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9/25 - Last Lecture 
FX determination: St = f(iDC-iFC, IDC-IFC, yD-yF, other) 
Not very successful to explain St –especially, in the short-run 
 PPP (Absolute and Relative): Rejected 
 IFE: Rejected 
Q: What determines St in the short-run?  
A: Still an open question. Random Walk Model for St has a good forecasting performance. 
 
This Lecture 
Q: Can we forecast St+T?  
A: It seems very difficult. But, firms and “experts” constantly try. In this class, we will also try. 
 
 
Chapter 9 - Forecasting Exchange Rates 
 
• Brief Review and Notation 
A forecast is an expectation: Et[𝑆 ]  Expectation of 𝑆  taken at time 𝑡 (“today”). 
 
(Remember, in statistics, the expectation is an expected value. Think of it as an average.) 

 
In general, it is easier to predict changes. In this class, we will concentrate on Et[𝑒 , ]. 
 
Note: From Et[𝑒 , ], we get Et[𝑆 ]  Et[𝑆 ] = 𝑺𝒕 * (1+Et[𝑒 , ]) 
 
Based on a model for St, we generate Et[𝑆 ]: 
    𝑆  = f (𝑋 )   Et[𝑆 ] = Et[𝑓 𝑋 ]  
 
Example: For the PPP model,  𝑋  = Inflation rate differentials (𝐼 ,  𝐼 , : 
    𝑓 𝑋  = 𝐼 ,  𝐼 ,  
 
• Main Forecasting Methods 
There are two pure approaches to forecasting FX rates: 
 (1) The fundamental approach (based on data considered fundamental). 
 (2) The technical approach (based on data that incorporates only past prices). 
 
 
Method I: Fundamental Approach 
• We generate Et[St+T] = 𝑓 𝑋 , where 𝑋  is a dataset regarded as fundamental economic variables:  
 GNP growth rate, Current Account, Interest rates, Inflation rates, Money growth rate, etc. 
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• In general, the fundamental forecast is based on an economic model (PPP, IFE, combinations).  
  the economic model tells us how the fundamental data relates to St.  
      That is, the economic model specifies 𝑓 𝑋  -for PPP, 𝑓 𝑋  = 𝐼 ,  – 𝐼 ,  
 
• The economic model usually incorporates: 
 ⋄ Statistical characteristics of the data (seasonality, etc.) 
 ⋄ Experience of the forecaster (what info to use, lags, etc.) 
   Mixture of art and science. 
 
• Fundamental Forecasting involves several steps: 
 (1) Selection of Model (for example, PPP model) used to generate the forecasts. 
 (2) Collection of 𝑆 , 𝑋  (in the case of PPP, exchange rates and CPI data needed.)  
 (3) Estimation of model, if needed (regression, other methods). Test model. 
 (4) Generation of forecasts based on estimated model. Assumptions about Xt+T may be  
  needed. 
 (5) Evaluation. Forecasts are evaluated. If forecasts are very bad, model must be changed. 
   MSE (Mean Square Error) is a measure used to asses forecasting models. 
 
Exhibit 9.1 shows a typical process to build out-of-sample forecasts model. 
 

Exhibit 9.1 
Fundamental Forecasting: Process for Building Forecasting Model 

 

 
 
 
Example: Forecasting 𝑆  with Relative PPP (Et[𝑆 ]) 
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Formulas needed: 

Economic Model (PPP): 𝑒 ,  = 
𝑺𝒕

 – 1   𝐼 ,  – 𝐼 ,  

Forecasting equation for 𝑒 , : Et[𝑒 , ] = 𝑒 ,  =   

𝑺𝒕
 – 1   𝐼 ,  𝐼 ,   

Forecasting 𝑆 :   Et[𝑆 ]  = 𝑆  = 𝑆 *[1+ 𝑒 , ] = 𝑆 *[1 + (𝐼 ,  –𝐼 , )] 
 
Forecast error: 𝜀  = 𝑆  -  𝑆  (quality of forecast) 
 
Mean Square Error = MSE = [(𝜀 )2 + 𝜀 )2 + 𝜀 )2 + ... + 𝜀 )2 ]/Q (evaluation measure) 
 
Notice that at time t, we do not know 𝐼 ,  & 𝐼 , . We need a model or assumptions to forecast 
Et[𝐼 ,  ] & Et 𝐼 ,  . 
 
