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Abstract

We propose no-arbitrage term structure models with volatility factors that follow GARCH

processes. The models�tractability is similar to canonical a¢ ne term structure models, but

they �t yield volatility much better, especially for long-maturity yields. This improvement

does not come at the expense of a deterioration in yield �t. Because of the improved volatil-

ity �t, the model performs substantially better when hedging Treasury futures options. We

conclude that the speci�cation of the volatility factors is critical. Modeling volatility as a

function of (lagged) squared innovations to factors improves on models where volatility is

a linear function of the factors.
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1 Introduction

There is a wealth of evidence in the literature indicating that volatility implied by standard

no-arbitrage term structure models corresponds poorly to measures of realized volatility or other

model-free estimates. For state-of-the-art a¢ ne term structure models (ATSMs) with stochastic

volatility, simultaneously matching the properties of the conditional means and variances of

yields is indeed the key empirical challenge. These models are characterized by an inherent

tension between �tting yields and yield volatility, partly because the mean and variance of yields

are driven by the levels of the same state variables.1

We propose no-arbitrage term structure models in which the volatility factors follow GARCH

processes. Given this speci�cation, the bond prices can be computed analytically. The models�

tractability is thus similar to that of canonical a¢ ne volatility models, but they capture the time

variation in the conditional variances of yields much more accurately. The model is motivated

by the well-established literature on ARCH and GARCH models (Engle, 1982; Bollerslev, 1986).

We incorporate GARCH dynamics into state-of-the-art term structure models by relating the

conditional volatility to the lagged squared residuals of the factors driving yields. From a model-

ing perspective, this is a critical di¤erence with standard ATSMs with stochastic volatility, which

model volatility as a linear combination of the level of the yield factors.

While this may appear to be a trivial distinction, we show that it greatly matters for the

models�ability to capture the stylized facts of the time series and cross-section of conditional

volatility. In the empirical analysis, we follow the existing literature and focus on a version of the

model with three latent factors, but for simplicity and parsimony we only endow the volatility of

the residuals of the �rst factor with a GARCH dynamic. We estimate the model using monthly

Treasury yields from November 1971 to October 2019. Following the existing literature, we

1See Dai and Singleton (2000, 2002), Du¤ee (2002), Longsta¤and Schwartz (1992), Collin-Dufresne, Goldstein,
and Jones (2009), and Duarte (2004) for evidence on the volatility �t of these models and the trade-o¤ between
�tting yields and yield volatility. See Joslin and Le (2020) for a discussion of the role no-arbitrage restrictions
play in the tension between �tting �rst and second moments.
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use both realized volatility and EGARCH(1,1) as model-free "true" volatility benchmarks.2 We

�nd that the no-arbitrage model with GARCH dynamics performs well in capturing the "true"

volatility, especially at longer maturities (4-5 and 10 years). The proposed model captures the

high volatility periods of the early 1980s well at longer maturities, and �ts the low volatility

periods well for all bond maturities. The unconditional correlation between model-implied and

EGARCH(1; 1) volatility is 90% on average across maturities. We also compute the root mean

squared errors (RMSEs) based on the di¤erence between model-implied and model-free volatility.

The RMSEs on average across all maturities is about 14 basis points. In summary, the proposed

model performs well in �tting the conditional second moment of yields, even though it contains

only one volatility factor.

We compare the implications of the proposed model with those from standard a¢ ne stochastic

volatility models. We estimate a three-factor a¢ ne model with one factor driving the volatility

process, the essentially a¢ ne A1(3) model (see Dai and Singleton, 2000; Du¤ee, 2002). To

facilitate the comparison with our proposed model, we also consider a restricted version of the

canonical A1(3) model, in which the dynamics of the yield curve factors are exactly the same

as those in our proposed model. The critical di¤erence with the new model is that in both

the canonical and restricted A1(3) models, the volatility process depends on the level of the

factors driving the yield curve. Consistent with the literature, we �nd that the two benchmark

models do not perform as well in capturing the time-variation in the conditional yield volatilities.

On average across all maturities, the unconditional correlation with the EGARCH estimates is

67% for the canonical A1(3) model and 66% for the restricted A1(3) model.3 The proposed

2Andersen and Benzoni (2010) and Christensen, Lopez, and Rudebusch (2014) use realized volatility as a
benchmark to assess the volatility �t of ATSMs. Cieslak and Povala (2016) use realized covariance models to
extract stochastic volatility from a term structure model with multivariate volatility components. GARCH and
EGARCH benchmarks are used by, among others, Bikbov and Chernov (2011), Collin-Dufresne, Goldstein, and
Jones (2009), Dai and Singleton (2003).

3The performance of ATSMs in matching yields volatilities is somewhat model- and sample-dependent. We
�nd a positive correlation as in Jacobs and Karoui (2009), because we also use a relative long sample of Treasury
yields and include the high in�ation period. In Andersen and Benzoni (2010) and Collin-Dufresne, Goldstein,
and Jones (2009), the performance of these models is worse.
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no-arbitrage model with GARCH volatility therefore substantially outperforms the benchmark

models.

The benchmark models cannot capture the high volatility during the monetary experiment in

the early 1980s. For short maturities, the estimated volatilities are similar before and after the

monetary experiment for both benchmark models. The canonical and restricted A1(3) models

overestimate yield volatility during the low-volatility period between the mid-1980s to 2000, and

exhibit very limited time-variation across the maturity spectrum at the start of the sample. The

proposed no-arbitrage model with GARCH volatility outperforms the two benchmark models

by 33% on average across maturities in terms of yield volatility RMSE. These �ndings suggest

that we can substantially improve the ability of ATSMs to �t yield volatility by endowing the

volatility factor with a GARCH process. The state-of-the art stochastic volatility term structure

models are not able to accurately model the dynamics of volatility, because by design a linear

combination of the yield factors is not able to capture the second moment of yields. Note that

the di¤erences are not due to the discrete- versus continuous-time speci�cation of the models.

The improved performance of the GARCH models is due to their speci�cation of the variance

as a function of (lagged) squared innovations rather than as a function of the levels of the yield

factors.

To demonstrate that the proposed model�s improved ability in �tting conditional yield volatil-

ity does not come at the expense of a poor �t for the level of yields, we compare the in-sample

yield �t of the proposed model and the benchmark models. The yield �t of the proposed model

is very similar to that of the two benchmark stochastic volatility models. Moreover, we �nd that

the proposed model captures the empirical patterns in bond risk premia, as characterized by the

regression coe¢ cients in the Campbell and Shiller (1991) regressions, very well. We con�rm the

�nding of Dai and Singleton (2000) that benchmark no-arbitrage stochastic volatility models are

unable to capture these deviations from the expectations hypothesis in the data. These �ndings
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indicate that the proposed model provides an adequate �t to the conditional means as well as

the variances of yields.

If the GARCH model better captures yield volatility, it should outperform competing models

for securities whose payo¤s are highly volatility-dependent. We illustrate this by using the model

estimates from Treasury yields to hedge against �uctuations in the prices of Treasury futures

options. The �rst factor determines volatility in both the GARCH model and the competing

A1(3) model, hence we hedge the exposure of the option contract to the �rst factor using the

underlying Treasury yields. We con�rm that the the performance of the GARCH model is vastly

superior to that of the A1(3) model. When we compare the models�performance in hedging

futures prices, which are not sensitive to volatility and are instead determined by the yield

levels, the models�performance is very similar.

We contribute to several strands of literature. As mentioned above, an extensive literature

has questioned the ability of ATSMs with stochastic volatility to model conditional volatility.4

We show that the performance of term structure models in �tting conditional volatility can be

improved greatly with a di¤erent speci�cation of the volatility factor. This improvement does not

come at the expense of the �t of the yield level. Our contribution is related to previous attempts

to build ARCH/GARCH volatility into no-arbitrage term structure models. In particular, Heston

and Nandi (2003) use a very similar setup. However, they calibrate their model using zero-coupon

bond prices for a two-week sample. This limited empirical exercise does not allow them to analyze

the modeling of yield volatility or the model�s potential to resolve the tension between modeling

yield levels and volatilities. We estimate a more general model using a long sample of Treasury

yields data. We also explicitly compare the performance of the proposed model to that of state-

of-the-art stochastic volatility models. Haubrich, Pennacchi, and Ritchken (2012) use a similar

dynamic to investigate the real interest rate and in�ation risk premia, but do not investigate the

4See for example Collin-Dufresne and Goldstein (2002), and Andersen and Benzoni (2010). See also Heidari
and Wu (2003), Fan, Gupta, and Ritchken (2003), Jagannathan, Kaplin, and Sun (2003), and Li and Zhao (2006).
See Bikbov and Chernov (2011), and Tang and Xia (2007) for studies using di¤erent �xed-income data.
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implications of the model for yield volatility.5

Our work also complements a rich literature that provides alternative solutions to model

interest rate volatility in a no-arbitrage framework. For example, Collin-Dufresne and Gold-

stein (2002) and Collin-Dufresne, Goldstein, and Jones (2009) propose an unspanned stochastic

volatility model by imposing a set of parametric restrictions to break the spanning of conditional

volatilities by yields.6 However, Joslin (2018) shows that the unspanned stochastic volatility

restrictions unduly constrain other aspects of model dynamics, and that these restrictions are

rejected by the data. Ghysels, Le, Park, and Zhu (2014) impose a component GARCH volatility

structure on a no-arbitrage term structure model. Their approach results in unspanned volatil-

ity under the physical measure, while our approach is much simpler and falls under the class of

spanned volatility models. Finally, the class of models we propose is also related to an exist-

ing literature that goes beyond the a¢ ne paradigm. Examples include a¢ ne-quadratic models

(see Ahn, Dittmar, and Gallant, 2002; Ahn, Dittmar, Gao, and Gallant, 2003; Leippold and

Wu, 2002), regime-switching models (see for example Dai, Singleton, and Yang, 2007; Bansal

and Zhou, 2002; Bansal, Tauchen, and Zhou, 2004; Ang and Bekaert, 2002), and other nonlinear

models (see for example Ahn and Gao, 1999; Feldhütter, Heyerdahl-Larsen, and Illeditsch, 2018).

We complement these studies by o¤ering a parsimonious yet �exible model for capturing interest

rate volatility.

The paper proceeds as follows. Section 2 presents the speci�cation of term structure models

with GARCH volatility and the benchmark ATSMs with stochastic volatility. Section 3 discusses

the data. Section 4 discusses the parameter estimates for the term structure models, the models�

performance in �tting the conditional volatility of yields, the model-implied term structure of un-

conditional yield volatility, and the trade-o¤ between �tting the conditional means and variances

of yields. Section 5 presents robustness results. Section 6 uses the model and the parameter

5For other related work, see Koeda and Kato (2015) and Realdon (2018).
6Creal and Wu (2015) provide new estimation procedures for ATSMs with spanned or unspanned stochastic

volatility. They �nd that models with spanned volatility �t the cross section of the yield curve better, while those
with unspanned volatility �t volatility better.
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estimates from Treasury yields to hedge Treasury futures options, and Section 7 concludes.

2 Models

In this section, we �rst discuss the structure of the proposed ATSMs with GARCH volatility.

Subsequently, we brie�y discuss the models we use as empirical benchmarks throughout the

paper. We use the canonical a¢ ne stochastic volatility models as speci�ed in Dai and Singleton

(2000), in which the conditional covariance of the state variables is an a¢ ne function of the level

of the state variables. This class of models is motivated by a rich body of literature showing that

the volatility of yield curve is, at least partially, related to the properties of the yield curve. For

example, interest rate volatility is usually high when interest rates are high and when the yield

curve exhibits higher curvature (see Cox, Ingersoll, and Ross, 1985; Litterman and Scheinkman,

1991; Longsta¤ and Schwartz, 1992). We also consider a restricted version of the canonical a¢ ne

stochastic volatility model as an additional benchmark. In this model, the volatility process is

an a¢ ne function of the state variables, and the dynamics of the state variables are the same as

in the model we propose. The only di¤erence between this benchmark and the newly proposed

model is the speci�cation of the volatility process.

