Chapter 14 Multinational Capital Budgeting

© RS 2024 (for private use, not to be posted/shared online)

Multinational Capital Budgeting

• Q: How to evaluate a project?

A: NPV. The evaluation of an MNC's projects is similar to the evaluation of a domestic one.

• Data Needed for Multinational Capital Budgeting:

1. CFs (Revenues[P & Q] and Costs[VC & FC])

2. Maturity (T)

- 3. Salvage Value (SV_T)
- 4. Depreciation
- 5. Taxes (local and foreign, withholding, tax credits, etc.)
- 6. Exchange Rates (S_t)
- 7. Required Rate of Return (k)
- 8. Restrictions to Capital Outflows

• Data Needed for Multin	ational Capital Budgeting:
- Taxes.	
MNCs pay taxes twice:	- Local level
	- Parent level.
Different rules and tax trea paying taxes for the same in	ties are in place to avoid double taxation –i.e., come twice.
- CF Uncertainty.	
CFs are difficult to estimat submitted by subsidiary. The	te . A point estimate (a single number) is usually en, Parent "adjusts" for CFs uncertainty.
Usual adjustment: Discount	ing at rate <i>k</i> : CF's uncertainty \uparrow , higher <i>k</i> \uparrow .

International Taxation

• Taxes on Investments

- 1. Capital gains,
- 2. Income (dividends, etc.),
- 3. Transactions.

• Key question for international investors:

Q: Do they tax foreigners? If so, what are the withholding taxes?

• Two Tax principles

- Residence: Residents taxed on their worldwide income.
- Source: Only income earned **inside** the country is taxed.

When entire income is earned in the country of residence, both principles agree. Otherwise, principles do not agree.

Example:

Situation: A U.S. consultant works 3 months a year in Greece. **Residence principle**: She pays taxes on her Greek income in the U.S. **Source principle**: She pays taxes on her Greek income in Greece.

 \Rightarrow Greek income can be taxed twice. ¶

- Foreign investments may be taxed in two locations:
 - 1. the investor's country,
 - 2. the investment's country

Convention: Make sure that taxes are paid in at least one country.

 \Rightarrow This is why withholding taxes are levied on dividend payments.

Tax Neutrality

Tax neutrality: No tax penalties associated with international business. Two approaches:

(1) Capital import neutrality

(2) Capital export neutrality.

(1) Capital Import Neutrality

- No penalty/advantage attached to foreign-owned capital

- Foreign and domestic capital compete on equal basis.
- \Rightarrow Local taxes exempt foreign-source income from local taxes.
- ⇒ For U.S. MNC: Exclusion of foreign branch profits from U.S. taxable income. This method is called the **Exclusion method**.

Example: A U.S. MNC's subsidiary pays income tax in Hong Kong (17%), then, the remitted after-tax profits are not taxed in the U.S.. The only tax paid is the foreign tax.

- Total tax paid: 35% (17% in HK & 18% in US).

Example: Bertoni Ba	ank, a U.S. ba	nk, has a branch	in Hong Kong.
Hong Kong branch i	ncome: USD	100.	
U.S. tax rate: 35%			
Hong Kong tax rate:	17%		
	Double Taxation	Exclusion Method	Credit Method
Hong Kong			
Branch profit	100	100	100
(17% tax) (i)	<u>17</u>	<u>17</u>	<u>17</u>
Net profit	83	83	83
• U.S.			
Net Hong Kong profit	83	83	83
Gross up	<u>0</u>	<u>0</u>	<u>17</u>
Taxable income	83	0	100
(35% tax)	29.05	0	35
Tax credit	<u>0</u>	<u>0</u>	<u>(17)</u>
Net Tax due (ii)	29.05	0	18
Total taxes (i)+(ii)	46.05	17	35

• Agency Problem: Subsidiary vs Parent

In general, CFs are **difficult** to estimate. **Point estimates** (a single estimated number) is usually submitted by the subsidiary. The Parent will attempt to adjust for CFs uncertainty.

Usually, this is done through the discount rate, *k*. But, many other methods can be used.

Typical problem for an MNC: Agency Problem - Subsidiary vs. Parent.

- Subsidiary wants to undertake more projects.

- Parent only cares about Parent's profitability.