Example (continuation): Forecasting 𝑆  with Relative PPP (Et[𝑆 ] ) 

It’s February 2023. We want to forecast March 2023 SEK/USD exchange rate (SEK = Swedish 
Kronor) using Relative PPP. That is, based on data available on 2023:2, we forecast, 𝑆 :   
(𝑆 : ). This type of one period ahead forecast is called one-step-ahead forecast.  
 
• Forecasting Model 
  Et[𝑒 , ] = 𝑒 , = 𝐼 ,  𝐼 ,   
  Et[𝑆 ] = 𝑆  = 𝑆  ∗ 1  𝐼 ,  𝐼 ,   
 
• Data 
We have CPI data and St data from Jan. 2023 to Feb. 2023. We want to forecast St=March, 23.  
 
We have already done: (1) Selection of Model; (2) Collection of 𝑆 , Xt; and (3) No estimation is needed. We 
need to do (4) Generation of forecasts based on model and (5) Evaluation of forecasts. 
 

Date 𝐶𝑃𝐼  𝐶𝑃𝐼  𝑆  𝐼  𝐼   t+1=St+1-SF
t+1 

1/1/2023 136.1820 300.356 10.3975   1.9334 - 

2/1/2023 137.6847 301.509 10.4492 0.0110 0.0038 1.9512 - 

3/1/2023 138.4708 301.744 10.4763 0.0057 0.0008 1.9318 -0.0215249 

4/1/2023 139.1143 303.032 10.3484 0.0046 0.0043 1.9718 0.0312088 

 
• Generation of forecasts (GF) 
Calculations for the 2023:3 forecast: 
GF.1. Inflation rates 
𝐼 , :  = (𝐶𝑃𝐼 , : /𝐶𝑃𝐼 , : ) - 1 = (137.6847/136.1820) - 1 = 0.0110. 
𝐼 , :  = (𝐶𝑃𝐼 , : /𝐶𝑃𝐼 , : ) - 1 = (301.509/300.356) - 1 = 0.0038. 
 
GF.2. We need a forecast for 𝐼 , :  - 𝐼 , :  
RW forecast: Last year inflation rate is a good predictor of this year inflation rate –i.e., Et[𝐼  ] = 𝐼  
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Then, 
 Et[𝑒 , ] = 𝑒 , = 𝐼 ,  𝐼 ,   
 Et[𝑆 ] = 𝑆  = 𝑆  ∗ 1  𝐼 ,  𝐼 ,   
 
 
GF.3. Now, we can predict 𝑒 , :  and 𝑆 :  
 Et=2023:2[𝑒 , : ] = 𝒆𝒇,𝟐𝟎𝟐𝟑:𝟑

𝑭  = 𝐼 , :  – 𝐼 , :  = .0110 – .00338 = 0.0072. 

 Et=2023:2[𝑆 :  = 𝑺𝟐𝟎𝟐𝟑:𝟑
𝑭  = S2023:2 * [1 + 𝒆𝒇,𝟐𝟎𝟐𝟑:𝟑

𝑭 ] = 10.4492 * [1 + 0.0072] = 10.5007 
 
 
• Evaluation of forecasts (EVF) 
EVF.1. Next month, in 2023:3, we will compute the forecast error, 𝜀 : : 
 𝜀 :  = S2023:3  – 𝑺𝟐𝟎𝟐𝟑:𝟑

𝑭 = 10.4763 – 10.5007 = -0.0244. 
 
For comparison purposes, at the end of 2023:3, we can also generate a forecast error for the RW Model: 

 𝜺𝟐𝟎𝟐𝟑:𝟑
𝑹𝑾  = S2023:3  – S2023:2  = 10.4763 – 10.4492 = 0.0271 

 

EVF.2. Then, we repeating this one-step-ahead forecasting process until 2024:3. That is, we 
generate 14 one-step-ahead forecasts. By 2024:4, we will compute 14 forecasts errors, and, then, 
the MSE for the PPP and RW forecasts errors. 