2.1 ATSMs with GARCH Volatility

We propose a discrete-time term structure model with analytical solutions for bond prices, in

which the volatility factors follow a GARCH process. This speci�cation of the volatility process

is motivated by the large literature on ARCH and GARCH modeling. There is considerable

evidence that these processes provide a good description of interest rate volatility (Koedijk,

Nissen, Schotman, and Wol¤, 1997; Brenner, Harjes, and Kroner, 1996; Christiansen, 2005).

The GARCH literature is formulated in discrete time, which facilitates model implementation.

Our approach retains the tractability of a¢ ne models while inheriting the ability of GARCH
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models to accurately capture time variation in yield volatility. The existing literature has con-

cluded that at least three factors are needed to explain term structure dynamics (see for example

Litterman and Scheinkman, 1991; Knez, Litterman, and Scheinkman, 1994). Accordingly, we

use ATSMs with three latent state variables, with the following dynamics under the physical

measure P and the risk-neutral measure Q:

Xt+1 = KP
0 +KP

1 Xt +
p
�t+1�t+1; (2.1)

Xt+1 = KQ
0 +KQ

1 Xt +
p
�t+1�t+1; (2.2)

rt = �0 + �1Xt; (2.3)

where Xt+1, KP
0 and �t+1 are 3 � 1 vectors, and KP

1 is a 3 � 3 diagonal matrix. rt denotes the

short rate, �0 is a scalar, �1 is a 1 � 3 vector, and �t+1 is assumed to be distributed N(0; I).

The conditional covariance matrix �t+1 is a 3� 3 diagonal matrix with the ith diagonal element

�2i;t+1 governed by a GARCH(1; 1) dynamic:

�2i;t+1 = !i + �i�
2
i;t + �i�

2
i;t; (2.4)

where �i;t is the ith element of vector �t. !i, �i and �i are scalars. To ensure that �
2
i;t+1 is

positive, we restrict !i, �i and �i to be positive numbers. �
2
i;t+1 is known as of time t, given the

history of Xi;t and initial variance �i;0 as follows

�2i;t+1 = !i + �i�
2
i;t + �i

(Xi;t �KP
0(i) �KP

1(i;i)Xi;t�1)
2

�2i;t
; (2.5)

where Xi;t is the ith state variable, KP
0(i) is the ith element of K

P
0 , and K

P
1(i;i) is the ith diagonal

element of KP
1 . Note that this approach �lters the time-varying volatility from the observations

of the state variables in a very straightforward way. If �i = �i = 0, the volatility for the ith
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state variable is constant over time.7

To link the physical and risk-neutral measures, we specify the pricing kernel to take the form

mt+1 = exp(�rt �
1

2
�
0

t�t � �
0

t�t+1); (2.6)

where �t is a 3� 1 vector. We use an essentially a¢ ne speci�cation for the price of risk (Du¤ee,

2002; Dai and Singleton, 2002; Cheridito, Filipovíc, and Kimmel, 2007), which gives:

�t =
�p

�t

��1
(�0 + �1Xt) ; (2.7)

where �0 is a 3 � 1 vector, and �1 is a 3 � 3 diagonal matrix. The P - and Q-parameters in

equations (2.1) and (2.2) are therefore related as follows:

KQ
0 = KP

0 � �0; (2.8)

KQ
1 = KP

1 � �1:

The model-implied price of a zero coupon bond bP nt with maturity n is given by
bP nt = exp

 
An(�

Q) +B
0

n(�
Q)Xt +

X
i

Ci;n(�
Q)�2i;t+1

!
; (2.9)

whereAn(�Q) , Bn(�Q) andCi;n(�Q) are functions of the parameters�Q = fKQ
0 ; K

Q
1 ; �0; �1; !i; �i; �ig

under the Q-dynamics, satisfying the following recursive relations

An = ��0 + An�1 +B
0

n�1K
Q
0 +

X
i

�
Ci;n!i �

1

2
log (1� 2�iCi;n�1)

�
; (2.10)

7The option pricing literature uses a related dynamic due to Heston and Nandi (2000). That GARCH dynamic
contains an additional parameter to capture the so-called leverage e¤ect in index options, which is due to the
skewness of the return distribution. We have estimated a more general version of (2.5) with this extra parameter.
It does not lead to an improved �t, which intuitively is due to the limited skewness in the yield data.
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Bn = ��
0

1 +B
0

n�1K
Q
1 ; (2.11)

Ci;n =
B

2

i;n�1

2(1� 2�iCi;n�1)
+ �iCi;n�1; (2.12)

where An and Ci;n are scalars, and Bn is a 3� 1 vector with Bi;n is the ith element. The initial

conditions are A1 = ��0, B1 = ��01 and Ci;1 = 0. The derivation of the recursive relations is

provided in Appendix A. For the model with a single time-varying volatility factor, �i = �i = 0

for i = 2 and 3. Therefore Ci;n = 1
2
B

2

i;n�1 for i = 2 and 3. For the model with two time-varying

volatility factors, �i = �i = 0 and Ci;n = 1
2
B

2

i;n�1 for i = 3.

The model-implied continuously compounded n-maturity yield bynt is given by
bynt = An +B

0

nXt +
X
i

Ci;n�
2
i;t+1 (2.13)

= An +B
0

nXt +
X
i

Ci;n

 
!i + �i�

2
i;t + �i

(Xi;t �KP
0(i) �KP

1(i;i)Xi;t�1)
2

�2i;t

!
;

where An = �An
n
, B

0

n = �
B0n
n
, and Ci;n = �Ci;n

n
.

We extract the conditional volatilities of yields using the �ltered time-series of Xt and the

estimated model parameters. The model-implied conditional variance of the n-maturity yield is

given by

dvart(ynt+1) = B
0

nvart(Xt+1)Bn + �2e; (2.14)

where �2e is the variance of the pricing errors. Appendix B provides the computation of the

conditional variance based on the Kalman �lter algorithm.

2.2 Canonical ATSMs with Stochastic Volatility

The main benchmark model considered in the paper is the widely used canonical a¢ ne stochastic

volatility model. Using the classi�cation of Dai and Singleton (2000), we denote the class of a¢ ne

stochastic volatility models as Aj(3), with j = 1; 2 or 3 factors driving the conditional variance
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of the three state variables. The instantaneous spot interest rate rt is given by

rt = �0 + �1Xt; (2.15)

where �0 is a scalar and �1 is a 1 � 3 vector. Most of this literature uses continuous-time

speci�cations, and we follow this approach.8 The state variables Xt follow an a¢ ne di¤usion

under the risk-neutral measure Q

dXt = KQ
1�(K

Q
0� �Xt)dt+

p
�tdW

Q
t ; (2.16)

where KQ
0� is a 3�1 vector, K

Q
1� is a 3�3 matrix, W

Q
t is a 3�1 vector of independent standard

Brownian motions under the risk-neutral measure Q, and �t is the conditional covariance matrix

of Xt. �t is a 3� 3 diagonal matrix with the ith diagonal element given by

�2i;t = ai + b
0

iXt; (2.17)

where ai is a scalar, and bi is a 3 � 1 vector. We de�ne a = [a1; a2; a3], which is a 3 � 1 vector,

and b = [b1; b2; b3], which is a 3� 3 matrix. In the A1(3) model, bi is a vector of zeros for i = 2

and i = 3, and in the A2(3) model, bi is a vector of zeros for i = 3. In the canonical Aj(3) model,

all three state variables have a time-varying conditional variance, which is an a¢ ne function of

j = 1; 2 or 3 state variables.

The model-implied price of a zero coupon bond bP nt with maturity n is given by (see Du¢ e
and Kan, 1996) bP nt = exp�An(�Q) +B

0

n(�
Q)Xt

�
; (2.18)

where An(�Q) and Bn(�
Q) are functions of the parameters under the Q-dynamics, �Q =

fKQ
0�; K

Q
1�; �0; �1; a; bg, through a set of Ricatti ordinary di¤erential equations. The model-

8See Le, Singleton, and Dai (2010) for related discrete-time models.
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implied continuously compounded n-maturity yield bynt is given by
bynt = An +B

0

nXt; (2.19)

where An = �An
n
, and B

0

n = �
B0n
n
.

The pricing kernel �t is given by

d�t
�t

= �rtdt� �
0

tdW
P
t ; (2.20)

where W P
t is a 3 � 1 vector of independent standard Brownian motions under the physical

measure P , and the 3 � 1 vector �t denotes the market price of risk. We adopt the essentially

a¢ ne speci�cation for the price of risk as in Du¤ee (2002) and Dai and Singleton (2002).9

�t =
p
�t�0 +

q
��t �1Xt; (2.21)

where �0 is a 3 � 1 vector and �1 is a 3 � 3 matrix. In Aj(3) models, the diagonal matrix ��t

has zeros in its �rst j entries and (ai + b
0
iXt)

�1 for i = j + 1,:::,3.

The dynamics of the state variables under the physical measure P can be written in terms of

�t and equation (2.16)

dXt = KQ
1�(K

Q
0� �Xt)dt+

p
�t�tdt+

p
�tdW

P
t : (2.22)

The physical dynamic in the essentially a¢ ne model is then given by

dXt = KP
1�(K

P
0� �Xt)dt+

p
�tdW

P
t ; (2.23)

9Jacobs and Karoui (2009) show that the speci�cation of the price of risk has a minimal impact on modeling
conditional volatility.
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where

KP
1� = KQ

1� �

0BBBB@
�01b

0
1

�02b
0
2

�03b
0
3

1CCCCA� I��1;

KP
1�K

P
0� = KQ

1�K
Q
0� +

0BBBB@
a1�01

a2�02

a3�03

1CCCCA :

We denote element i of �0 by �0i. We de�ne I� as a 3 � 3 diagonal matrix. The ith diagonal

element I�i = 1 if the ith diagonal element of �
�
t is nonzero. If the ith diagonal element of �

�
t

is zero, we have I�i = 0

We follow the Dai and Singleton identi�cation scheme to ensure the �2i;t are strictly positive

for all i.10 The Aj(3) models are di¤erent from our proposed model in the parameterization for

both the state variables and the volatility process. In the proposed GARCH model, the feedback

matrix KP
1 is a diagonal matrix. In the canonical Aj(3) models, following the admissibility

constraints of Dai and Singleton (2000),11

KP
1� =

264 KP
1�j�j 0j�(3�j)

KP
1�(3�j)�j KP

1�(3�j)�(3�j)

375 ; (2.24)

where KP
1�j�j is a j � j matrix, KP

1�(3�j)�j is a (3 � j) � j matrix, and KP
1�(3�j)�(3�j) is a

(3� j)� (3� j) matrix. For the volatility process in equation (2.17),

a =

264 0j�1

1(3�j)�1

375 ; (2.25)

10The identi�cation constraints can be applied to either the P - or Q-parameters, see Dai and Singleton (2000),
and Singleton (2006).
11We refer to Dai and Singleton (2000) equations 15-19 for details on the admissibility restrictions. Joslin and

Le (2020) show that for no-arbitrage a¢ ne term structure models, these admissibility constraints give rise to
tension in joint estimation of the physical and risk-neutral dynamics.
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b =

264 I
j�j bj�(3�j)

0(3�j)�j 0(3�j)�(3�j)

375 : (2.26)

We provide more details on the estimation of these stochastic volatility models in Appendix C.

To facilitate the comparison with our proposed model, we also consider a restricted version of

the canonical a¢ ne stochastic volatility model as a benchmark model. In the restricted model,

we constrain KP
1� and K

Q
1� to be diagonal matrices.

12 This model is nested within the canonical

speci�cation. The dynamics of the state variables under the restricted model are similar to those

in our proposed model. The only di¤erence is the speci�cation of the volatility process. In the

restricted Aj(3) model, the conditional variance of the state variables is a linear combination of

the levels of j = 1; 2 or 3 state variables. The di¤erence with our model is therefore a rather

subtle and technical one, and exclusively due to the volatility dynamic.

