,...,1,

t'=1

1=t Pt/ ZZXU tdlt}

t=t" i=1
T
> X Vi=1,...,1}
=1t=1
T T
Z Z(Ciz’ + hip)dir Xy

s;r Max{
1
=1 t'=11t=t'

I
+2.
i=1
I T—
+2.
i=1
T

E(C1) = Min Z Sy Max{X;,, . Yi=1,....1

t'=1

t=t,...,T)
1 T
+ Y0 siMax(XVi=1,.... 1)
i=1¢t=I
I T—-1 T

+ Z Z Z(Cit’ + hit/t)diint’t'

i=11t=1t=t

4.1.3. EXREQ-C formulation

We propose a new problem formulation for CCLSP.
Item setup cost s;,» and decision variable Y;, are in-
troduced to decouple the item and family setup con-

straints (40) and (41). Define wl/. /p as the fraction of

the total demand for item i from period " to period

¢ that is served from an order in period ¢t and Cj;,
as the sum of the variable per unit order and inven-
tory holding costs for producing item i in period ¢ and
covermg its demand from period ¢’ through ¢, where

Cl,t—zq t+1(clt/+zk_tl, ik)d;4. The formulation is
v(EXREQ-C)

=Minimize Z = Z SpZy + Z ZS,z’ Yy

t'=1 t'=1i=1

T
+ Z Z Z .f;t wt/'t’t (38)

G=1,....,r=1,....T), (39

(i=1,....1,{'=1,...,T), (40)

(i=1,....,{'=1,...,T), (41)

Sl (S

i=1t=t' q=t'

<PiZy (t'=1,....T), (42)
q T 1 t
22 D | 2
1'=11=q+1i=1 r=t'+1

>1) (@=1.....7), (43)
0<w“<1
(i=1,....0,{'=1,...,T,

t=1,...,7), (44)
Y; € {0or 1}
(i=1,....1,{'=1,...,T), (45
Zys e {0or 1}

¢'=1,...,7). (46)

The two important modeling features are compact
structure of constraint set (39), which insures that all
demand is met, and the surrogate aggregate inventory
constraint (43).
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4.2. Solving CCLSP with general-purpose software

We conducted a computational efficiency study of
CCLSP following the design in [24] and [47]. The ex-
periments include three factors that are known to impact
solution difficulty. The factors include two levels of de-
mand density (DD), four levels of capacity utilization
(CU), and three levels of time-between-orders (TBO)
resulting in 24 different combinations of factor settings.
Demand density, DD € {0.50, 1.0}, is the fraction of
time periods an item experiences demand. CU, defined
as the ratio of total demand divided by the total available
capacity over the planning horizon, is taken from the
set, CU € {0.2, 0.4, 0.6, 0.8}. Item and family TBOs are

calculated as follows: for item i, TBO; = /2s;,// hid;,

where h; is the per unit inventory holding cost for item
i, d; is the expected demand for item i over the planning
horizon, and s;, is the item setup cost. For each item, the
TBO; values are randomly drawn from a uniform distri-
bution on the interval [2,6] and then the corresponding
value of s;,/ is determined. For all items, #; =1 to insure
s;p corresponds to the randomly generated TBO; val-
ues. The joint setup cost, Sy is similarly computed with

TBOtamity = /28y / h; D, where D is the expected de-
mand for the product family over the planning horizon.
TBOfamily € {low, medium and high}, where the values
are randomly generated from a uniform distribution on
the intervals [1,3], [2,6] and [5,10], respectively. Within
a test problem S, and s;, are constant over time.

Each test problem has 10 items and a 12-period plan-
ning horizon. The demand, d;;, is normally distributed
and varies by item and time period. Odd numbered items
have a mean demand of 50 units and a standard devia-
tion of 20 units; even numbered items have a mean de-
mand of 100 units and a standard deviation of 20 units.
Unit production costs are set equal to zero.