 

Date St 𝐼  – 𝐼   𝑺𝒕 𝟏
𝑭  𝜀  (𝜀 )2  𝑺𝒕 𝟏

𝑭,𝑹𝑾 𝜺𝒕 𝟏
𝑹𝑾  (𝜺𝒕 𝟏

𝑹𝑾)2 

1/1/2023 10.3975        

2/1/2023 10.4492 0.0072       

3/1/2023 10.4763 0.0049 10.5007 -0.0244 0.0006 10.4492 0.0271 0.0007 

4/1/2023 10.3484 0.0004 10.4803 -0.1319 0.0174 10.4763 -0.1279 0.0164 

5/1/2023 10.4643 0.0021 10.3696 0.0947 0.0090 10.3484 0.1159 0.0134 

6/1/2023 10.7691 0.0086 10.5545 0.2146 0.0461 10.4643 0.3048 0.0929 

7/1/2023 10.5002 -0.0016 10.7517 -0.2515 0.0633 10.7691 -0.2689 0.0723 

8/1/2023 10.8291 -0.0044 10.4542 0.3749 0.1405 10.5002 0.3289 0.1082 

9/1/2023 11.0848 0.0015 10.8456 0.2392 0.0572 10.8291 0.2557 0.0654 

10/1/2023 11.0259 0.0017 11.1037 -0.0778 0.0061 11.0848 -0.0589 0.0035 

11/1/2023 10.6694 0.0015 11.0427 -0.3733 0.1394 11.0259 -0.3565 0.1271 
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12/1/2023 10.2576 0.0050 10.7223 -0.4647 0.2159 10.6694 -0.4118 0.1696 

1/1/2024 10.3593 -0.0045 10.2114 0.1479 0.0219 10.2576 0.1017 0.0103 

2/1/2024 10.4266 -0.0019 10.3391 0.0875 0.0077 10.3593 0.0673 0.0045 

3/1/2024 10.4113 -0.0026 10.3998 0.0115 0.0001 10.4266 -0.0153 0.0002 

4/1/2024 10.8158 -0.0017 10.3931 0.4227 0.1787 10.4113 0.4045 0.1636 

MSE     0.06455   0.06058 

         
 
Calculating the MSE for the PPP and RW models 2023:3-2024:4 period: 
MSEPPP = [(-0.0244)2 + (-0.1319)2 + …. + (0.4227)2]/14 = 0.06455 
 
EVF.3 Compare the MSE of the PPP forecasting model with the RWM. Under the RWM: Et[St+1]= St  
2007:3 = S2007:3 - SF

2007:3 = S2007:3 - S2007:2 = 1.9318 - 1.9512 = -0.0194. 
2007:4 = S2007:4 - SF

2007:4 = S2007:4 - S2007:3 = 1.9718 - 1.9318 = 0.0400. 
MSERW = [(-0.0271)2 + (-0.1279)2 + … +  (0.4045)2] /14 = 0.06058 
 
For these forecasts, on average, the RW model does better than the PPP model. ¶ 
 
 
Example: Forecasting FX with an Ad-hoc Model  
A U.S. company uses an economic linear model to forecast monthly exchange rates (USD/GBP): 
Economic Regression Model:  
 𝑒 ,  = a0 + a1 INFt + a2 INTt + a3 INCt + 𝜀 ,   (*) 
 
INFt: inflation rates differential between U.S. and the U.K. 
INTt: interest rates differential between U.S. and the U.K. 
INCt: income growth rates differential between U.S. and the U.K. 
 
Objective: Calculate Et[𝑒 , ] 
• Forecasting Model 
 Et[𝑒 , ] = a0 + a1 Et[INFt+1] + a2 Et[INTt+1] + a3 Et[INCt+1]. (Recall: Et[𝜀 ] = 0). 
 