3 Data

We �rst discuss the sample of Treasury yields we use to estimate the term structure models. We

then discuss the sample of Treasury futures and Treasury futures options data we use for the

hedging application.

3.1 Treasury Yield Data

We use monthly data on continuously compounded zero-coupon bond yields with maturities of

three and six months, and one, two, three, four, �ve, and ten years. The three- and six-months

yields are obtained from the Federal Reserve Economic Data. The one to �ve, and ten year

yields are from the Gürkaynak, Sack, and Wright (2007, GSW) dataset. The sample period is

from November 1971 to October 2019.13

12To get diagonal KQ
1�, restrictions are imposed on the speci�cation of the market price of risk.

13The GSW dataset is obtained from the Federal Reserve, available at http://www.federalreserve.gov/
pubs/feds/2006/200628/200628abs.html. We use November 1971 as the start date because it is the earliest
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Panel A of Table 1 reports the summary statistics of the yields, Panel B reports the realized

volatilities, and Panel C reports the EGARCH(1; 1) volatilities. Both measures of "true" volatil-

ity are maturity-speci�c. Note that we do not have high-frequency data available to construct

realized volatility over the entire sample period for which yields are available. We therefore follow

the approach pioneered by Schwert (1989) in the equity return literature and construct measures

of monthly realized volatility using within-month squared changes in daily yields. We present

results for one- to �ve- and ten-year maturities, because three- and six-month daily yields are not

available for our sample. The EGARCH(1; 1) is estimated assuming that the conditional mean

of changes in monthly yields is generated by an AR(1) process.

On average, the yield curve is upward sloping, and both EGARCH and realized volatilities are

hump-shaped as a function of maturity. The yields for all maturities are highly persistent, and

exhibit positive skewness and mild excess kurtosis at short maturities. A comparison of the two

benchmarks shows that the realized volatilities are much less persistent than the EGARCH(1; 1)

volatilities for all maturities. Both volatility measures exhibit excess kurtosis and positive skew-

ness for all maturities.

3.2 Treasury Futures and Futures Options Data

We document the models�performance in hedging derivatives using monthly data on U.S. Trea-

sury futures contracts and options on these futures. The futures and options data are obtained

from the Chicago Mercantile Exchange (CME) for the May 1988 to June 2016 sample period.

We rely on futures contracts on underlying Treasuries with �ve- and ten-year maturities. We

use options on these underlying futures and require that the option data are available in two

consecutive months in order to compute changes in option prices. We also impose the following

�lters on the option data: i) The option price exceeds 5 cents; ii) Open interest is positive; iii)

Maturity is less than 270 days; and iv) Moneyness is between 0.95 and 1.1.

date with uninterrupted availability of 10-year yield data.
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These futures and options contracts have some features that are critically important for

pricing. Most importantly, the coupon rate for the Treasury underlying these futures contracts

is �xed at 8% prior to February 2000 and at 6% after February 2000. We divide the futures data

into three groups based on maturity: 1-3 months, 3-6 months, and 6-9 months. Panels A and

B of Table 2 present sample summary statistics for the prices of futures contracts on �ve- and

ten-year Treasuries. The futures contracts are quoted in terms of percentage of par. The average

percentage prices are not very di¤erent across maturities. The averages and medians exceed one

hundred percent, which is due to the fact that in our sample period, the �xed coupons exceed

the prevailing market yields.

Panels C and D of Table 2 present summary statistics on the implied volatilities of the

option contracts in the sample. Implied volatilities are computed using the Black model. Similar

to the futures contracts, we divide the sample into three separate maturities for each of the

underlying Treasury maturities. The implied volatilities exhibit a smile pattern in the moneyness

dimension. As expected, the average implied volatilities are larger for futures options written

on ten-year Treasuries compared to futures options on �ve-year Treasuries. The average at-the-

money volatility for the futures options on �ve-year Treasuries is between 3.27% and 5.71%. The

average at-the-money volatility for futures options on ten-year Treasuries is between 5.00% and

6.81%.

4 Term Structure Models: Empirical Results

To retain a low-dimensional structure for the a¢ ne term structure model, we focus on a model

with one time-varying volatility factor in our empirical analysis. That is, we set i = 1 in equation

(2.4) in the proposed term structure model with GARCH volatility. Only the �rst state variable

has a time-varying variance. We refer to this model as the no-arbitrage GARCHmodel. Our main

benchmark model is therefore the canonical A1(3) model with one factor driving the conditional
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variances of the state variables. Dai and Singleton (2000) conclude that this model o¤ers the best

characterization of unconditional yield volatilities and a su¢ ciently �exible correlation structure

among three-factor models with stochastic volatility. Note that this model has a time-varying

variance for all three state variables. However, the dynamic of the variance is driven by only

one state variable. We also consider a restricted version of the canonical A1(3) model, where the

feedback matrix of the state variables is diagonal, as in the no-arbitrage GARCH model.

In this section, we �rst discuss how we estimate the term structure models. We then present

the parameter estimates for these three models, with a focus on comparing the models�ability to

explain the conditional volatility of the yield curve. Subsequently, we examine the unconditional

volatility implied by these models. We also document the tension between matching yields

and yield volatilities in these models, and we discuss their implications for the expectations

hypothesis.

4.1 Estimation Method

The term structure model with GARCH volatility can be expressed using a state-space repre-

sentation. The observed yield curve yt = byt + et is the measurement equation, where byt is the
model-implied yield as speci�ed in equation (2.13), and et is a vector of measurement errors that

is assumed to be i:i:d: normal. We assume that the error variance �2e is the same across matu-

rities to ensure that all maturities receive similar weight in the likelihood. The state equation

is given by equation (2.1). We apply the Kalman �lter to the state-space representation of the

model. We estimate the parameters � = fKP
0 ; K

P
1 ; K

Q
0 ; K

Q
1 ; �0; �1; !i; �i; �ig and �lter the state

variables Xt using maximum likelihood. The log likelihood of the tth observation is

log ft(�) = const� N

2
log(�2e)�

1

2

ketk2

�2e
� 1
2
log(det(�t)) (4.1)

�1
2
(Xt �KP

0 �KP
1 Xt�1)

0�t(Xt �KP
0 �KP

1 Xt�1):
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N denotes the number of available yields in the term structure. In our sample, N = 8. ketk

denotes the Euclidean norm of the vector of measurement errors. Appendix B provides more

detailed information on the Kalman �lter algorithm.14 The estimation of the benchmark A1(3)

model is discussed in Appendix C.

4.2 Parameter Estimates

Table 3 presents parameter estimates for the no-arbitrage GARCHmodel (Panel A), the canonical

A1(3) model (Panel B), and the restricted A1(3) model (Panel C). The no-arbitrage GARCH

model has 22 parameters, including the variance �2e of the measurement errors. The canonical

A1(3) model has 24 parameters, and the restricted A1(3) model has 14 parameters. In the

no-arbitrage GARCH model and the restricted A1(3) model, the conditional mean under the

P -measure is more restricted than in the canonical A1(3) model. For all models, the estimates

satisfy the admissibility conditions under the physical measure P . The state variables in the

canonical and restricted A1(3) models follow a �rst order VAR process when sampled monthly.

To facilitate the comparison with the estimates from the discrete-time no-arbitrage GARCH

model, we report the estimated parameters of the discretized VAR process for both benchmark

models.

The time series properties of the state variables critically depend on the speed of mean

reversion in the feedback matrixKP
1 . For the no-arbitrage GARCHmodel, the �rst state variable,

which has time-varying volatility, is highly persistent. The second and third state variables are

less persistent than the �rst. The third state variable reverts much more quickly under the

Q-measure compared to the P -measure.

Some of the implications of the canonical and restricted A1(3) models are similar to the no-

arbitrage GARCH model. The comparison with the restricted A1(3) model is more convenient

because the structure of the model is similar. Speci�cally, the KP
1 and KQ

1 matrices are also

14See Du¤ee and Stanton (2012) and Christo¤ersen, Dorion, Jacobs and Karoui (2014) for estimation using the
Kalman �lter.
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diagonal, which facilitates the interpretation of factor persistence. Similar to the GARCH model,

the �rst state variable is the most persistent in the restricted A1(3) model and plays the role of

level factor, whereas the third variable is strongly mean reverting. However, in contrast to the

no-arbitrage GARCH model, the third factor is more mean-reverting under the P -measure in

the restricted A1(3) model.

The structure of volatility in the no-arbitrage GARCHmodel critically di¤ers from that in the

benchmark models. In the canonical and restricted A1(3) models, the level factor mainly a¤ects

the volatility of the second factor, as indicated by the second entry in the b vector. Du¤ee (2002)

and Jacobs and Karoui (2009) �nd similar results. In our benchmark no-arbitrage GARCHmodel

on the other hand, by design it is the volatility of the �rst (level) factor that plays a critical role.

The estimated volatility dynamic is very persistent (� = 0:9064). We investigate no-arbitrage

GARCH models with additional volatility factors in Section 5.2.

4.3 Conditional Yield Volatility

In this section, we examine the properties of the model-implied conditional yield volatilities.

First, consider simple unconditional correlations between the variance factors from the models

and the two measures of the "true" variance. Recall that the maturity-speci�c realized variance

is constructed using within-month squared changes in daily yields. The EGARCH model is

estimated assuming that the conditional mean of changes in yields follows an AR(1) process,

and is also maturity-speci�c. The variance factor from the no-arbitrage GARCH model has

the highest unconditional correlation with the realized variance (65%) as well as the EGARCH

estimates (84%). The correlations with the realized variance for the two benchmark models are

approximately 46%. The correlations with the EGARCH(1; 1) variance for the two benchmark

models are approximately 54%.

Next we present the model-implied conditional volatilities together with the realized volatili-

ties in Figure 1 and with the EGARCH(1; 1) volatilities in Figure 2. Appendices B and C discuss
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the derivation of the implied one-month conditional volatilities from the no-arbitrage GARCH

model and the A1(3) model respectively. We observe a close correspondence between the re-

alized volatility and the EGARCH volatility, but the realized volatilities are more noisy than

the EGARCH(1; 1) volatilities for all maturities.15 This is not surprising, because the realized

volatilities are ex-post realizations as opposed to conditional expectations.

The estimated conditional volatilities from the canonical and restricted A1(3) models are

very similar and much less variable than the realized and EGARCH volatilities. The estimated

volatility at the short end is similar before and after the monetary experiment in the early 1980s

for both benchmark models. In addition, both benchmark models overestimate yield volatility

when volatility is low, from the mid-1980s to 2000, and they do not exhibit su¢ cient variation

in yield volatility at the beginning of the sample. At the very short end (3-month and 6-month)

and very long end (10-year) of the yield curve, the estimated conditional volatilities from the

restricted A1(3) model exhibit excess movement in the last decade of the sample.

The estimated conditional volatilities from the no-arbitrage GARCH model are more variable

than the estimates from the two benchmark models. They comove closely with the realized and

EGARCH volatilities at longer maturities (4-5 and 10 years), but do not perform as well for

short maturities. For longer maturities, the no-arbitrage GARCH model �ts the high volatility

periods of the early 1980s well. The canonical and restricted A1(3) models, on the other hand,

cannot capture the high volatility periods for any maturity. The no-arbitrage GARCH model

also does a better job in �tting the low volatility periods in our sample (from the mid-1980s to

2000) than the two benchmark models for all maturities. Moreover, it is able to capture the

time variation in yield volatility at the beginning of our sample for all maturities. In summary,

the no-arbitrage GARCH model appears to capture the time-variation in the second moment of

yields quite well, especially at longer maturities.

To further assess the quality of the estimated conditional volatilities, Panel A of Table 4

15We do not report realized volatility results for the three- and six-month maturities due to data availability.
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reports the unconditional correlations between model-implied and realized volatilities, and Panel

B reports the unconditional correlations between model-implied and EGARCH(1; 1) volatilities.