For each combination of factors, three test problems
are randomly generated and solved to control for ran-
dom effects. The experiments are conducted on a per-
sonal computer with a Pentium®4 processor running at
1.9 GHz with the Windows 2000 Professional operat-
ing system, and solved using Xpress-MP version 2005A
(Xpress Optimizer v16.01.02), a state-of-the art general-
purpose optimization software. For those problems not
solving within 120 CPU minutes, the associated ‘end-
ing’ gap (i.e., 100 (best integer solution —LB)/LB) is
reported as a metric for evaluating solution quality.

Table 3 summarizes the results by DD, where each
cell is associated with 36 test problems. While ARBNET-
C2 and EXREQ-C provide the tightest and identical
average LP gaps (i.e., lower bound on the optimal

objective function value), ARBNET-C2, with an aver-
age time of 281 CPU seconds, is the only formulation
which solves all of the test problems. TRAD-C yields
the worst lower bound (55%) and could not solve 30 of
the 72 test problems. Other findings not reported here,
reveal that CPU times increase rapidly with an increase
in [ or T for all of the formulations. These findings
document the importance of selecting the best formula-
tion for general-purpose software and developing spe-
cialized exact and heuristic algorithms for the problem.
More detailed experimental results are available from
the authors on request.

4.3. Mathematical programming-based heuristics

Federgruen et al. [47] develop a strict partitioning
(SP) and a progressive interval/expanding horizon (EH)
heuristic. Higher levels of CU and longer TBOs ad-
versely impact the quality of the heuristic solutions.
The SP heuristic is computationally efficient, but has an
average optimality gap of 14.7%. In contrast, the EH
heuristic finds solutions with an average optimality gap
of 1.2%, but computational time increases rapidly with
problem size. For example, a 10-item and 10-period
problem requires 30s, while a 25-item and 10-period
problem requires 5h and 30 min.

Altay [50] proposes a cross decomposition procedure
for the problem. Experimental findings show that the
problem is easier to solve when setup costs are negli-
gible and becomes substantially difficult when the ratio
of joint setup cost to total cost increases. The algorithm
is only capable of solving very small problems.

Robinson and Lawrence [4] develop a Lagrangian
relaxation heuristic for ARBNET-C1 with backo-
rders. The algorithm relaxes the assignment constraint
(Eq. (15)) and the capacity constraint (Eq. (36)) yielding
easily solvable sub-problems. The best found solution
at node zero of the branch-and-bound tree is reported
as the heuristic solution. Computational experiments
yield heuristic solutions with average optimality gaps
of 0.44%, 3.9%, and 4.72% at the 5%, 45% and 85%
CU levels, respectively.

Lawrence [51] proposes a second Lagrangian relax-
ation heuristic using ARBNET-C1, in which only the as-
signment constraint is relaxed. The resulting Lagrangian
sub-problem is a fixed-charge knapsack problem, which
produces a tighter lower bound but is more difficult
to solve than the Robinson and Lawrence’s [4] sub-
problems. This heuristic finds solutions with average
optimality gaps of 0.15%, 1.73%, and 1.60% at the 5%,
45% and 85% CU levels, respectively. However, CPU
requirements increase rapidly with problem size and
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Table 3
Summary of CCLSP formulations performance by demand density

CCLSP Average LP Average CPU No. of problems Average ending
formulation gap? time in seconds not solved® gap®

DD=05(%) DD=0.1(% DD=05 DD=01 DD=05 DD=01 DD=05(% DD=0.1(%)
TRAD-C 55.40 55.04 548.04 6159.31 2 28 3.25 8.32
ARBNET-C1  14.67 17.80 357.73 102.77 1 0 0.83 —
ARBNET-C2 3.85 3.19 465.98 96.46 0 0 — —
EXREQ-C 3.85 3.19 553.00 49.90 1 0 2.72 —

4LP gap = 100(optimal objective value—LP objective value)/optimal objective value.
PNumber of problems out of 36 test problems that did not solve to optimality within 120 CPU minutes.
“Ending gap = 100(best integer solution objective value—lower bound)/lower bound.