Inputs for the forecast: 1) a0, a1, a2, a3 (estimated through a regression). 
   2) Et[INFt+1] and Et[INCt+1] (potential problem!) 
 
• Data 
Income growth rates, interest rates, inflation rates and exchange rates. Suppose we have quarterly data 
from 1978 to 2008 (21 years). 
Suppose S2008:IV = 1.7037 USD/GBP. 
 
• Estimation 
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We run a regression to estimate (*). Excel output: 
 

SUMMARY OUTPUT      
       

Regression Statistics      
Multiple R 0.216036      
R Square 0.046672      
Adjusted R 
Square 0.022434      
Standard 
Error 0.050911      
Observations 122      
       
ANOVA       

  df SS MS F 
Significance 

F  
Regression 3 0.014973 0.004991 1.925622 0.129173  
Residual 118 0.305851 0.002592    
Total 121 0.320825        

       

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 
Intercept -0.01082 0.007553 -1.43285 0.154545 -0.02578 0.004134 
INFt 0.648128 0.547068 1.184732 0.238504 -0.43521 1.731471 
INTt -0.00482 0.002188 -2.20088 0.029691 -0.00915 -0.00048 
INCt 0.000945 0.001613 0.585963 0.559019 -0.00225 0.00414 

 
Analysis:  

t-statistics: only the interest rate differential coefficient is bigger than two (in absolute value).  
R2 = .047 (INF, INT & INC explain 4.7% of the variability of changes in the USD/GBP). 

 
(Note: It doesn’t look like a great model, but we’ll use it anyway.) 
 
• Generation of forecasts 
i. Suppose we have the following forecasts for next month:  
  Et[INFt+1] = 1.68%,   Et[INTt+1] = -2.2%,   Et[INCt+1] = 1.23%. 
Then, 
    Et[𝑒 , ] = -.010802 + .6481 * (.0168) + (-0.00482) * (-.022) + .000945 * (0.0123) = 0.000204. 
 
  The USD is predicted to depreciate 0.02% against the USD next month.  
 
ii. Now, we can forecast SF t+1: 
 Et[𝑆 ]= 𝑆   = St * (1+ Et[𝑒 , ]) = 1.7037 USD/GBP * (1.000204) =  1.704048 USD/GBP.   
 
• Evaluation of forecasts   
Suppose S2009:I = 1.5239 USD/GBP, we can calculate the forecast error: 
 𝜀  = 𝑆  - Et[𝑆 ] = 1.5239 USD/GBP – 1.704048 USD/GBP = -0.180148 (Model) 
 𝜀  = 𝑆 - Et

RW[𝑆 1] = 1.5239 USD/GBP – 1.7037 USD/GBP = -0.179800 (RWM).  
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Note: The RWM forecast error is smaller, but just by a very small amount.  
  RWM advantage: No complicated estimation/model, very similar forecasts! ¶ 
 
 
• Practical Issues in Fundamental Forecasting 
⋄ Are we using the "right model?" (Is Linear ad-hoc model OK?)  
⋄ Estimation of the model. (Is linear regression fine?)  
⋄ Some explanatory variables are contemporaneous. We need a model to forecast these variables too.  
 
 
• Fundamental Forecasting: Evidence 
Recall the Meese and Rogoff’s (1983) findings. They tested the short-term forecasting performance 
of different models (PPP, monetary approach, IFE, pure statistical (time series) models, and the RWM) 
for the four most liquid exchange rates. The RWM performed as well or better than any other model.  
 
More recently, Cheung, Chinn and Pascual (2005) revisited the Meese and Rogoff’s results with 20 
more years of data. They still found the RWM to be the “best” model. 
 
Note: The most modern approach to fundamental forecasting incorporates an attempt to forecast what 
the CB does to adjust interest rates. Usually, this involves the so-called “Taylor rule.” Some economists 
claim this approach has some success over the RWM.  
 