 \Rightarrow Subsidiary can misstate Revenues, VC, and Salvage Value (SV).

 Agency Problem **Example**: Project in Hong Kong (Data provided in HKD) T = 4 years CF₀= **HKD 70M** (=**USD 10M**) Year 1 (Price per unit (HKD), Quantity)) - 20; 1.00M = 20MRevenue: Year 2 (25; 0.95M) = 23.75M Year 3 (30; 0.90M) = 27MYear 4 (35; 0.85M) = 29.75M- VC = HKD 5/unit Cost -FC = HKD 3MDepreciation = 10% of initial outlay (HKD 7M/year) $S_t = 7 \text{ HKD}/\text{USD}$ (use RW to forecast future S_t 's) Taxes: - Income: HK 17%, US 35% (Gross-up, Credit for foreign taxes) - Withholding tax (in Hong Kong) = 10%Note: U.S. collects taxes based on worldwide income (using credit method).

Example (con	ntinuation):			
$SV_4 = HKD 2$	5 M			
<i>k</i> = 15%				
1. Subsidiary'	's NPV (in H	KD including l	ocal taxes)	
	T=1	2	3	4
Revenues	20M	23.75M	27M	29.75M
Cost	5M	4.75M	4.5M	4.25M
	3M	3M	3M	3M
Profit	12M	16M	19.5M	22.5M
Dep.	<u>7M</u>	<u>7M</u>	<u>7M</u>	<u>7M</u>
EBT	5 M	9M	12.5M	15.5 M
Taxes (17%)	<u>.85M</u>	<u>1.53M</u>	<u>2.125M</u>	<u>2.635M</u>
EAT	4.15M	7.47M	10.375M	12.865M
Free CF +SV	11.15M	14.47M	17.375M	44.865M

Example: (continuation) T=1 2 3 4 Free CF +SV 11.15M 14.47M 17.375M 19.865M+25M NPV (in HKD) = -70M + 11.15M/1.15 + 14.47M/1.15² + + 17.375M/1.15³ + 44.865M/1.15⁴ = - HKD 12.2869M < 0 <u>Note</u>: If SV₄ is changed to HKD 80M, then NPV = 19.16M > 0! \Rightarrow Subsidiary would submit the project. • Subsidiary never submits a project with NPV<0. SV is important!

Example: (continuation	n)				
Net Tax Worksheet: G	ross-up	o, Compute	U.S tax, S	ubtract Ta	ıx Credit.
Data:					
	T=1	2	3	4	
Profit	12M	16M	19.	5M 2	2.5M
Taxes (17%)	.85M	[1.53]	M 2.1	25M 2	.635M
Withholding (10%)	1.115	M 1.44'	7 M 1.7	375M 1	.9865M
					(
0		Year 1	Year 2	Year 3	Year 4
Gross-up		12.0	16.0	19.5	22.5
US-tax (35%)		4.20	5.60	6.83	7.88
Foreign Tax credit		1.97	2.98	3.86	4.62
Net US tax (in HKD)		2.235	2.623	2.963	3.254
US-tax (in USD)		0.600	0.800	0.975	1.125
Foreign Tax credit (in U	JSD)	0.281	0.425	0.552	0.660
Net US tax (in USD)	,	0.319286	0.374714	0.423214	0.464786

2. MNC's NPV (in U	USD, includi	ng all taxes)		
	Year 1	Year 2	Year 3	Year 4
CFs to be remitted (HKD)	11.15M	14.47 M	17.375 M	19.865M+25M
$S_t = 7 \text{ HKD/USD}$				
CFs in USD	1.59M	2.067M	2.48M	2.84M+3.57M
Withholding	<u>(.159M</u>)	<u>(.2067M)</u>	(<u>.248M</u>)	(<u>.284M</u>)
CFs remitted	1.431M	1.86M	2.3M	2.56M + 3.57M
(US Tax)	(.6M)	(.8M)	(.975M)	(1.125M)
Tax Credit	.281M	.425M	.552M	.376M
Net Tax	<u>(.319M)</u>	<u>(.425M)</u>	<u>(.423M)</u>	<u>(.749M)</u>
EAT	1.114 M	1.486M	1.811M	2.09M+3.57M
NPV = - U	SD 10M + 0	6.5195M = -	USD 3.481	√ < 0. ⇒ No!