A �rst observation is that the correlations with both realized and EGARCH volatilities are

positive at all maturities for all models. The estimated conditional volatilities from the no-

arbitrage GARCH model have the highest correlation with both the realized volatilities and

the EGARCH estimates at all maturities. For example, the unconditional correlation with the

EGARCH(1; 1) volatilities is as high as 95% for the 3-year yield, while it is about 71% for the

two benchmark models. The estimated conditional volatilities from the two benchmark models

have similar correlations with both realized and EGARCH volatilities at all maturities. On

average across all maturities, the unconditional correlation with realized volatilities for the no-

arbitrage GARCH model is 67%, for the canonical A1(3) model it is 46%, and for the restricted

A1(3) model it is 45%. The unconditional correlation with EGARCH(1; 1) volatilities for the

no-arbitrage GARCH model is 90% on average across all maturities, for the canonical A1(3)

model it is 67%, and for the restricted A1(3) model it is 66%.16

To provide additional insight into the models�ability to �t volatility, we also examine the

root mean squared errors (RMSEs) of model-implied conditional volatilities. Panel A of Table

5 reports the RMSEs between model-implied and realized volatilities, and Panel B of Table

5 reports the RMSEs between model-implied and EGARCH volatilities. Both are expressed in

basis points. The no-arbitrage GARCH model outperforms both benchmark models in �tting the

volatility across all maturities for both "true" volatility measures. The model does a particularly

good job at the intermediate and long end of the yield curve, although it only has a single

volatility factor. For example, for 3-5 and 10 years, the RMSEs based on EGARCH volatilities

are below 10 basis points.

16As discussed in Jacobs and Karoui (2009), the performance of the stochastic volatility model in �tting yield
volatility is sensitive to the model and sample under consideration. We �nd a positive correlation as in Jacobs
and Karoui (2009), because we also use a relative long sample of Treasury yields and include the high in�ation
period. Andersen and Benzoni (2010), and Collin-Dufresne, Goldstein, and Jones (2009) do not �nd a signi�cant
positive correlation.
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The RMSE improvement of the no-arbitrage GARCH model over the two benchmark models

is about 30% on average across maturities when realized volatility is used as the measure of

true volatility. When EGARCH(1; 1) volatility is used as the measure of true volatility, the

RMSE improvement over the two A1(3) models is about 33% on average across maturities. The

improvement of the RMSEs between model-implied and EGARCH volatilities is more signi�cant

at longer maturities. For example, for the 5-year yield, the improvement in RMSEs is about 55%.

In summary, the no-arbitrage GARCH model performs better in capturing the time variability

of conditional volatility despite using a single volatility factor. This �nding suggests that the

improvements mainly result from the GARCH speci�cation of the volatility process.

4.4 The Term Structure of Unconditional Volatility

We investigate model-implied unconditional volatility. Figure 3 presents the term structure of

unconditional yield volatility implied by the no-arbitrage GARCH model and the canonical and

restricted A1(3) models, and compares these with the "model-free" term structures of uncondi-

tional realized and EGARCH(1; 1) volatility. The unconditional A1(3) and no-arbitrage GARCH

model volatilities are computed as the averages of the conditional volatility path generated by

each model.

Figure 3 shows that the no-arbitrage GARCH implied term structure matches the EGARCH(1; 1)

implied term structure and the term structure of realized volatility much more closely than the

benchmark A1(3) models. The term structures implied by the two benchmark models are very

similar. The volatility curve from these models monotonically decreases as a function of maturity

and volatility is too high at all maturities.

4.5 The Trade-o¤Between Fitting Yield Levels and Volatilities

The tension between matching the �rst and second moments of Treasury yields in ATSMs has

been documented in many studies (Dai and Singleton, 2000, 2002; Du¤ee, 2002; Duarte, 2004;
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Joslin and Le, 2020). In particular, Dai and Singleton (2002) note "a tension in matching

simultaneously the historical properties of the conditional means and variances of yields". Joslin

and Le (2020) study the mechanism underlying this tension, and argue that imposing a spanning

condition may prevent a no-arbitrage model from fully capturing the predictability patterns of

bond yields in the data.

The no-arbitrage GARCH model belongs to the class of spanned a¢ ne models. Since the

GARCH volatility is one of the factors that determine bond yields, it is spanned by the yields.

The estimation of this model could therefore be subject to the same tension. We now show that

the improved volatility �t is not obtained at the expense of poor yield �t. Panel A of Table 6

reports the RMSEs of yields in basis points for the no-arbitrage GARCH model and the two

benchmark models. On average across all maturities, the yield �t is similar for the three models.

The in-sample RMSE of yields for the no-arbitrage GARCH model with a single volatility factor

is about 19 basis points on average across di¤erent maturities. This �nding suggests that the

improvement of the no-arbitrage GARCH model in �tting conditional volatility, as shown in

Section 4.3, does not come at the cost of �tting the conditional mean of yields.

For comparison, we also present the �t of yields for Gaussian models with constant variance-

covariance matrix. We consider the canonical representation of Joslin, Singleton, and Zhu (2011,

henceforth referred to as JSZ), which allows for stable and tractable estimation of the A0(3)

three-factor Gaussian model.17 Panel B of Table 6 shows the RMSEs for the maximum �exible

speci�cation of the JSZ model and also for three restricted models. In the �rst restricted model,

we use a diagonal variance-covariance matrix with constant variance. In the second restricted

model, we set the (1; 2) and (1; 3) entries of the feedback matrix (K1) to zero and we also restrict

the variance-covariance matrix to be diagonal and the variance to be constant. This restricted

version is comparable to the canonical A1(3) model. In the third restricted JSZ speci�cation, we

restrict the feedback matrix (K1) and the constant variance-covariance matrix to be diagonal.

17We refer to JSZ (2011) for implementation details.
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This restricted form is more comparable to the no-arbitrage GARCH model. Recall that under

the newly proposed model, the feedback matrix is a diagonal matrix.

The maximum �exible A0(3) model provides the best in-sample �t of yields. This is not

surprising, since the model has the richest speci�cation for the conditional mean of the state

variables. All three restricted forms have marginally higher average RMSEs than the maximum

�exible model.

Overall the Gaussian models outperform the models with time-varying volatility in Panel A for

the purpose of �tting yields. However, the Gaussian models are by design unable to capture the

time variation of yield volatility. These �ndings show that a tension remains between matching

yields and yield volatilities in the proposed model. In comparison to the Gaussian models, all

models in Panel A provide a worse �t to the cross-section of yield levels to acquire �exibility in

�tting conditional variances. This is inevitable, since in these non-Gaussian models, the state

variables driving both yields and yield volatilities are the same and are spanned by the cross

section of yields. In the canonical A1(3) model, all three state variables are non-Gaussian. The

non-Gaussian state variables must be positive and enter the conditional variance. As discussed

in Joslin and Le (2020), this admissibility constraint creates a tension between �tting the yields

and yield volatilities. In the no-arbitrage GARCH model, we have a di¤erent speci�cation for the

factor with time-varying volatility. The variance of this factor follows a GARCH speci�cation,

which results in a very simple admissibility constraint. This simpler constraint does not seem to

result in a deterioration of the �t for the conditional mean of yields compared to the benchmark

A1(3) models.

4.6 The Expectations Hypothesis

We conclude that the in-sample �t of the no-arbitrage GARCH model is as good as that of

the benchmark models. We now examine the ability of the the no-arbitrage GARCH model to

capture the time series properties of the yield data by focusing on the predictability patterns
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observed in the data. Campbell and Shiller (1991) show that under the expectations hypothesis,

a regression coe¢ cient of 'n = 1 obtains in the following regression

yn�1t+1 � ynt =  n + 'n

�
ynt � y1t
n� 1

�
+ ent+1; (4.2)

where ynt is the n-month yield at time t. However, Dai and Singleton (2002) show that actual

estimates of 'n are negative. They then show that the Gaussian model is consistent with these

patterns in the data. No-arbitrage stochastic volatility models are not able to match the observed

pattern.

We conduct this regression analysis using our sample and the yields implied by the di¤erent

models we investigate. Figure 4 presents the results based on a twelve-month holding period.

We �nd deviations from the expectations hypothesis, consistent with the existing literature. The

estimated coe¢ cients are all negative, and more negative for longer maturities. Consistent with

Dai and Singleton (2002), we �nd that the Gaussian model is able to capture this pattern, but the

canonical and restricted A1(3) models are not. In contrast to the canonical stochastic volatility

models, the proposed no-arbitrage GARCH model can match the empirical patterns of bond risk

premia as characterized by the regression coe¢ cients.

We conclude that not only do the improvements provided by the no-arbitrage GARCH for the

purpose of �tting yield volatilities not come at the expense of �tting the yield level, the model

is also able to rationalize the deviations from the expectations hypothesis observed in the data.

5 Robustness

In this section, we �rst investigate an alternative model of the realized variance as a measure

of "true volatility" to evaluate model performance. Next, we discuss the performance of no-

arbitrage GARCH models with multiple volatility factors. Finally, we examine the performance

of the no-arbitrage GARCH when the factors are the �rst three principal components.
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5.1 An Alternative Realized Variance Measure

As discussed in Section 3.1, we construct the monthly realized variance using within-month

squared changes in daily yields. Assuming that M observations are available within a month,

the estimate of the monthly variance for the n-maturity yield is thus computed as

var(ynt+1) =
MX
m=1

�
�ynt+m=M

�2
: (5.1)

As discussed above, the resulting measures are somewhat noisy because they are ex-post re-

alizations as opposed to conditional expectations. We now repeat our analysis using the (ex

ante) conditional expectation of the realized variance instead. The literature has shown that an

ARMA(1; 1) provides a good �t to the logarithm of the realized variance:

log(var(ynt+1)) = 
 log(var(ynt )) + �"t + "t+1; (5.2)

where "t+1 is assumed to be distributed N(0; �2t;"). We refer to this model as the realized variance

model. The model-implied one-month conditional variance of the n-maturity yield is then given

by:

dvart(ynt+1) = (var(ynt ))
 exp��"t + �2t;"
2

�
: (5.3)

Figure 5 presents the one-month conditional volatilities implied by this realized variance

model and the three no-arbitrage models with time-varying volatility. The estimates from the

no-arbitrage GARCH model comove closely with those from the realized variance model. On

the other hand, both benchmark models mostly overestimate yield volatilities between 1980 and

2000. These �ndings are consistent with those in Figures 1 and 2. Panel A of Table 7 reports the

unconditional correlations between the one-month conditional volatilities implied by the realized

variance model and those implied by the three models. Correlations are again positive at all

maturities for all models, but the no-arbitrage GARCH model has a much higher unconditional
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correlation than the canonical and restricted A1(3) models for all maturities. Panel B of Table 7

presents the RMSEs of model-implied volatilities when the conditional volatility implied by the

realized variance model is used as a model-free volatility measure. Consistent with the �ndings

in Table 5, the no-arbitrage GARCH model outperforms both the canonical and restricted A1(3)

models in �tting conditional volatility for all maturities.

Overall, we conclude that our results in Section 4.3 are robust to the measurement of the

realized variance. The no-arbitrage GARCH model performs well for the purpose of modeling

conditional volatility.

5.2 Models with Multiple Volatility Factors

In this section, we investigate the performance of no-arbitrage GARCH models with multiple

volatility factors. Figure 6 presents the results.18 The performance of no-arbitrage GARCH

models with two and three volatility factors is similar to that of the model with a single volatility

factor. The implied conditional volatilities of yields are closely related to both the realized

volatilities and the EGARCH estimates, especially at longer maturities. This �nding suggests

that the �rst volatility factor plays a dominant role in �tting conditional yield volatility. Table

8 presents the parameter estimates for the no-arbitrage GARCH models with two and three

volatility factors as well as the log-likelihood. The estimates of the feedback matrix for the state

variables are similar to those in Table 3 for the model with one volatility factor. The likelihood

ratio tests indicate that the models with two and three volatility factors do not �t the data better

than the model with one volatility factor.