 
Forecasting: Note on Estimation and Generation of Out-of-sample forecasts 
In general, practitioners will divide the sample in two parts: a longer sample (estimation period) and 
a shorter sample (validation period). The estimation period is used to select the model and to 
estimate its parameters. The forecasts made inside the estimation period are not “true forecasts,” are 
just fitted values. 
 
The data in the validation period are not used during model and parameter estimation. The forecasts 
made in this period are “true forecasts,” their error statistics are representative of errors that will be 
made in forecasting the future. A forecaster will use the results from this validation step to decide if 
the selected model can be used to generate outside the sample forecasts. 
 
Figure 9.1 shows a typical partition of the sample. Suppose that today is March 2015 and a forecaster 
wants to generate monthly forecasts until January 2016. The estimation period covers from February 
1978 to December 2009. Different models are estimated using this sample. Based on some statistical 
measures, the best model is selected. The validation period covers from January 2010 to March 
2015. This period is used to check the forecasting performance of the model. If the forecaster is 
happy with the performance of the forecasts during the validation period, then the forecaster will 
use the selected model to generate out-of-sample forecasts. 
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Figure 9.1: Estimation, Validation & Out-of-sample Periods. 
 

 
 
In Exhibit 9.2, we incorporate the partition of the data in the flow chart presented in Exhibit 9.1. It is 
easy to visualize how to generate out-of-sample forecasts. 

 
Exhibit 9.2 

Out-of-sample Forecasting: The Role of the Estimation and Validation Periods 
 

 



 

 
 
 CH9.9 

 
 
Method II: Technical Analysis (TA) Approach  
We generate Et[St+T] = f(Xt), where Xt is a small set of the available data: Past price information.  
   Xt = {St, St-1, St-2,....} 
 
⋄ TA does not pay attention to fundamentals (say, 𝐼 ,  𝐼 , ). The market efficiently “discounts” public 
information regarding fundamentals. 
  No need to research or forecast fundamentals.  
⋄ TA looks for the repetition of history; in particular, the repetition of specific price patterns.  
   Discovering these patterns is an art (not science). 
⋄ TA believes that assets move in trends. TA attempts to discover trends (“the trend is your friend”) and 
turning points.  
   Based on these trends & turning points, TA generates signals. 
⋄ TA models range from very simple (say, looking at price charts) or very sophisticated, incorporating 
neural networks and genetic algorithms. 
  
 
• TA: Two Popular Models 
We will go over two popular well-known (& old!) models that produce mechanical rules –i.e., produce 
objective signals:  
 ⋄ Moving Averages (MA) 
 ⋄ Filters 
  
(1) MA model: The goal of MA models is to smooth the erratic daily swings of FX to signal major trends. 
We will use the simple moving average (SMA).  
 An SMA is the unweighted mean of the previous Q data points: 
    SMA = 𝑆  = (𝑆  + 𝑆  + 𝑆  + ... + 𝑆 )/Q 
 
The double MA system uses two MA: Long-run MA (Q large, say 120 days) and Short-run MA (Q small, 
say 30 days). LRMA will always lag a SRMA (the LRMA gives smaller weights to recent St). 
 
Every time there is a crossing, a qualitative forecast is generated.  
When SRMA crosses LRMA from below  Forecast: FC to appreciate 
When SRMA crosses LRMA from above  Forecast: FC to depreciate. 
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The double MA system uses the two MAs to forecast changes in St and generate trading signals.  

  Sell GBP 
 
Buy FC signal: When SRMA crosses LRMA from below. 
Sell FC signal: When SRMA crosses LRMA from above. 
 
Example: St (USD/GBP) Double MA (red=30 days; green=150 days).  

 
 
 
(2) Filter models: The filter, X, is a percentage that helps a trader forecasts a trend.  
Simple Intuition:  
 When 𝑆  reaches a peak  Sell FC 
 When 𝑆  reaches a trough   Buy FC 
 

time 

SRMA 
LRMA 

          St 
(USD/GBP) 

Buy GBP 

Buy GBP 

Sell GBP 
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Key: Identifying the peak or trough. We use the filter to do it: 
 When 𝑆  moves X% above (below) its most recent peak (trough), we have a trading signal. 
 