<u>Note</u>: Subsidiary will **never** submit a project like this! Subsidiary will inflate some numbers, for example, SV_T .

If $SV_T = HKD 80M$, then

NPV (USD M) = $-10 + \{1.114/1.15 + 1.486/1.15^2 + 1.811/1.15^3 + (2.095 + 80/7)/1.15^4\} = USD 1.01181 M > 0 \Rightarrow Yes. ¶$

• Real Options View Original HK (with SV₄ = HKD 25M) project has NPV<0. Usual view: MNC rejects project.

But, MNCs may undertake NPV<0 projects if there are **future benefits** associated with the initial investment. For example, an expansion, development of contacts, power to influence future political events, etc.

An MNC may view the DFI as an option –a **real option**. The initial investment plays the role of a premium paid:

 $p = \text{NPV}_{\text{Initial Investment}} < 0$

The MNC sets some targets for initial investments (revenue, market share, etc.) that play role of a *strike price*, \mathbf{X} :

If Realized Target $> X \Rightarrow$ Expand (exercise *real option*).

Real Options View
Overall, MNC undertakes project if
E[NPV] = NPV_{Initial Investment} + Option Value of Expansion

Think of a real option as a two-phase project:
1) First phase: Test the Market
2) If test is successful: Expand

In many applications, the initial investment also gives a company the option to delay further investments. These options have value.
Financial options are not complicated to value, inputs (P_e, X, σ) are easy to get. In general, these inputs are not very precise value for real options.
⇒ Real options tend to be difficult to value. Simulations are used.

Example: Malouf Coffee considers expansion to Mexico with two stores: S & B.

- Expansion is done **simultaneously** (S&B together)
 - Upfront investment is 230.
 - Probability of failure (F) = 70%
 - -k = .15:
 - CFs for S: 60 (if F) & 140 (if not F)
 - CFs for B: **120** (if F) & **280** (if not F).

E[NPV] = -230 + [(.70) * (60+120) + (.30) * (140+280)]/1.15 = -10.87 < 0 $\Rightarrow No!$

Example (continuation):
If we evaluate 2-phase investment:
⇒ E[NPV] = -100 + (.70) * 60/1.15 + (.30) * {(140-70)/1.15 + (120) * .50 + (280) * .50]/1.15²} = 0.1512 > 0 ⇒ YES!
Higher valuation when real option (flexibility) is introduced.
Technical Note: Discount rate in 2nd-phase should be lower! ¶
Technical Issues: Not easy to determine P₁ & P₂, and future CFs.
Value of the Real Option: Firm learns from 1st-phase & adapts (expand, delay, or close the project). Limiting downside.
Many MNCs went to China in the early 1990s with NPV<0 projects. Years later, some expanded, some closed projects and left market.

Adjusting Project Risk
MNCs have many ways methods to adjust for CF uncertainty.
Adjusting discount rate, k
In general, CF's uncertainty is incorporated through the discount rate, k: Higher uncertainty, k↑.
k also incorporates economic & political uncertainty in local country.
But k is a point estimate, an *average risk*. An average risk may cost an MNC: It may wrongly reject projects that have a below average risk.
An MNC may use a range for k, say {k_{LB}, k_{UB}}.

Using a range $\{k_{LB}, k_{UB}\}$ creates a range for $\{NPV(k_{UB}), NPV(k_{LB})\}$.

Example: Based on $\{k_{LB}, k_{UB}\}$ for the HK project, MNC builds an NPV range

Range for $k : \{k_{LB} = .135, k_{UB} = .165\}$ (with **SV**₄ = **HKD 80M**, NPV > 0)

 \Rightarrow Range for NPV: {**USD 0.535M**; **USD 1.519M**}.

Note: Range is always positive. Good for a project.

Sensitivity Analysis/Simulation
MNCs can use sensitivity analysis to evaluate proposals.

1) Sensitivity Analysis of the impact of CFs on the NPV of project
Play with different scenarios/Simulation
Steps: a. Assign a probability to each scenario
b. Get an NPV for each scenario.
c. Calculate a weighted average (weight=probability) NPV
⇒ E[NPV]
d. If possible, use a risk-reward measure (say, a Sharpe Ratio).

Preakeven Analysis (same as what we do below for SV).