In the model with three volatility factors, the second and third volatility factors mean revert

more quickly than the �rst factor. The estimated mean reversion parameters for the three

volatility factors are �1 = 0:9021, �2 = 0:7314, and �3 = 0:8431 respectively. The �rst variance

factor has the highest unconditional correlation with both the realized variance (65%) and the

18For ease of exposition, we only present results for four di¤erent maturities for realized volatility and EGARCH
volatility respectively. The results for the remaining maturities are reported in the internet appendix.
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EGARCH estimates (83%).

For the second and third variance factors, the correlations with the realized variance are

about 43% and 42% respectively. The correlations with the EGARCH variance are about 64%

and 61% respectively for the second and third variance factors. However, these factors are very

small in magnitude and do not greatly improve �t.

5.3 The No-Arbitrage GARCH Model with Principal Components

as Factors

The main advantage of the GARCH framework is that the �ltering of the volatility process is

relatively straightforward. The question therefore arises if we can further simplify the model

by pre-specifying the factors, rather than �ltering them. The term structure literature has

demonstrated that Gaussian models �t the data well when using the principal components of

the yields as factors. Motivated by this �nding, we now investigate the performance of the no-

arbitrage GARCH model when its factors are the �rst three principal components, rather than

factors estimated using the Kalman �lter. Since the state variables are observable in this case,

�ltering is no longer required in the estimation. Consistent with the main model analyzed above,

we use a model in which only the �rst principal component has a time-varying variance, and we

compare the performance of this model with that of the canonical and restricted A1(3) models.

For these two benchmark models, the results are the same as in Tables 4-6. Panels A and B of

Table 9 report the models�performance in matching yield volatility when the realized volatility

is used to measure the "true" conditional volatility, while Panels C and D show the results when

the EGARCH(1; 1) volatility is used.

The estimated conditional volatilities from the no-arbitrage GARCH model with three princi-

pal components have the highest correlation with both the realized volatilities and the EGARCH

estimates at all maturities. On average across all maturities, the unconditional correlation

with realized volatilities for the no-arbitrage GARCH model with three principal components is
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68%. The unconditional correlation with EGARCH(1; 1) volatilities for the no-arbitrage GARCH

model with three principal components is 87% on average across all maturities. These results

are very similar to those of the proposed no-arbitrage GARCH model with three latent state

variables as shown in Table 4.

However, while the no-arbitrage GARCHmodel with three principal components outperforms

both benchmark models in �tting the volatility across all maturities for both "true" volatility

measures, these improvements are smaller than those of the no-arbitrage GARCH model with

three latent state variables as shown in Table 5. For example, the RMSE improvement of the

no-arbitrage GARCH model with three principal components over the two benchmark models is

about 18% on average across maturities when realized volatility is used as the measure of true

volatility, while the improvement for the no-arbitrage GARCH model with three latent state

variables is about 30% on average across maturities.

6 Hedging Treasury Futures Options

We �rst provide a brief discussion of the literature on �xed income option pricing. We then

propose a hedging exercise that uses Treasury futures options and is designed to exploit superior

modeling of the volatility dynamics, and we provide empirical results for the GARCH model

and the competing canonical A1(3) model. For comparison, we �rst conduct a similar hedging

exercise on Treasury futures, which unlike futures options are not sensitive to volatility.

6.1 Fixed Income Derivatives

The prices of options and many other derivatives are very sensitive to volatility. It therefore

stands to reason that improved volatility modeling should lead to more accurate option prices

and superior performance when hedging against �uctuations in option prices. To remain as

close as possible to the models and parameter estimates in Section 4, we focus on Treasury
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futures options. For both the newly proposed model with GARCH volatility as well as the

competing A1(3) model, futures prices are available in closed form and option prices can be

readily computed. It is therefore straightforward to use the parameters in Section 4 that are

estimated from Treasuries for this hedging exercise.

The existing literature on the pricing of Treasury futures options is very limited. Most of the

literature on �xed income option pricing instead uses caps or swaption data. See for instance

Almeida, Graveline, and Joslin (2011), Collin-Dufresne and Goldstein (2002), Han (2007), Li and

Zhao (2006), Heidari and Wu (2009), and Trolle and Schwartz (2009) for examples.19 While the

newly proposed model with GARCH volatility can be used for pricing and hedging swaptions,

it is not obvious how to use the parameter estimates from Section 4 for this purpose. We

therefore perform a hedging exercise using Treasury futures and options on Treasury futures,

using either the model with GARCH volatility or the competing A1(3) model. Our prior is that

the performance of the two models may not be very di¤erent when hedging futures, because the

prices of these contracts are not very sensitive to volatility. However, we expect the model with

GARCH volatility to outperform the A1(3) model for the purpose of hedging Treasury futures

options.

6.2 Hedging Treasury Futures

Our empirical implementation has focused on a GARCH model where only the �rst factor has

time-varying volatility. In theA1(3)model, by de�nition only the �rst factor determines volatility.

Both models thus attempt to capture volatility with the �rst factor, and we therefore focus the

hedging exercise on this factor. We �rst consider an application that hedges the exposure of the

futures contracts to the �rst factor using the underlying Treasury yields. Speci�cally, we hedge

19A growing literature studies other aspects of Treasury futures options. Bakshi, Crosby and Gao (2022) study
Treasury option returns. Cieslak and Povala (2016) use option-implied volatilities to improve the estimation
of term structure models. Beber and Brandt (2006) and Cremers, Fleckenstein, and Gandhi (2021) study the
relation between implied volatility of Treasury options and economic data. Choi, Mueller, and Vedolin (2017)
document variance risk premiums, while Bauer and Chernov (2021) study option-implied skewness.
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the exposure of the futures contract on the �ve- (ten-) year Treasury using the �ve- (ten-) year

maturity yield.20 The initial hedged portfolio is thus de�ned as:

Ht(T ) = Ft;t+� (T )� wtyt(T );

where � indicates the maturity of the futures contract, T indicates the maturity of the underlying

treasury, Ft;t+� (T ) indicates the time t dollar futures price, and yt(T ) indicates the yield with

maturity T . Because we examine the models�performance in hedging exposure to the �rst factor,

we set wt such that the futures contract exposure to the �rst factor is hedged using the underlying

yield; that is, the change in the initial portfolio value for a given change in X1;t should be zero.

This weight wt is obtained by solving the following equation:

@Ht(T )

@X1;t

=
@Ft;t+� (T )

@X1;t

� wt
@yt(T )

@X1;t

= 0;

which gives:

wt =

@Ft;t+� (T )

@X1;t

@yt(T )
@X1;t

:

Each month t, we compute the derivatives @Ft;t+� (T )

@X1;t
and @yt(T )

@X1;t
for both models using the pa-

rameters reported in Table 3. Given the estimated weight wt, we then compute the predicted

change in the value of the futures contract and compare it with the actual change in the futures

prices. Speci�cally, the change predicted by the model is de�ned as wt(yt+1(T ) � yt(T )), while

the actual change is the one-month change in the futures price Ft+1;t+� (T ) � Ft;t+� (T ): If the

model performs well in estimating the weight required to hedge the exposure to the �rst factor,

we expect the predicted and actual changes to be similar.

Figure 7 presents the results for this exercise that hedges futures contracts with underlying

Treasury maturities of �ve or ten years. For both underlying Treasury maturities, we report the

20We hedge using the yield for ease of implementation, because yields are linear in the state variables. Note
that hedging using yields is equivalent to hedging using the logarithm of bond prices.
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hedging performance for the futures contracts in the 1-3, 3-6, and 6-9 month maturity buckets.

The �gures scatter plot the predicted changes against the actual changes in the futures prices. If

a model performs well, the data should be on the 45-degree line, which is included for reference.

The �rst and third rows of Figure 7 depict the performance of the A1(3) model, while the second

and fourth rows depict the performance of the GARCH model.

Figure 7 clearly indicates that the data nicely line up along the 45 degree line for both models,

across all maturities. Both models perform better for futures contracts with longer maturities.

We conclude that there is no signi�cant di¤erence in the performance of the two models when

hedging the exposure of the futures contract to the �rst factor. This con�rms our prior, since

both models perform adequately for the purpose of �tting the underlying Treasury yields, and

futures prices are largely determined by the level of Treasury yields.

6.3 Hedging Treasury Futures Options

We now present the results of a similar hedging exercise, but this time we attempt to hedge the

exposure of Treasury futures options. The volatility factor, and by extension the speci�cation

of the volatility dynamic, is much more critical for option prices compared to futures prices.

We therefore expect a model that better captures volatility dynamics to outperform in this

dimension. We perform a hedging exercise using options written on Treasury futures contracts

with underlying 5- or 10-year bond maturities. For all options with maturity exceeding one

month, we compute the option hedge ratio as follows:

wOt =

@Ot;t+� (T )

@X1;t

@yt(T )
@X1;t

where Ot;t+� (T ) is the � -maturity option on an underlying futures contract based on the T -

maturity Treasury. The derivative in the numerator is computed using simulation for both

models. We simulate 10,000 paths for each state variable at the monthly frequency, using the
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parameters from Table 3. This gives us the distribution of the futures prices at the option

maturities, which in turn allows us to compute the option prices. We numerically shock the state

variable by 1% on both sides and compute the option prices and the corresponding derivatives

with respect to the state variable. Similar to the futures hedging exercise, we compute the

change predicted by the model as wOt (yt+1(T )� yt(T )) and compare it with the actual change in

the option price Ot+1;t+� (T )� Ot;t+� (T ) to examine the models�ability to hedge �uctuations in

option prices using the underlying Treasuries.

Figure 8 scatter plots the model-predicted changes against the actual changes in the option

prices. Options written on futures on �ve-year Treasuries are on the left and options on futures

on ten-year Treasuries are on the right. Figure 8 clearly indicates that the GARCH model

substantially outperforms the A1(3) model for the purpose of hedging option price �uctuations.

While the data of course deviate much more from the 45-degree line compared to the futures

hedging exercise in Figure 7, they line up much closer to the 45 degree line for the GARCH

model. The scatter plot is much more dispersed in the case of the A1(3) model.

Table 10 provides additional perspective on these di¤erences in model performance. We

regress the actual changes in option prices on the changes predicted by the models. If the model

provides a good hedge, we expect high R2s, a zero intercept, and a loading of one on the model

predictions. Panel A of Table 10 presents the results for the A1(3)model and Panel B presents the

results for the GARCH model. We report results based on the full sample (all options) as well as

results for put and call options separately. For the A1(3) model, the regression R2 is close to zero

and the loading on the model change is close to zero, suggesting very limited predictive power

and very poor hedging performance. For the GARCH model, we obtain R2s ranging between

75% and 82% for options on futures contracts with �ve-year Treasuries as the underlying. The

regression loadings are between 0.91 and 1.00. The model performs somewhat worse for options

on futures contracts with ten-year Treasuries as the underlying, but its performance remains

dramatically better than that of the A1(3) model.
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We conclude that the GARCH model performs substantially better in hedging Treasury

futures options compared to the A1(3) model. This improved performance is due to the fact

that option prices are very sensitive to volatility, and the GARCH model vastly outperforms the

A1(3) model for the purpose of volatility modeling.

7 Conclusion

In the term structure literature, state-of-the-art models face di¢ culties in simultaneously �tting

the time variation in yield levels and volatilities. We propose parsimonious yet �exible models

with closed-form solutions that outperform benchmark models in this dimension. Our results

suggest that the performance of ATSMs in matching yield volatility critically depends on the

speci�cation of the volatility dynamics. In standard ATSMs with stochastic volatility, the volatil-

ity dynamic is a linear combination of the levels of the yield curve factors. We instead propose

a no-arbitrage term structure model where the volatility factor is written as a function of the

(lagged) squared innovations to the yields.