Example: X = 1%, St (CHF/USD)  

 
Peak = 1.486 CHF/USD (X = CHF .01486)  When 𝑆  crosses 1.47114 CHF/USD, Sell USD 
 
Trough = 1.349 CHF/USD (X = CHF .01349)  When 𝑆  crosses 1.36249 CHF/USD, Buy USD ¶ 
 
 
• TA: Newer Models 
In both models, the TA practitioner needs to select a parameter (Q and X). This fact can make two TA 
practitioners using the same model, but different parameters, to generate different signals.  
 
To solve this problem, there are several newer TA methods that use more complicated mathematical 
formulas to determine when to buy/sell, without the subjectivity of selecting a parameter. 
Clements (2010, Technical Analysis in FX Markets) describes four of these methods: Relative 
strength indicator (RSI), Exponentially weighted moving average (EWMA), Moving average 
convergence divergence (MACD) and (iv) Rate of change (ROC).   
 
 
• TA: Summary 
 ⋄ TA models monitor the derivative (slope) of a time series graph.   
 ⋄ Signals are generated when the slope varies significantly.  
 
 
• TA: Evidence 
- Against TA  
⋄ Random walk model: It is a very good forecasting model. 
⋄ Many economists have a negative view of TA: TA runs against market efficiency (EM Hypothesis).  
 
- For TA: 

Trough 

Peak  

St = 1.47114 CHF/USD 

Sell USD 
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⋄ Lo (2004) suggests that markets are adaptive efficient (AMH, adaptive market hypothesis): It may take 
time, but eventually, the market learns and profits should disappear.  

  Some TA methods may be profitable for a while. 
⋄ The marketplace is full of TA newsletters and TA consultants (somebody finds them valuable & buys 

them). 
⋄ A survey of FX traders by Cheung and Chinn (2001) found that 30% of the traders are best classified 

as technical analysts.  
 
- Academic research: 
⋄ Related to filter models in the FX market. Sweeney (1986, Journal of Finance): Simple filter rules 

generated excess returns (1973-1980). A 1% filter rule had a return of 2.8%, while a buy-and-hold 
strategy had a 1.6% return. 

⋄ TA in FX market: In general, in-sample results tend to be good –i.e., profitable–, but in terms of 
forecasting –i.e., out-of-sample performance– the results are weak. LeBaron (1999) speculates that 
the apparent success of TA in the FX market is influenced by the periods where there is CB 
intervention.  

⋄ Ohlson (2004) finds that the profitability of TA strategies in the FX market have significantly 
declined over time, with about zero profits by the 1990s. 

⋄ Park and Irwin (2007, Journal of Economic Surveys) survey the TA recent literature in different 
markets. They report that out of 92 modern academic papers, 58 found that TA strategies are profitable. 
Park and Irwin point out problems with most studies: data snooping, ex-post selection of trading rules, 
difficulties in the estimation of risk and transaction costs. 
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CHAPTER 9 - BONUS COVERAGE: TAYLOR RULE 
According to the Taylor rule, the CB raises the target for the short-term interest rate, it, if: 
(1) Inflation, It, raises above its desired level 
(2) Output, yt, is above “potential” output 
 
The target level of inflation is positive (deflation is thought to be worse than positive inflation for the economy) 
The target level of the output deviation is 0, since output cannot permanently exceed “potential output.” 
 
John Taylor (1993) assumed the following reaction function by the CB: 
 
 it = It + γ ( It - It

*
 )+ γ y_gapt + r*   (Equation BC.1) 

 
where y_gapt is the output gap –a percent deviation of actual real GDP from an estimate of its potential level-, and 
r* is the equilibrium level or the real interest rate, which Taylor assumes equal to 2%. The coefficients θ and γ are 
weights, which can be estimated (though, Taylor assumes them equal to .5). 
 