Table 4
Coordinated capacitated lot-sizing problem—exact and heuristic methods

Authors Solution method

Lawrence [51]

Altay [50]

Robinson and Lawrence [4]
Gao and Robinson [48]
Federgruen et al. [47]
Narayanan and Robinson [52]

Lagrangian relaxation of assignment constraint

Cross decomposition

Lagrangian relaxation of assignment and capacity constraint
Lagrangian relaxation of capacity constraint

Progressive interval heuristics

Six-phase construction heuristic and simulated annealing meta-heuristic

item setup cost making the procedures ineffective for
problems with more than 10 items and 12 time periods.

Gao and Robinson [48] describe a Lagrangian dual-
ascent heuristic based on relaxing the capacity con-
straint in ARBNET-C2. The heuristic finds solutions with
an average optimality gap of 0.67%. While performance
declines as CU and joint setup cost increase, it still
yields high quality solutions. Problems with an 80% CU
are solved in 2.5 CPU seconds with an optimality gap
of 1.36%.

4.4. Common sense or specialized heuristics

Narayanan and Robinson [52] propose a six-phase
construction heuristic that builds upon [24,45]. The
heuristic finds solutions superior to those found by
the Lagrangian heuristics in [4,48]. The authors also
incorporate the six-phase heuristic into a simulated
annealing meta-heuristic that improves solutions by
approximately 50%. The EH heuristic of Federgruen
et al. [47] provides the highest quality solutions of any
known heuristic, but its high computational require-
ments make it impractical for industry size problems. In
contrast, CPU requirements for the simulated annealing

meta-heuristic are relatively invariant across problem
sizes requiring approximately 0.25 CPU seconds on
average with an average optimality gap of 0.43%.

Table 4 lists the major articles, by author, for CCLSP
and the associated research methodologies.

5. Conclusions and directions for future research

Due to their importance in industry and mathematical
complexity, deterministic, dynamic demand lot-sizing
problems are frequently studied. Researchers typically
develop specialized formulations and solution proce-
dures for each particular lot-sizing problem class. How-
ever, the CCLSP provides a comprehensive modeling
framework for single and multiple items, coordinated
and uncoordinated scheduling, and capacitated and un-
capacitated problem variants. This paper synthesizes the
research on this important problem class updating the
survey by [5] to consider recent modeling and algorith-
mic advancements. The paper complements the recent
reviews by [6] on the single-item lot-sizing problem
and [7] for the capacitated lot-sizing problem to pro-
vide a complete picture of state-of-the-art research in
this emerging area. This review is a starting point for
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anyone conducting research in the deterministic dy-
namic demand coordinated lot-sizing field.

The literature review indicates the existence of
several efficient and effective problem formulations,
heuristics, and exact approaches for the CULSP, but
the CCLSP still poses many challenges for researchers.
However, the literature presents a variety of formula-
tions, whose mathematical structure can potentially be
exploited leading to an efficient exact approach for the
problem. In addition we propose a new formulation,
EXREQ-C. The EXREQ-C and ARBNET-C2 formula-
tions provide equally tight LP relaxations defining the
convex-hull linear relaxation of CCLSP. As such, they
provide the strongest known lower bound for possible
inclusion in an exact solution methodology. In addi-
tion, several heuristic procedures are identified, which
can provide high quality candidate solutions for upper
bounding in a branch-and-bound procedure.

Other promising research areas are available. While
genetic algorithms, tabu search [53] and capacitated
network flow models [54] are successfully applied to
solve other lot-size problems, their potential to solve
CCLSP is unknown. Research examining sensitivity
analysis of dynamic lot-sizing heuristics within the con-
text of CCLSP is also worthwhile [55]. Finally, extend-
ing the CCLSP problem representation to capture the
impact of equipment downtime on capacity during item
changeover and multiple product families are important
research areas (see [49,56]).
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