Risk and Return

- Portfolios of Two Risky Assets
 Portfolios of Two Risky Assets and the Risk
 Free Asset
- Diversification

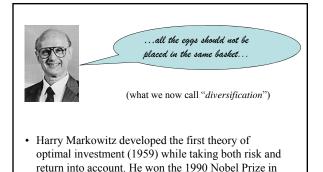
Economics for this work.

Introduction

- We showed last time that an investor can choose any point on the Capital Allocation Line (CAL), depending on her preferences for risk.
- There was no "optimal" combination of the risk free asset and the risky asset.

What is the optimal combination of risky assets?

• The goal of this lecture is to understand "asset – allocation" between risky and risk free assets based on a "mean – variance portfolio analysis"



Selecting the Optimal Risky Portfolio

• Like last time...we can calculate the expected return and return standard deviation of a portfolio of two risky assets (A & B)

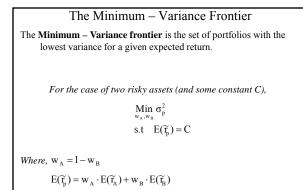
$$\begin{split} E(\widetilde{\mathbf{f}}_{p}) &= \mathbf{w}_{A} \cdot E(\widetilde{\mathbf{f}}_{A}) + \mathbf{w}_{B} \cdot E(\widetilde{\mathbf{f}}_{B}) \\ \sigma_{p}^{2} &= \mathbf{w}_{A}^{2} \cdot \sigma_{A}^{2} + \mathbf{w}_{B}^{2} \cdot \sigma_{B}^{2} + 2\mathbf{w}_{A}\mathbf{w}_{B} \text{cov}(\widetilde{\mathbf{f}}_{A}, \widetilde{\mathbf{f}}_{B}) \end{split}$$

Where $W_A = 1 - W_B$

Or using the correlation,
$$\rho_{A,B}$$

$$\sigma_p^2 = w_A^2 \cdot \sigma_A^2 + w_B^2 \cdot \sigma_B^2 + 2w_A w_B \rho_{A,B} \sigma_A \sigma_B$$

Remember that $-1 \le \rho \le 1$



 $\sigma_{\mathrm{p}}^{2} = w_{\mathrm{A}}^{2} \cdot \sigma_{\mathrm{A}}^{2} + w_{\mathrm{B}}^{2} \cdot \sigma_{\mathrm{B}}^{2} + 2w_{\mathrm{A}}w_{\mathrm{B}}\rho_{\mathrm{A},\mathrm{B}}\sigma_{\mathrm{A}}\sigma_{\mathrm{B}}$

We will consider three cases: $\rho_{\rm A,B} = 1 \label{eq:rho}$

Correlation and the MVF

 $\rho_{\rm A,B}=0$

 $\rho_{\rm A,B}=-1$

Consider the following assets A and B:

Asset	Expected return	Return standard deviation
Α	25%	75%
В	10%	25%

Fraction "w" is invested in A.

- Portfolio's expected return is
- Portfolio's return variance is
 $$\begin{split} V(r_{_{P}}) &= w^{2}V(r_{_{A}}) + (1-w)^{2}V(r_{_{B}}) + 2w(1-w)\rho_{_{A,B}}\sigma_{_{A}}\sigma_{_{B}} \\ &= (w\sigma_{_{A}} + (1-w)\sigma_{_{B}})^{2} \end{split}$$

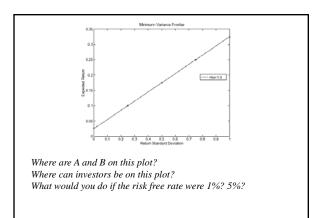
We know that

Substitute for "w" and get,

What is the risk free rate?

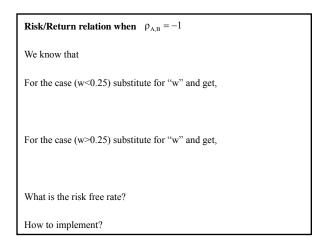
How can we form a portfolio with a standard deviation of zero?

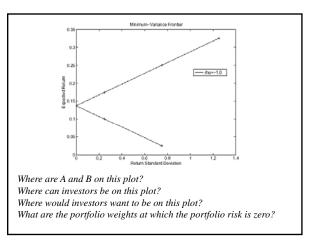
What does a negative w_A mean?

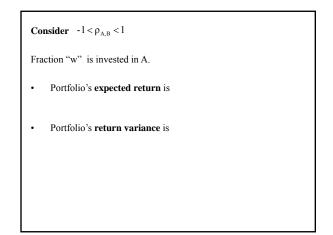


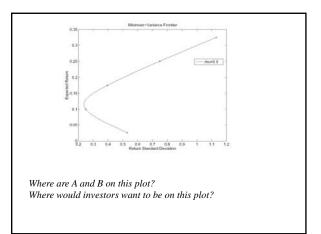
Fraction "w" is invested in A.

