Chapter 5 FX Derivatives

A. FX Futures and Forwards

© RS 2024 (for private use, not to be posted/shared online)

FX Risk

Example: Spec's, the Texas liquor store chain, imports wine from Europe. Spec's has to pay **EUR 5,000,000** on July 2. Today, June 4, the exchange rate is $S_t = 1.10$ USD/EUR.

Situation: Payment due on **July 2**: **EUR 5M**.

 $S_{t=lune\ 4}$ = 1.10 USD/EUR.

Problem: S_t is difficult to forecast \Rightarrow Uncertainty.

Uncertainty \Rightarrow Risk.

Example: on July 2, $S_{t=June 4} > or < 1.10 USD/EUR$

At $S_{t=June\ 4}$, Spec's total payment would be:

EUR 5M * 1.10 USD/EUR = USD 5.50M.

At $S_{t=lune\ 4} = 1.10\ USD/EUR$, Spec's total payment = USD 5.50M.

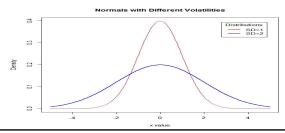
On July 2 there are two potential scenarios, relative to June 4:

If $S_{July 2} \downarrow (USD \text{ appreciates}) \implies Spec's \text{ will pay less USD.}$

If $S_{July 2} \uparrow (USD \text{ depreciates}) \implies Spec's \text{ will pay more USD.}$

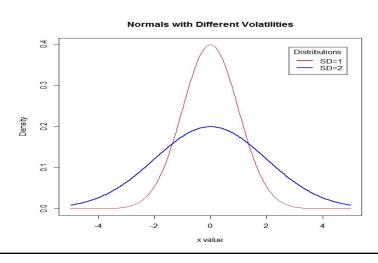
⇒ Second scenario introduces FX (Currency) Risk.

The relevance of FX risk for a firm depends on the *volatility* of S_t : If $S_{\text{July 2}} \in [1.08, 1.12]$, payable will not move a lot. No big deal. If $S_{\text{July 2}} \in [0.80, 1.40]$, payable can move a lot \Rightarrow Concern!



Higher Volatility ⇒ Concern!

<u>Graph</u>: Below, we compare two normal distributions for (changes of) S_t . The "blue" distribution, with higher standard deviation (SD = volatility), is riskier, in the sense that extreme values are more likely.



Futures or Forward FX Contracts

<u>Definition</u>: A forward contract is an agreement written today, between two parties (one party is usually a bank), to exchange a given amount of currencies at a given future date at a pre-specified exchange rate, $F_{t,T}$.

Given amount: Size

Future Date: Maturity = Delivery Date = T

Forward markets: Tailor-made contracts (& illiquid).

Location: None.

Reputation/collateral guarantees the contract.

Futures markets: Standardized contracts (& liquid).

Location: Organized exchanges

Clearinghouse guarantees the contract.

FX Futures/Forwards: Basic Terminology

Two parties: - A buyer, with the **long** FC position;

- A *seller*, with the *short* FC position.

Short: Agreement to Sell.

Long: Agreement to **Buy**.

Contract Size: Number of units of FC in each contract.

CME Expiration dates: Mar, June, Sep, and Dec + Two nearby months

(on the third Wednesday of expiration month)

Margin account: Funds deposited with a broker to cover possible losses

involved in a futures/forward contract.

Initial Margin: Initial level of margin account.

Maintenance Margin: Lower bound allowed for margin account.

Settlement: FX futures can be cash-settled or physically delivered.

• Margin Account

A margin account is like a checking account you have with your broker, but it is *marked to market*. At the end of the day, if your contracts make (lose) money, money is added to (subtracted from) your account

Example: March GBP/USD CME futures (contract size = GBP 62,500) Today, a traders starts a long 2 March GBP contract position (= GBP 125,000).

Tomorrow, the March GBP futures increases by **USD 0.01**, then, USD 1,250 (=**USD .01** * 125,000) are added to the trader's margin account.

If in 2 days, the March GBP futures decreases by **USD 0.02**, then, USD 2,500 (= **-USD .02** * 125,000) are subtracted from the trader's margin account. ¶

If margin account goes below maintenance level, a margin call is issued:

 \Rightarrow you have to add funds to restore the account to the initial level.

Example: GBP/USD CME futures (contract size = **GBP 62,500**)

Initial margin: USD 2,800 Maintenance margin: USD 2,100

If losses do not exceed USD 700 \Rightarrow no margin call.

If losses accumulate to **USD 850** ⇒ margin call: add **USD 850** to

account.

Comparison of Futures and Forward Contracts

	Futures	Forward	
Size	Standardized	Negotiated	
Delivery Date (T)	Standardized	Negotiated	
Counter-party	Clearinghouse	Bank	
Collateral	Margin account	Negotiated	
Market	Auction market	Dealer market	
Costs	Brokerage and exchange fees	Bid-ask spread	
Secondary market	Very liquid	Highly illiquid	
Regulation	Government	Self-regulated	
Location	Central exchange floor	Worldwide	

Using FX Futures/Forwards

• Iris Oil Inc. will transfer **CAD 300 million** to its USD account in 90 days. To avoid FX risk, Iris Oil decides to *short* a USD/CAD Forward contract.