Let It

*
 and r* in equation BC.1 be combined into one constant term, μ = r* - γ It

*. Then, 
 
 it = μ + λ It + θ y-gapt, 
 
where λ = 1 + γ. Using Taylor’s assumed coefficients (γ = θ = 0.5), r* = 2% and I*=2%, we predict that the Fed 
sets interest rates according to: 
 
 it = .01 + 1.5 It + 0.5 y-gapt. 
 
We graphed this prediction (“Taylor Rule Prescription”) below in Figure 9.2 for the period 2000-2018, along with 
the actual Fed funds rate. 
 

Figure 9.2  
Taylor Rule: U.S. Federal Fund Rate (2000 - 2018) 
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A popular variation to the Taylor rule (Equation BC.1) is to allow for gradualism in interest rate policy, 
reflecting the usual Central Bank practice of gradual, small adjustments in interest rates. This modified 
Taylor rule is: 
 
 id,t = ρ id,t-1  + (1 - ρ) [rt* + Id,t +γ (Id,t - Id,t*) + θ y-gapt], 
 
where ρ is the smoothing parameter. If there is no gradual adjustment (ρ=0), the modified Taylor rule, 
reverts to the original rule. For example, using ρ=0.5 and the previous parameter values, in Figure 9.3 
we graph the Taylor Rule prediction. It looks better. 
 

Figure 9.3  
Modified Taylor Rule: U.S. Federal Fund Rate (2000 - 2018) 

 

 
 
 
For many countries, whose CB monitors St closely, the Taylor rule is expanded to include the real exchange rate, 
Rt: 
 
 it = μ + λ It + γ y-gapt + δ Rt. 
 
Estimating this equation for the U.S. and a foreign country can give us a forecast for the interest rate differential, 
which can be used to forecast exchange rates. 



 

 
 
 CH9.15 

CHAPTER 9 – BRIEF ASSESMENT 
 
You work in Austin for a local investment bank. You have available quarterly inflation rate (I), interest rate (i), 
and growth rate (y) data for the U.S. and Europe from 2016:1 to 2016:4. The USD/EUR in 2016:1 was equal 
to 1.0821 USD/EUR, which you believe is an equilibrium exchange rate. Your job is to do quarterly forecasts 
of the USD/EUR exchange rate for 2017:1. The investment bank uses the following ad-hoc model: 
  
 st+1 = St+1/St -1 = .75 (Id,t+1 - If,t+1) + .25 (yd,t+1 - yf,t+1)  (M1). 
 
This model is based on the monetary approach. You have the following data: 

Year yUS – yEUR  IUS-IEUR iUS-iEUR St (EUR/USD) 
2016.1 0.17% 0.4473% -0.5012% 1.0821 
2016.2 0.24% 0.6976% -0.0593% 1.1453 
2016.3 0.31% -0.1308% 0.6773% 1.1183 
2016.4 0.57% -0.3403% 0.8381% 1.0962 

     
To forecast income growth rates differentials (yt) your firm uses the following regression model (estimated 
regression is attached below): 
 yUS,t - yEUR,t = α + β (yUS,t-1 - yEUR,t-1) + t. 
 
To forecast inflation rates (I) your firm uses a RW model.  
 
(A) Use the ad-hoc model (M1) to forecasts the USD/EUR exchange rate for the period 2017:1.  
(B) Use the forward rate to forecast the USD/EUR exchange rate for the period 2017:1.  
(C) Use St

PPP (long-run PPP, starting with St=2016.1) to forecast the USD/EUR exchange rate for the period 
2016:4.  
(D) Use the random walk to forecast the USD/EUR exchange rate for the period 2017:1.  
 

SUMMARY OUTPUT     
      

Regression Statistics     
Multiple R 0.196241     
R Square 0.03851     
Adjusted R 
Square 0.032185     
Standard Error 1.143971     
Observations 154     
      
ANOVA      

  df SS MS F Significance F 
Regression 1 7.967219 7.967219 6.088029 0.01472 
Residual 152 198.9178 1.30867   
Total 153 206.885       

      

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Intercept -0.03019 0.092218 -0.32737 0.743839 -0.21238 
X Variable 1 0.19537 0.079181 2.467393 0.01472 0.038933 

 