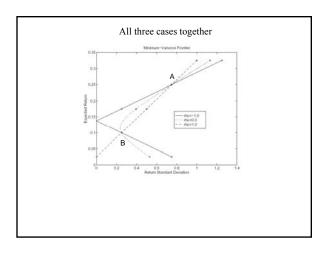
- Portfolio's expected return is
- Portfolio's return variance is





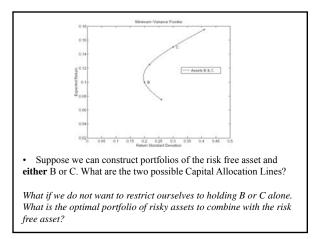


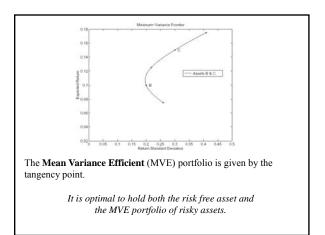


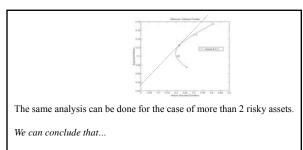


The Optimal Portfolio with Two Risky Assets					
and a Risk Free Asset					
• Consider a risk free asset with annual rate of r_{f} =3% and risky assets B and C,					
Asset	Expected return	Return standard deviation			
risk free	3%	0%			
В	10%	20%			
С	15%	30%			

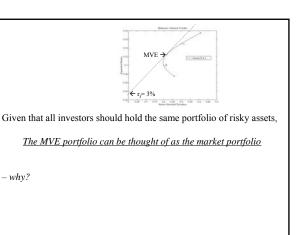
• We can calculate the minimum – variance frontier as before.







- 1. It is optimal for all investors to hold the MVE portfolio and the risk free asset.
- 2. Investors with different risk preferences will differ in the proportions they invest in the MVE portfolio.



Diversification

We can define two types of risk:

Systematic: risk associated with economy wide fluctuations

Business cycles

- Announcements: Federal Reserve Chairman Alan Greenspan's interest rate announcements, election announcements
- Wars and peace treaties
- Technological inventions Natural disasters and diseases
- Idiosyncratic: risk associated with firm specific events $~\widetilde{\epsilon}_{\text{firm\,i}}$
 - Quality of management team
 - Success of business plan
 - We can diversify idiosyncratic risk by holding a large number of assets in our portfolio.

Diversification

Example: Suppose that there are two possible states of nature in the economy: "boom" and "bust", with probability 0.5 each. There are many risky assets (firms), with the potential to earn expected return of 20% in a "boom" and 10% in a "bust". In either case, due to additional firm specific risk, each firm can loose or gain an additional 5% in value, with equal probabilities. The return on asset "i", r_i, has the following distribution:

$\widetilde{r_i} = \langle$	0.20 + 0.05 = 0.25	w.p. 0.25
	0.20 - 0.05 = 0.15	w.p. 0.25
	0.10 + 0.05 = 0.15	w.p. 0.25
	0.10 - 0.05 = 0.05	w.p. 0.25

Diversification

To see this, lets define the random variables, $\boldsymbol{r}_{\text{market}}$ for the systimatic risk component and , $\,\widetilde{\epsilon}_{\rm firm\,i}\,$ for the idiosyncratic risk component.

We can write the return of firm i "r_i" as,

$$\widetilde{r_{i}} = \widetilde{r}_{market} + \widetilde{\epsilon}_{firm}$$

Where,

$$\widetilde{r}_{market} = \begin{cases} 0.2 & w.p.\,0.5 \\ 0.1 & w.p.\,0.5 \end{cases} \qquad \widetilde{\epsilon}_{firm\,i} = \begin{cases} +\,0.05 & w.p.\,0.5 \\ -\,0.05 & w.p.\,0.5 \end{cases}$$

Diversification

Suppose we hold N assets, each with weight 1/N.

The return on the portfolio is,

$$\begin{split} r_{p} &= \sum_{i=l}^{N} w_{i} \times \widetilde{r}_{i} = \sum_{i=l}^{N} \frac{1}{N} \times \left(\widetilde{r}_{market} + \epsilon_{firm\,i} \right) \\ &= \frac{1}{N} \times \sum_{i=l}^{N} \widetilde{r}_{market} + \frac{1}{N} \times \sum_{i=l}^{N} \epsilon_{firm\,i} \\ &= \widetilde{r}_{market} + \frac{1}{N} \times \sum_{i=l}^{N} \epsilon_{firm\,i} \\ V(r_{p}) &= V(\widetilde{r}_{market}) + V \left(\frac{1}{N} \times \sum_{i=l}^{N} \epsilon_{firm\,i} \right) + cov \left(\widetilde{r}_{market}, \frac{1}{N} \times \sum_{i=l}^{N} \epsilon_{firm\,i} \right) \end{split}$$

$$\begin{split} V(r_{p}) &= V(\widetilde{r}_{market}) + V\!\left(\frac{1}{N} \times \sum_{i=1}^{N} \epsilon_{firmi}\right) + cov\!\left(\widetilde{r}_{market}, \frac{1}{N} \times \sum_{i=1}^{N} \epsilon_{firmi}\right) \\ &= V(\widetilde{r}_{market}) + V\!\left(\frac{1}{N} \times \sum_{i=1}^{N} \epsilon_{firmi}\right) + 0 \\ &= V(\widetilde{r}_{market}) + \frac{1}{N^{2}} \times \sum_{i=1}^{N} V(\epsilon_{firmi}) \\ &= V(\widetilde{r}_{market}) + \frac{N \times V\!\left(\epsilon_{firmi}\right)}{N^{2}} \xrightarrow{N \to \infty} V(\widetilde{r}_{market}) \end{split}$$