Sensitivity Analysis/Simulation			
Example: Co	mpute E[NPV] & S	D[NPV] for Hk	K project
We create diff	Ferent scenarios for (CFs (as a % of s	ubmitted CFs)
		·	
	% of CFs	Probability	NPV (in M)
	0.60	0.01	-0.77918
	0.64	0.025	-0.60009
	0.68	0.05	-0.42099
	0.72	0.075	-0.24189
	0.76	0.09	-0.06279
	0.80	0.10	0.116313
	0.84	0.125	0.295412
	0.88	0.15	0.474512
	0.92	0.15	0.653611
	0.96	0.125	0.832711
	1	0.10	1.01181
	E[NPV]		0.35541
	SD[NPV]		0.64477
	Prob[NPV<0]	0.25	

• Sensitivity Analysis/Simulation - Decisions Parent can base a decision on some risk-reward rule.

For example, a firm may look at the SR (using E[NPV] and SD[NPV]), a range, establishing some ad-hoc tolerable level for the probability of negative NPV, etc.

• Decisions

<u>Rule</u>: Among projects with E[NPV] > 0, Parent compares the SRs (or CIs) for different projects. Then, select project with higher SR (or the CI with the smallest negative part).

nsitivity Analysis of the impa	act of SV of	n NPV
erent scenarios based on origin	nal SV. For o	example:
% of SVs (in HKD)	Probability	NPV (in M)
0.60 (=HKD 48)	0.05	-1.60192
0.64 (=HKD 51.2)	0.065	-1.34055
0.68 (=HKD 54.4)	0.085	-1.07917
0.72 (=HKD 57.6)	0.1	-0.8178
0.76 (=HKD 60.8)	0.125	-0.55643
0.80 (=HKD 64)	0.15	-0.29505
0.84 (=HKD 67.2)	0.125	-0.03368
0.88 (=HKD 70.4)	0.1	0.227692
0.92 (=HKD 73.6)	0.085	0.489064
0.96 (=HKD 76.8)	0.065	0.750437
1.00 (=HKD 80)	0.05	1.01181
E[NPV]		-0.29505
SD[NPV]		0.866876
Prob[NPV<0]	0.70	

• Sensitivity Analysis/Simulation

• Sensitivity Analysis/Simulation

• Breakeven Analysis: Calculate SV^{BE} , such that $NPV(SV^{BE}) = 0$.

$$\Rightarrow SV^{BE} = \{ IO - \sum_{t} \frac{CF_t}{(1+k)^t} \} * (1 + k)^T$$

The higher SV^{BE}, the more dependent project is on an uncertain SV:

 \Rightarrow To make the NPV > 0, we need SV_T > SV^{BE}. (Not good!)

Q: Is the SV_{T} reasonable? $\mathrm{SV}^{\mathrm{BE}}$ helps to answer this question.

Example: Calculate SV^{BE} for HK project. SV^{BE} = $-10 + \{\frac{1.114}{(1+.15)} + \frac{1.486}{(1+.15)^2} + \frac{1.811}{(1+.15)^3} + \frac{2.09}{(1+.15)^4}\} * (1 + .15)^4 =$ = **USD** 9.65891 (or **HKD** 67.61236M) Check NPV (in USD M) is zero when SV = **USD** 9.65891: NPV = $-10 + \{\frac{1.114}{(1+.15)} + \frac{1.486}{(1+.15)^2} + \frac{1.811}{(1+.15)^3} + \frac{2.09 + 67.61236/7}{(1+.15)^4}\} = 0.$ A parent company compares the SV^{BE} with the reported SV value: SV^{BE} = **HKD** 67.61236M < SV₄ = **HKD** 80M. (Too big!) ¶ <u>Note</u>: If SV^{BE} < 0 \Rightarrow Good for project. Profitability does not depend on SV.

Judgment call
In practice, there is a lot of subjective judgment.
Experience (MNC's own and consultants) also are incorporated.
Example: Ad-hoc decision
Based on past experience, Parent requires:
(1) E[NPV] > 0
(2) Prob[NPV < 0] < 30%.</p>
In HK example, Prob[NPV < 0] = 25% ⇒ Accept!</p>
Note: This ad-hoc rule double counts risk, since NPV is calculated using risk-adjusted discount rates! ¶