The model combines the tractability of ATSMs with improved modeling of yield volatility. We

estimate the model using monthly yield data from 1971 to 2019, and �nd that the model-implied

conditional volatility is highly correlated with measures of "model-free" volatility, especially

at longer maturities. The correlation between model-implied and model-free yield volatility is

between 80% and 95%. The model signi�cantly outperforms benchmark stochastic volatility

models for the purpose of �tting yield volatility. It also provides a good �t to the conditional

mean of yields, suggesting that the improved volatility �t is not obtained at the expense of

yield �t. These �ndings are robust to various variations in the empirical setup. We illustrate

how these improvements in volatility modeling lead to dramatically better performance when

hedging Treasury futures options.

It is worth emphasizing that our approach may not be the only one that provides improved
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modeling of conditional volatility. Indeed, it may be possible to construct better models, and

we plan to address this in future work. Our objective in this paper is merely to show that it is

possible to write down parsimonious term structure models that allow for improved modeling of

yield volatility as compared to state-of-the art models in this literature, without sacri�cing the

model�s ability to �t the level of yields.

Appendix A. Bond Valuation in ATSMs with GARCH

Volatility

To derive the recursions in equations (2.10), (2.11) and (2.12), we �rst note that the price of a

one-period bond, n = 1, is as follows

P (t; t+ 1) = EQt [exp(�rt)] (A.1)

= exp(��0 � �1Xt):

Suppose that the price of a n-period bond is given by P nt = exp

 
An +B

0
nXt +

X
i

Ci;n�
2
i;t+1

!
.

Matching coe¢ cients gives A1 = ��0, B1 = ��
0
1 and Ci;1 = 0. In order to solve for An, Bn and

Ci;n we derive the bond price under the risk neutral probability measure

P nt = EQt [exp(�rt)P n�1t+1 ] (A.2)

= EQt

"
exp (��0 � �1Xt) exp

 
An�1 +B

0

n�1Xt+1 +
X
i

Ci;n�1�
2
i;t+2

!#

= exp

 
��0 � �1Xt + An�1 +B

0

n�1(K
Q
0 +KQ

1 Xt) +
X
i

Ci;n�1!i +
X
i

Ci;n�1�i�
2
i;t+1

!

�EQt

"
exp

 X
i

�
Bi;n�1�i;t+1�i;t+1 + Ci;n�1�i�

2
i;t+1

�!#
:
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Completing the square in the portion to which the expectation applies, using the fact that for

a standard normal z, E (a(z + b)2) = exp
�
�1
2
log(1� 2a) + ab2

1�2a

�
, and matching coe¢ cients

results in the recursive relations in equations (2.10), (2.11), and (2.12).

Appendix B. Implementing ATSMs with GARCH Volatil-

ity

This appendix summarizes the derivation of the conditional variance for the a¢ ne model in a

GARCH framework. The contemporaneous forecast of the state vector and its corresponding

covariance matrix are denoted by Xtjt and Ptjt. The Kalman �lter algorithm proceeds as follows

at any time t:

1. Given Xtjt and Ptjt, compute the one-period ahead forecast of the state vector and its

corresponding covariance matrix21

Xt+1jt = KP
0 +KP

1 Xtjt; (B.1)

and

Pt+1jt = KP 0

1 PtjtK
P
1 + �t+1jt: (B.2)

The volatility factor can be computed based on equation (2.5)

�2i;t+2jt = !i + �i�
2
i;t+1jt + �i

EPt (Xi;t+1 �KP
0(i) �KP

1(i;i)Xi;t)
2

�2i;t+1jt
(B.3)

= !i + �i�
2
i;t+1jt + �i:

21We use the �rst two unconditional moments in the �rst step of the recursion.
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2. Compute the one-period ahead forecast of yt+1 and its corresponding covariance matrix

yt+1jt = A+B
0
Xt+1jt +

X
i

Ci�
2
i;t+2jt (B.4)

= A+B
0
Xt+1jt +

X
i

Ci
�
!i + �i�

2
i;t+1jt + �i

�
;

where yt+1jt is an N � 1 vector, A and Ci are N � 1 vectors, and B is a 3 � N matrix,

where N denotes the number of available yields in the term structure. Furthermore,

Vt+1jt = B
0
Pt+1jtB +R; (B.5)

where R is an N �N diagonal matrix. We assume that the variance of the pricing errors

�2e on the diagonal is the same across maturities.

3. Compute the forecast error of yt+1, et+1jt = yt+1 � yt+1jt.

4. Update the contemporaneous forecast of the state vector and its corresponding covariance

matrix

Xt+1jt+1 = Xt+1jt + Pt+1jtBV
�1
t+1jtet+1jt; (B.6)

Pt+1jt+1 = Pt+1jt � Pt+1jtBV
�1
t+1jtB

0
Pt+1jt: (B.7)

and compute the smoothed volatility factor

�2i;t+2jt+1 = !i + �i�
2
i;t+1 + �i

(Xi;t+1 �KP
0(i) �KP

1(i;i)Xi;t)
2

�2i;t+1
: (B.8)

5. Return to the �rst step.

The model-implied conditional variance of yields is computed as

dvart(yt+1) = diag(Vt+1jt): (B.9)
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Note that in the empirical investigation, we use the conditional variance of yield di¤erences,

which is also equal to equation (B.9).

Appendix C. Estimation of Canonical ATSMs with Sto-

chastic Volatility

This appendix summarizes the method used to estimate canonical a¢ ne stochastic volatility

models. A three-factor latent model can be expressed using a state-space representation. The

observed yields yt = byt + et constitute the measurement equation, where byt is the model-implied
yield as speci�ed in equation (2.19), and et is a vector of measurement errors that is assumed

to be i:i:d: normal. We assume that the errors have equal variance �2e across maturities to

ensure similar weights in the likelihood. The state equation (2.23) can be discretized as Xt+1 =

KP
0 +K

P
1 Xt + �

P
t+1, where �

P
t+1jt is assumed to be distributed N(0; �t). We estimate the P - and

Q-parameters simultaneously by applying the Kalman �lter to the state-space representation.

We use quasi-maximum likelihood (QML) as implemented by Jacobs and Karoui (2009).

The contemporaneous forecast of the state vector and its corresponding covariance matrix

are denoted by Xtjt and Ptjt. The Kalman �lter algorithm works as follows at any time t:

1. Given Xtjt and Ptjt, compute the one-period ahead forecast of the state vector and its

corresponding covariance matrix22

Xt+1jt = KP
0 +KP

1 Xtjt; (C.1)

and

Pt+1jt = KP 0

1 PtjtK
P
1 + �tjt: (C.2)

22We use the �rst two unconditional moments in the �rst step of the recursion.
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where the volatility factor is computed based on equation (2.17)

�2i;tjt = ai + b
0

iXt; (C.3)

where �2i;tjt is the ith diagonal element of the 3� 3 matrix �tjt.

2. Compute the one-period ahead forecast of yt+1 and its corresponding covariance matrix

yt+1jt = A+B
0
Xt+1jt; (C.4)

where yt+1jt is a N � 1 vector, A is a N � 1 vector, B is a 3 � N matrix, and N denotes

the number of available yields in the term structure.

Vt+1jt = B
0
Pt+1jtB +R; (C.5)

where R is a N �N diagonal matrix. We assume that the variance of the pricing errors �2e

on the diagonal is the same across maturities.

3. Compute the forecast error of yt+1, et+1jt = yt+1 � yt+1jt.

4. Update the contemporaneous forecast of the state vector and its corresponding covariance

matrix

Xt+1jt+1 = Xt+1jt + Pt+1jtBV
�1
t+1jtet+1jt; (C.6)

and

Pt+1jt+1 = Pt+1jt � Pt+1jtBV
�1
t+1jtB

0
Pt+1jt: (C.7)

5. Return to the �rst step.
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The quasi log-likelihood for observation t+ 1 is then

log ft(�) = �
N

2
log(2�)� 1

2
log(det(Vt+1jt))�

1

2
e
0

t+1jtVt+1jtet+1jt: (C.8)

The model-implied conditional variance of yields is computed as

dvart(yt+1) = diag(Vt+1jt): (C.9)

Note that in the empirical investigation, we use the conditional variance of yield di¤erences,

which is also equal to equation (C.9).
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Figure 1: Model-Implied Conditional Volatility by Maturity: Comparison with Realized Volatility.
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Notes to Figure: We plot the implied one-month conditional yield volatility for different models. For each maturity, the dotted line
(red) represents “model-free” volatility, measured by realized volatility. We construct maturity-specific monthly realized variances
using within-month squared changes in daily yields. The solid line (blue) represents the conditional volatility from the no-arbitrage
GARCH model. The dash-dot line (magenta) represents the conditional volatility from the canonical A1(3) model. The dashed
line (green) represents the conditional volatility from the restricted A1(3) model. In the restricted A1(3) model, we set the feedback
matrix to be a diagonal matrix.



Figure 2: Model-Implied Conditional Volatility by Maturity: Comparison with EGARCH Volatility.
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Notes to Figure: We plot the implied one-month conditional yield volatility for different models. For each maturity, the dotted
line (red) represents “model-free” volatility, measured by the EGARCH(1, 1) volatility. The maturity-specific EGARCH(1, 1) is
estimated assuming that the conditional mean of changes in monthly yields is generated by an AR(1) process. The solid line (blue)
represents the conditional volatility from the no-arbitrage GARCH model. The dash-dot line (magenta) represents the conditional
volatility from the canonical A1(3) model. The dashed line (green) represents the conditional volatility from the restricted A1(3)
model. In the restricted A1(3) model, we set the feedback matrix to be a diagonal matrix.



Figure 3: The Term Structure of Unconditional Volatility.
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Notes to Figure: We plot the term structure of average yield volatility implied by different
models together with the term structure of “model-free” realized volatility and EGARCH
volatility. The solid line with asterisk (black) represents the term structure of realized volatil-
ity, and the diamond line (red) represents the EGARCH(1, 1) term structure. The cross line
(blue) represents the term structure of volatility from the no-arbitrage GARCH model. The
square line (magenta) represents the term structure of volatility from the canonical A1(3)
model. The circle line (green) represents the term structure of volatility from the restricted
A1(3) model. In the restricted A1(3) model, we set the feedback matrix to be a diagonal
matrix. The x-axis is yield maturity in months.



Figure 4: The Campbell-Shiller Expectations Hypothesis Regression.
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Notes to Figure: We plot the estimated coefficients from the Campbell-Shiller expectation hy-
pothesis regression using yields implied by different models. The diamond line (red) represents
the estimates using the yield data. The cross line (blue) represents the estimates from yields
implied by the no-arbitrage GARCH model. The square line (magenta) shows the estimates
from yields implied by the canonical A1(3) model. The circle line (green) is for the estimates
from yields implied by the restricted A1(3) model. In the restricted A1(3) model, we set the
feedback matrix to be a diagonal matrix. The asterisk line (cyan) is for the estimates using
yields from the Joslin, Singleton, and Zhu (2011) specification of the Gaussian A0(3) model.
The x-axis is yield maturity in years.



Figure 5: Model-Implied Conditional Volatility:

Comparison with the Expected Realized Variance.
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Notes to Figure: We plot the one-month conditional volatility of the yield curve implied by
different models. For each maturity, the dotted line (red) represents the conditional volatility
implied by the realized variance model. We construct a measure of monthly variance using
within-month squared changes in daily yields and estimate its conditional expectation assum-
ing that the logarithm of the realized variance follows an ARMA(1, 1) process. The solid
line (blue) represents the conditional volatility from the no-arbitrage GARCH model. The
dash-dot line (magenta) represents the conditional volatility from the canonical A1(3) model.
The dashed line (green) represents the conditional volatility from the restricted A1(3) model.
In the restricted A1(3) model, we set the feedback matrix to be a diagonal matrix.