Data:

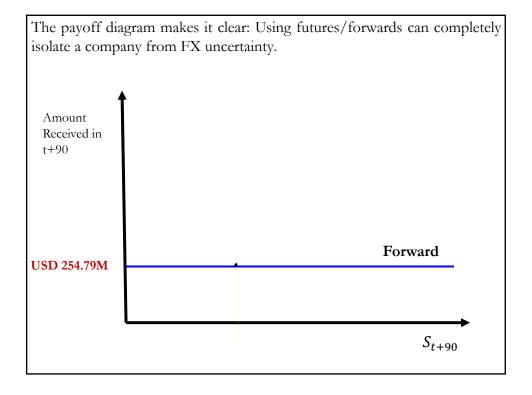
 $S_t = .8451 \, USD/CAD$

 $F_{t,90-day} = .8493 \text{ USD/CAD}$

In 90-days, Iris Oil will receive with certainty:

(CAD 300M) * .8493 USD/CAD = USD 254,790,000.

Note: The exchange rate at in 90 days (S_{t+90}) is, now, irrelevant.



Hedging with FX Futures Contracts

• FX Hedger

FX Hedger reduces the exposure of an *underlying position* to currency risk using (at least) another position (*hedging position*).

Basic Idea of a Hedger

A change in value of an underlying position is compensated with the change in value of a hedging position.

<u>Goal</u>: Make the overall position insensitive to changes in FX rates.

Hedger has an overall portfolio (OP) composed of (at least) 2 positions:

- (1) Underlying position (UP)
- (2) Hedging position (HP) with negative correlation with UP Value of OP = Value of UP + Value of HP.
 - ⇒ Perfect hedge: The Value of the OP is insensitive to FX changes.
- Types of FX hedgers using futures:
- i. Long hedger: UP: short in the foreign currency.

HP: *long* in currency futures.

ii. Short hedger: UP: long in the foreign currency.

HP: short in currency futures.

Note: Hedging with futures is very simple: Take an opposite position!

• The Basic Approach: Equal hedge

Equal hedge:

Size of UP = Size of HP.

Example: Long Hedge and Short Hedge

(A) **Long** hedge.

A U.S. investor has to pay **NOK 2.5M** (Norwegian kroners) in 90 days

 \Rightarrow UP: Short **NOK 2.5M**.

HP: *Long* 90 days futures for **NOK 2.5M**.

(B) **Short** hedge.

A U.S. investor has **GBP 1M** invested in British gilts.

 \Rightarrow UP: Long **GBP 1M**.

HP: Short futures for GBP 1M.

Define:

 V_t : value of the portfolio of foreign assets measured in GBP at time t. V_t^* : value of the portfolio of foreign assets measured in USD at time t.

Example (continuation): Calculating the *short hedger*'s profits. It's September 12 (t=0). The investor in (b), with a **long GBP 1M position**, is uncertain about $S_{t=Dec}$. Decides to hedge using Dec futures.

Situation: UP = GBP 1M in British bonds.

Data:

 $F_{\text{Sep }12,\text{Dec}} = 1.55 \text{ USD/GBP}$ Futures contract size: **GBP 62,500**.

S_{Sep 12} = 1.60 USD/GBP. Number of contracts = ?

HP: Investor shorts (sells) Dec futures

GBP 1M / (62,500 **GBP**/contract) = 16 contracts.

Example (continuation): Calculating the *short hedger*'s profits.

• On October 29, prices ($S_t \& F_{t,T=Dec}$) have changed. Now we have:

	<u>Sep 12</u>	Oct 29	<u>Change</u>
V_t (GBP)	1,000,000	1,000,000	0
V_t^* (USD)	1,600,000	1,500,000	-100,000
S_t	1.60	1.50	0.10
$F_{t,T=Dec}$	1.55	1.45	0.10

USD change in UP ("long GBP bond position"):

$$V_t^* - V_0^* = V_t S_t - V_0 S_0 = V_0 * (S_t - S_0)$$
 ($V_t = V_0 = GBP 1M$)
USD 1.5M – USD 1.6M = -USD 0.1M.

USD change in HP ("short GBP futures position"):

$$-V_0 * (F_{t,T} - F_{0,T}) = \text{Realized gain}$$
 (-GBP 1M) * USD/GBP (1.45 – 1.55) = USD 0.1M.

USD Change in OP = USD Change of UP + USD Change of HP = 0 \Rightarrow This is a *perfect* hedge! ¶ Note: In this example, we had a perfect hedge. The value of OP did not change. But, we were lucky!

Q: Why were we lucky? Because V_t did not change & the *basis* $(F_{t,T} - S_t)$ remained constant.

$$V_{Sep \ 12} = V_{Oct \ 29} = GBP \ 1M$$

 $(F_{Sep \ 12,Dec} - S_{Sep \ 12}) = (F_{Oct \ 29,Dec} - S_{Oct \ 29}) = USD .05$

An equal position hedge is not a perfect hedge if:

- (1) V_t changes. $(V_t \neq V_0)$
- (2) The basis $(F_{t,T} S_t)$ changes.