Figure 6: Model-Implied Conditional Volatility in

the No-Arbitrage GARCH Model with Multiple Volatility Factors.
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Notes to Figure: We plot the one-month conditional volatility of the yield curve implied by
the no-arbitrage GARCH model with different numbers of volatility factors together with
the realized volatility (left four panels) and the EGARCH(1, 1) volatility (right four panels)
respectively. The dotted line (red) in the left panels represents the realized volatility. The
dotted line (red) in the right panels represents the EGARCH(1, 1) volatility. The solid line
(blue) represents the volatility from the no-arbitrage GARCH model with a single volatility
factor. The dash-dot line (black) represents the volatility from the model with two volatility
factors. The dashed line (green) represents the volatility from the model with three volatility
factors.



Figure 7: Hedging Treasury Futures.
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Notes to Figure: We scatter plot model-predicted changes in futures prices against actual
changes. Model-predicted changes are computed using model-based hedge ratios. We hedge
the exposure of each futures contract to the first factor using the underlying Treasury yield.
The top two rows present the hedging performance for futures contracts on five-year Treasuries
for both models. The bottom two rows present the hedging performance for futures contracts
on ten-year Treasuries. The sample period is from 1988 to 2016.



Figure 8: Hedging Treasury Futures Options.
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Notes to Figure: We scatter plot model-predicted changes in futures options prices against
actual changes. Model-predicted changes are computed using model-based hedge ratios. We
hedge the exposure of each futures options contract to the first factor using the underlying
Treasury yield. The left two panels present the hedging performance for futures options
contracts on five-year Treasuries for both models. The right two panels present the hedging
performance for futures options contracts on ten-year Treasuries. The sample period is from
1988 to 2016.



Table 1: Summary Statistics

Panel A: Yields
Central Moments Autocorrelation

Mean (%) St.Dev (%) Skewness Kurtosis Lag 1 Lag 12 Lag 30
3 month 4.6508 3.4534 0.6171 3.3040 0.9904 0.8588 0.6391
6 month 4.7758 3.4409 0.5332 3.0506 0.9915 0.8707 0.6632
1 year 5.1349 3.5744 0.4511 2.8107 0.9906 0.8833 0.7019
2 year 5.3581 3.5079 0.3793 2.6595 0.9915 0.8981 0.7500
3 year 5.5477 3.4214 0.3642 2.6022 0.9921 0.9057 0.7775
4 year 5.7130 3.3334 0.3695 2.5853 0.9923 0.9095 0.7938
5 year 5.8587 3.2510 0.3816 2.5896 0.9923 0.9111 0.8032
10 year 6.3640 2.9658 0.4264 2.6891 0.9918 0.9088 0.8110

Panel B: Realized Volatilities
Central Moments Autocorrelation

Mean (bps) St.Dev (bps) Skewness Kurtosis Lag 1 Lag 12 Lag 30
1 year 23.4998 19.3417 2.4780 10.8596 0.7292 0.4915 0.1051
2 year 26.4714 17.9137 2.3690 10.6328 0.7045 0.4355 0.0243
3 year 27.7467 16.9367 2.3069 10.4769 0.7047 0.4025 -0.0084
4 year 27.9939 16.0276 2.1956 10.0693 0.7148 0.3943 -0.0107
5 year 27.8329 15.3202 2.0708 9.5533 0.7214 0.4018 0.0029
10 year 26.7380 13.9951 1.6762 7.2509 0.7419 0.4545 0.0609

Panel C: EGARCH Volatilities
Central Moments Autocorrelation

Mean (bps) St.Dev (bps) Skewness Kurtosis Lag 1 Lag 12 Lag 30
3 month 28.5701 32.9859 2.7703 11.2903 0.9830 0.7292 0.2958
6 month 28.0909 29.3398 2.7781 12.1228 0.9801 0.6905 0.2998
1 year 34.0188 31.2364 2.6563 11.9225 0.9717 0.6947 0.3562
2 year 35.2671 24.2314 2.6036 11.3548 0.9775 0.6972 0.3708
3 year 35.5186 18.9077 2.4514 10.1627 0.9776 0.6936 0.3635
4 year 34.2632 14.2330 2.2827 8.9541 0.9762 0.6899 0.3539
5 year 33.3196 11.7587 2.0619 7.6196 0.9761 0.7025 0.3603
10 year 30.6445 9.7072 1.5141 4.9637 0.9706 0.6867 0.3639

Notes to Table: We present summary statistics for the data used in estimation. We present the
sample mean, standard deviation, skewness, kurtosis, and autocorrelations for each of the yields
(Panel A) and yield volatilities (Panels B and C). The yields are continuously compounded
monthly zero-coupon bond yields. The monthly realized volatility in Panel B is the square
root of monthly realized variance. We construct monthly realized variance using within-month
squared changes in daily yields. Panel C reports on the EGARCH(1, 1) estimates of changes in
monthly yields. The EGARCH(1, 1) is estimated assuming that the conditional mean of changes
in monthly yields is generated by an AR(1) process. The sample period is from 1971:11 to
2019:10.



Table 2: Summary Statistics: Futures and Options

Panel A: Five-Year Treasury Futures Prices
Maturity Average Min Median Max

1 - 3 months 110% 94% 109% 125%
3 - 6 months 109% 94% 108% 125%
6 - 9 months 106% 95% 106% 118%

Panel B: Ten-Year Treasury Futures Prices
Maturity Average Min Median Max

1 - 3 months 112% 92% 111% 135%
3 - 6 months 112% 91% 111% 134%
6 - 9 months 108% 91% 108% 133%

Panel C: Implied Volatility, Options on Five-Year Treasuries
Moneyness (K/F)

Maturity 0.95-0.975 0.975-1.00 1.00-1.025 1.025-1.05 1.05-1.10 N
1 - 3 months 4.95% 3.51% 3.27% 4.31% 5.71% 1440
3 - 6 months 4.66% 3.67% 3.56% 4.55% 5.59% 3859
6 - 9 months 4.08% 3.84% 3.78% 3.67% 102

N 408 2542 2170 265 16

Panel D: Implied Volatility, Options on Ten-Year Treasuries
Moneyness (K/F)

Maturity 0.95-0.975 0.975-1.00 1.00-1.025 1.025-1.05 1.05-1.10 N
1 - 3 months 6.26% 5.27% 5.00% 5.45% 6.70% 1856
3 - 6 months 6.22% 5.66% 5.55% 5.88% 6.81% 6225
6 - 9 months 5.97% 5.77% 5.66% 5.67% 6.09% 1070

N 1683 2954 2717 1334 463

Notes to Table: We present summary statistics for Treasury futures prices and option-implied volatil-

ities from options on Treasury futures. The sample period is from 1988 to 2016. Panels A and B

report the average, median, minimum and maximum prices for futures on five- and ten-year Trea-

suries. Panels C and D report the average implied volatilities from futures options with underlying

five- and ten-year Treasuries, for various moneyness and maturity groups. N indicates the number

of option contracts in each group.



Table 3: Parameter Estimates

Panel A: The No-Arbitrage GARCH Model

KP
0 KP

1 KQ
0 KQ

1

0.0025 0.9979 0.0017 0.9966
-0.0039 0.9542 -0.0072 0.9466
0.0007 0.9449 0.0161 0.7212

ρ0 ρ1 Log Likelihood

-0.0001 0.0003 -0.0338 0.0372 19173.32

ω × 1e2 α β σ2 × 1e4 σ3 × 1e4

0.0001 0.0794 0.9064 0.0021 0.0153

Panel B: The Canonical A1(3) Model

KP
0 KP

1 KQ
0 KQ

1

0.0222 0.9958 0.0222 1.0011
-0.4750 0.0892 0.9697 -0.2707 0.0298 0.1246 0.9658 -0.7689
-0.0850 0.0160 0.0016 0.8095 -0.1022 0.0140 0.0021 0.8867

ρ0 ρ1 Log Likelihood

0.0172 0.0015 0.0015 0.0056 15640.90

a b
0.0000 1.0000 1.0000 1.0000 10.3716 0.1575

Panel C: The Restricted A1(3) Model

KP
0 KP

1 KQ
0 KQ

1

0.0226 0.9958 0.0226 1.0010
0.0000 0.9697 0.0000 0.9657
0.0000 0.8118 0.0000 0.8890

ρ0 ρ1 Log Likelihood

0.0172 0.0015 0.0015 0.0057 15454.31

a b
0.0000 1.0000 1.0000 1.0000 10.3615 0.1578

Notes to Table: We present the estimated parameters and log likelihoods for the no-arbitrage
GARCH model (Panel A), the canonical A1(3) model (Panel B), and the restricted A1(3)
model (Panel C). In the restricted A1(3) model, we set the feedback matrix to be a diagonal
matrix. The estimates are based on monthly zero-coupon bond yields from 1971:11 to
2019:10. The state variables in the canonical and restricted A1(3) models follow a first order
VAR process when sampled monthly.



Table 4: Unconditional Correlations for Conditional Volatility Implied by Different Models

Panel A: Unconditional Correlations with Realized Volatility
1 year 2 year 3 year 4 year 5 year 10 year Avg.

No-Arbitrage GARCH 0.69 0.69 0.68 0.67 0.65 0.62 0.67
Canonical A1(3) 0.55 0.50 0.47 0.44 0.41 0.36 0.46
Restricted A1(3) 0.54 0.50 0.46 0.43 0.40 0.35 0.45

Panel B: Unconditional Correlations with EGARCH(1, 1) Volatility
3 month 6 month 1 year 2 year 3 year 4 year 5 year 10 year Avg.

No-Arbitrage GARCH 0.85 0.86 0.91 0.94 0.95 0.94 0.92 0.80 0.90
Canonical A1(3) 0.62 0.64 0.69 0.71 0.71 0.70 0.69 0.58 0.67
Restricted A1(3) 0.59 0.61 0.67 0.71 0.71 0.70 0.69 0.59 0.66

Notes to Table: Panel A presents the unconditional correlations between the realized volatility and the one-month
conditional volatility implied by the no-arbitrage GARCH model, the canonical A1(3) model, and the restricted
A1(3) model. We construct monthly realized variance using within-month squared changes in daily yields. Panel
B presents the unconditional correlations between the EGARCH(1, 1) volatility and the one-month conditional
volatility implied by the three models. The EGARCH(1, 1) is estimated assuming that the conditional mean of
changes in monthly yields is generated by an AR(1) process. In the restricted A1(3) model, we set the feedback
matrix to be a diagonal matrix. The last column shows the average correlation across all maturities.



Table 5: Conditional Volatility Fit

Panel A: RMSEs of Volatility Based on Realized Volatility
1 year 2 year 3 year 4 year 5 year 10 year Avg.

No-Arbitrage GARCH 19.03 15.84 14.89 14.06 13.39 11.62 14.80
Canonical A1(3) 26.51 23.35 21.13 19.59 18.65 17.34 21.09
Restricted A1(3) 27.13 23.79 21.56 19.95 18.92 17.38 21.46

Improvement on Can. A1(3) 28.21% 32.17% 29.56% 28.20% 28.19% 33.01% 29.89%
Improvement on Rest. A1(3) 29.86% 33.43% 30.96% 29.50% 29.24% 33.16% 31.02%

Panel B: RMSEs of Volatility Based on EGARCH(1, 1) Volatility
3 month 6 month 1 year 2 year 3 year 4 year 5 year 10 year Avg.

No-Arbitrage GARCH 25.96 22.65 22.09 14.73 9.86 6.10 4.86 5.90 14.02
Canonical A1(3) 32.43 28.60 25.40 18.98 14.68 12.01 10.87 11.09 19.26
Restricted A1(3) 32.89 29.09 25.46 19.07 14.90 12.24 10.98 10.88 19.44

Improvement on Can. A1(3) 19.97% 20.79% 13.04% 22.36% 32.82% 49.21% 55.25% 46.78% 32.53%
Improvement on Rest. A1(3) 21.09% 22.14% 13.23% 22.73% 33.84% 50.16% 55.68% 45.75% 33.08%

Notes to Table: We present the volatility fit for the no-arbitrage GARCH model, the canonical A1(3) model, and the restricted
A1(3) model. In the restricted A1(3) model, we set the feedback matrix to be a diagonal matrix. In Panel A, the RMSEs are
computed by using realized volatility as a measure of model-free volatility. We construct monthly realized variance using within-
month squared changes in daily yields. In Panel B, the RMSEs are computed by using an EGARCH(1, 1) model as a measure
of model-free volatility. The EGARCH(1, 1) is estimated assuming that the conditional mean of changes in monthly yields is
generated by an AR(1) process. RMSEs are reported in basis points. We also present the percentage RMSE improvement of
the no-arbitrage GARCH model over the canonical and restricted A1(3) models. The last column shows the averages across all
maturities.



Table 6: Yield Fit

Panel A: Stochastic Volatility Models
3 month 6 month 1 year 2 year 3 year 4 year 5 year 10 year Avg.

No-Arbitrage GARCH 24.22 25.06 4.27 10.44 16.33 18.74 20.10 32.69 18.98
Canonical A1(3) 12.84 17.59 27.12 16.25 9.11 13.36 19.70 36.97 19.12
Restricted A1(3) 18.84 15.09 24.27 15.47 11.53 15.45 21.05 37.92 19.96

Panel B: Gaussian Models
3 month 6 month 1 year 2 year 3 year 4 year 5 year 10 year Avg.

JSZ 7.95 10.36 12.88 4.65 5.08 5.67 5.95 7.73 7.53
JSZ Restricted 1 25.04 23.13 5.72 5.36 1.31 3.88 5.02 7.71 9.65
JSZ Restricted 2 7.81 14.18 15.71 7.89 6.20 6.75 7.08 11.81 9.68
JSZ Restricted 3 9.33 11.65 14.75 6.62 5.21 6.37 7.42 8.08 8.68

Notes to Table: We present RMSEs based on the yield fit for the time-varying volatility models (Panel A) and
the Gaussian models (Panel B). Panel A reports results for the no-arbitrage GARCH model, the canonical A1(3)
model, and the restricted A1(3) model. In the restricted A1(3) model, we set the feedback matrix to be a diagonal
matrix. In Panel B, we consider the canonical representation of Joslin, Singleton, and Zhu (2011, referred to as
JSZ). We present the results for the maximum flexible specification of the JSZ model and also for three restricted
JSZ canonical forms. In the first restricted version, we set the variance-covariance matrix to be a diagonal matrix.
In the second restricted version, we also set the (1, 2) and (1, 3) entries of the feedback matrix to be zeros. In the
third restricted version, we set the feedback matrix to be a diagonal matrix. The last column in the table shows
the average across all maturities. RMSEs are reported in basis points.



Table 7: Conditional Volatility Fit Based on Expected Realized Variance

Panel A: Unconditional Correlations
1 year 2 year 3 year 4 year 5 year 10 year Avg.

No-Arbitrage GARCH 0.86 0.87 0.87 0.85 0.83 0.74 0.84
Canonical A1(3) 0.64 0.59 0.54 0.50 0.47 0.40 0.52
Restricted A1(3) 0.63 0.59 0.53 0.49 0.45 0.40 0.51

Panel B: RMSEs of Volatility
1 year 2 year 3 year 4 year 5 year 10 year Avg.

No-Arbitrage GARCH 14.73 10.97 10.05 9.51 9.30 8.96 10.59
Canonical A1(3) 23.17 20.01 17.98 16.79 16.15 15.40 18.25
Restricted A1(3) 23.79 20.45 18.40 17.14 16.40 15.33 18.59

Improvement on Can. A1(3) 36.44% 45.18% 44.11% 43.36% 42.39% 41.78% 42.21%
Improvement on Rest. A1(3) 38.10% 46.37% 45.37% 44.51% 43.29% 41.51% 43.19%

Notes to Table: We present the unconditional correlations and the volatility fit for various models when
the conditional volatility implied by the realized variance model is used as a measure of model-free yield
volatility. We construct the measure of monthly variance using within-month squared changes in daily
yields. The logarithm of the realized variance follows an ARMA(1, 1) process. Panel A presents the
unconditional correlations between the one-month conditional volatility from the realized variance model
and the one-month conditional volatility implied by the no-arbitrage GARCH model, the canonical A1(3)
model, and the restricted A1(3) model. In the restricted A1(3) model, we set the feedback matrix to be
a diagonal matrix. Panel B reports the volatility RMSEs in basis points for the three models. We also
present the percentage improvement in RMSE for the no-arbitrage GARCH model over the canonical and
restricted A1(3) models. The last column shows the averages across all maturities.



Table 8: Parameter Estimates for the No-Arbitrage GARCH Model
with Multiple Volatility Factors

Panel A: Two Volatility Factors

KP
0 KP

1 KQ
0 KQ

1

0.0022 0.9981 0.0011 0.9960
-0.0048 0.9528 -0.0066 0.9551
0.0004 0.9428 0.0158 0.7357

ρ0 ρ1 Log Likelihood

-0.0001 0.0003 -0.0340 0.0377 19175.59

ω × 1e2 α β σ3 × 1e4

0.0010 0.0720 0.9056 0.0036
0.0000 0.0000 0.8692

Panel B: Three Volatility Factors

KP
0 KP

1 KQ
0 KQ

1

0.0022 0.9985 0.0008 0.9959
-0.0046 0.9584 -0.0071 0.9544
0.0007 0.9376 0.0153 0.7313

ρ0 ρ1 Log Likelihood

-0.0001 0.0003 -0.0344 0.0349 19176.62

ω × 1e2 α β

0.0008 0.0711 0.9021
0.0001 0.0000 0.7314
0.0001 0.0000 0.8431

Panel C: Likelihood Ratio Test
Three vs One Volatility Factor Two vs One Volatility Factor

P Value 0.1585 0.1041
Statistics 6.6013 4.5243

Notes to Table: We present the estimated parameters and log likelihoods for the no-
arbitrage GARCH model with two volatility factors (Panel A) and the no-arbitrage GARCH
model with three volatility factors (Panel B). The estimates are based on monthly zero
coupon bond yields from 1971:11 to 2019:10. Panel C presents the p-value and likelihood
ratio test statistics for the no-arbitrage GARCH model, testing between the models with
three and one volatility factors, and between the models with two and one volatility factors.



Table 9: Results for the No-Arbitrage GARCH Model with Three Principal Components

Panel A: Unconditional Correlations with Realized Volatility
1 year 2 year 3 year 4 year 5 year 10 year Avg.

No-Arbitrage GARCH with 3PCs 0.73 0.72 0.71 0.68 0.66 0.59 0.68
Canonical A1(3) 0.55 0.50 0.47 0.44 0.41 0.36 0.46
Restricted A1(3) 0.54 0.50 0.46 0.43 0.40 0.35 0.45

Panel B: RMSEs of Volatility Based on Realized Volatility
1 year 2 year 3 year 4 year 5 year 10 year Avg.

No-Arbitrage GARCH with 3PCs 22.27 18.72 17.06 16.33 15.59 14.46 17.41
Canonical A1(3) 26.51 23.35 21.13 19.59 18.65 17.34 21.09
Restricted A1(3) 27.13 23.79 21.56 19.95 18.92 17.38 21.46

Improvement on Can. A1(3) 15.98% 19.83% 19.27% 16.64% 16.39% 16.61% 17.45%
Improvement on Rest. A1(3) 17.91% 21.32% 20.87% 18.14% 17.61% 16.79% 18.77%

Panel C: Unconditional Correlations with EGARCH(1, 1) Volatility
3 month 6 month 1 year 2 year 3 year 4 year 5 year 10 year Avg.

No-Arbitrage GARCH with 3PCs 0.84 0.86 0.92 0.93 0.92 0.90 0.87 0.74 0.87
Canonical A1(3) 0.62 0.64 0.69 0.71 0.71 0.70 0.69 0.58 0.67
Restricted A1(3) 0.59 0.61 0.67 0.71 0.71 0.70 0.69 0.59 0.66

Panel D: RMSEs of Volatility Based on EGARCH(1,1) Volatility
3 month 6 month 1 year 2 year 3 year 4 year 5 year 10 year Avg.

No-Arbitrage GARCH with 3PCs 26.18 23.13 20.37 13.49 9.37 7.88 7.87 8.97 14.66
Canonical A1(3) 32.43 28.60 25.40 18.98 14.68 12.01 10.87 11.09 19.26
Restricted A1(3) 32.89 29.09 25.46 19.07 14.90 12.24 10.98 10.88 19.44

Improvement on Can. A1(3) 19.28% 19.11% 19.79% 28.93% 36.13% 34.42% 27.57% 19.08% 25.54%
Improvement on Rest. A1(3) 20.41% 20.48% 19.96% 29.26% 37.09% 35.65% 28.27% 17.51% 26.08%

Notes to Table: We present the unconditional correlations and the volatility fit for the no-arbitrage GARCH model with three
principal components, the canonical A1(3) model, and the restricted A1(3) model. In the restricted A1(3) model, we set the feedback
matrix to be a diagonal matrix. Panel A presents the unconditional correlations between the realized volatility and the one-month
conditional volatility implied by the three models. We construct monthly realized variance using within-month squared changes in
daily yields. Panel C present the unconditional correlations between the EGARCH(1, 1) volatility and the one-month conditional
volatility implied by the three models. The EGARCH(1, 1) is estimated assuming that the conditional mean of changes in monthly
yields is generated by an AR(1) process. Panels B and D present the volatility fit for the three models. In Panel B, the RMSEs
are computed by using realized volatility as a measure of model-free volatility. In Panel D, the RMSEs are computed by using an
EGARCH(1, 1) model as a measure of model-free volatility. We also present the percentage RMSE improvement of the no-arbitrage
GARCH model with three principal components over the canonical and restricted A1(3) models. RMSEs are reported in basis points.
The last column shows the averages across all maturities.



Table 10: Hedging Treasury Futures Options

Panel A: The Canonical A1(3) Model
Full Sample Put Options Call Options

Intercept Pred. Change R2 Intercept Pred. Change R2 Intercept Pred. Change R2

5 year -0.03 0.04 0.04 -0.16 0.04 0.04 0.10 0.04 0.04
(0.01) (0.003) (0.01) (0.004) (0.01) (0.004)

10 year -0.06 -0.002 0.001 -0.25 -0.003 0.01 0.11 0.002 0.001
(0.01 (0.001) (0.02) (0.001) (0.02) (0.001)

Panel B: The No-Arbitrage GARCH Model
Full Sample Put Options Call Options

Intercept Pred. Change R2 Intercept Pred. Change R2 Intercept Pred. Change R2

5 year -0.07 0.97 0.78 -0.16 0.91 0.75 0.02 1.00 0.82
(0.004) (0.01) (0.01) (0.01) (0.01) (0.01)

10 year -0.11 0.71 0.70 -0.21 0.91 0.69 -0.001 0.64 0.73
(0.01) (0.00) (0.01) (0.01) (0.01) (0.01)

Notes to Table: We regress the actual change in option prices over a one-month period on the model-predicted changes. The predicted

changes are computed using model-based hedge ratios and the change in yields. We report the intercept and regression slope. Standard

errors are in parentheses.



Figure IA1: Model-Implied Conditional Volatility in

the No-Arbitrage GARCH Model with Multiple Volatility Factors.
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Notes to Figure: We plot the one-month conditional volatility of the yield curve implied by
the no-arbitrage GARCH model with different numbers of volatility factors together with the
realized volatility (top two panels) and the EGARCH(1, 1) volatility (bottom four panels)
respectively. The dotted line (red) in the top two panels represents the realized volatility.
We construct monthly realized variance using within-month squared changes in daily yields.
The dotted line (red) in the bottom four panels represents the EGARCH(1, 1) volatility. The
EGARCH(1, 1) is estimated assuming that the conditional mean of changes in monthly yields
is generated by an AR(1) process. The solid line (blue) represents the volatility from the no-
arbitrage GARCH model with a single volatility factor. The dash-dot line (black) represents
the volatility from the model with two volatility factors. The dashed line (green) represents
the volatility from the model with three volatility factors.




