

Time Series: Introduction – Dependence

• Given the sequential nature of y_t , we expect $y_t \& y_{t-1}$ to be dependent. This is the main feature of time series: **dependence**. It creates statistical problems.

• In classical statistics, we usually assume we observe several *i.i.d.* realizations of y_t . We use \bar{y} to estimate the mean.

• With several independent realizations we are able to sample over the entire probability space and obtain a "good" –i.e., consistent or close to the population mean– estimator of the mean.

• But, if the samples are highly dependent, then it is likely that y_t is concentrated over a small part of the probability space. Then, the sample mean will not converge to the mean as the sample size grows.

Time Series: Introduction – Dependence

Technical note: With dependent observations, the classical results (based on LLN & CLT) are not to valid.

• We need new conditions in the DGP to make sure the sample moments (mean, variance, etc.) are good estimators population moments. The new assumptions and tools are needed: **stationarity**, **ergodicity**, CLT for martingale difference sequences (**MDS CLT**).

Roughly speaking, **stationarity** requires constant moments for y_t ; **ergodicity** requires that the dependence is short-lived, eventually y_t has only a small influence on y_{t+k} , when k is relatively large.

Ergodicity describes a situation where the expectation of a random variable can be replaced by the time series expectation.

Time Series: Introduction – Dependence

An **MDS** is a discrete-time martingale with mean zero. In particular, its increments, ε_t 's, are uncorrelated with any function of the available dataset at time t. To these ϵ_t 's we will apply a CLT.

• The amount of dependence in y_t determines the 'quality' of the estimator. There are several ways to measure the dependence. The most common measure: **Covariance**.

 $Cov(y_t, y_{t+k}) = E[(y_{t} - \mu)(y_{t+k} - \mu)]$

Note: When $\mu = 0$, then $Cov(y_t, y_{t+k}) = E[y_t y_{t+k}]$

Time Series: Introduction – Forecasting

• In a time series model, we describe how y_t depends on past y_t 's. That is, the information set is $I_t = \{y_{t-1}, y_{t-2}, y_{t-3}, \ldots\}$

• The purpose of building a time series model: Forecasting.

• We estimate time series models to forecast out-of-sample. For example, the *l-step ahead* forecast: $\hat{y}_{T+l} = E_t[y_{t+l} | I_t].$

Historical Note: In the 1970s it was found that very simple time series models out-forecasted very sophisticated (big) economic models.

This finding represented a big shock to the big multivariate models that were very popular then. It forced a re-evaluation of these big models.

Time Series: Introduction – White Noise

• In general, we assume the error term, ε_t , is uncorrelated with everything, with mean 0 and constant variance, σ^2 . We call a process like this a **white noise (WN) process**.

• We denote a WN process as

$$
\varepsilon_t \sim \text{WN}(0, \sigma^2)
$$

• White noise is the basic building block of all time series. It can be written as simple function of a $WN(0, 1)$ process:

 $z_t = \sigma u_t$, $u_t \sim i.i.d.$ WN(0, 1) $\Rightarrow z_t \sim$ WN(0, σ^2)

• The z_t 's are random shocks, with no dependence over time, representing unpredictable events. It represents a model of news.

Time Series: Introduction – Conditionality

• We make a key distinction: *Conditional* & *Unconditional* moments. In time series we model the conditional mean as a function of its past, for example in an AR(1) process, we have:

$$
y_t = \alpha + \beta y_{t-1} + \varepsilon_t.
$$

Then, the **conditional mean** forecast at time t , conditioning on information at time I_{t-1} , is:

$$
E_t[y_t | I_{t-1}] = E_t[y_t] = \alpha + \beta y_{t-1}
$$

Notice that the **unconditional mean**, μ, is given by:

$$
E[y_t] = \alpha + \beta E[y_{t-1}] = \frac{\alpha}{1 - \beta} = \mu = \text{constant} \qquad (\beta \neq 1)
$$

The conditional mean is time varying; the unconditional mean is not!

Key distinction: Conditional vs. Unconditional moments.

Time Series: Introduction – AR and MA models

• Two popular models for $E_t[y_t | I_t]$:

 $-$ An **autoregressive** (AR) process models $E_t[y_t | I_{t-1}]$ with lagged dependent variables:

$$
E_t[y_t|I_t] = f(y_{t-1}, y_{t-2}, y_{t-3}, \dots, y_{t-p})
$$

Example: AR(1) process, $y_t = \alpha + \beta y_{t-1} + \varepsilon_t$.

 $-$ A moving average (MA) process models $E_t[y_t|I_t]$ with lagged errors, ε_t :

$$
E_t[y_t | I_t] = f(\varepsilon_{t-1}, \varepsilon_{t-2}, \varepsilon_{t-3}, \dots, \varepsilon_{t-q})
$$

Example: MA(1) process, $y_t = \mu + \theta_1 \varepsilon_{t-1} + \varepsilon_t$

• There is a third model, **ARMA**, that combines lagged dependent variables and lagged errors.

Time Series: Introduction – Forecasting (again)

• We want to select an appropriate time series model to forecast y_t . In this class, we will use linear models, with choices: $AR(p)$, $MA(q)$ or $ARMA(p, q)$.

• Steps for forecasting:

- (1) Identify the appropriate model. That is, determine p , q .
- (2) Estimate the model.
- (3) Test the model.
- (4) Forecast.

• In this lecture, we go over the statistical theory (stationarity, ergodicity), the main models (AR, MA & ARMA) and tools that will help us describe and identify a proper model.

CLM Revisited: Time Series Implications

• With autocorrelated data, we get dependent observations. For example, with autocorrelated errors:

 $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$,

the independence assumption is violated. The LLN and the CLT cannot be easily applied in this context. We need new tools.

• We introduce the concepts of **stationarity** and **ergodicity***.* The ergodic theorem will give us a counterpart to the LLN.

To get asymptotic distributions, we also need a CLT for dependent variables, using new technical concepts: mixing and stationarity. Or we can rely on a new CLT: The *martingale difference sequence CLT*.

• We will not cover these technical points in detail.

Time Series – Stationarity

• Consider the joint probability distribution of the collection of RVs:

$$
F(y_{t_1}, y_{t_2}, \dots, y_{t_T}) = F(Y_{t_1} \le y_{t_1}, Y_{t_2} \le y_{t_2}, \dots, Y_{t_T} \le y_{t_T})
$$

To do statistical analysis with dependent observations, we need extra assumptions. We need some form of invariance on the structure of the time series.

If the distribution F is changing with every observation, estimation and inference become very difficult.

• Stationarity is an invariant property: The statistical characteristics of the time series do not change over time.

• There different definitions of stationarity, they differ in how strong is the invariance of the distribution over time.

• We say that a process is **stationary** of 1^{st} *order* if $F(y_{t_1}) = F(y_{t_1+k})$ for any t_1 , *k* 2^{nd} *order* if $F(y_{t_1}, y_{t_2}) = F(y_{t_1+k}, y_{t_2+k})$ for any t_1, t_2, k N^{th} -order if $F(y_{t_1},..., y_{t_T}) = F(y_{t_{1+k}},..., y_{t_{T+k}})$ for any $t_1,..., t_T$, k • *Nth-order* stationarity is a strong assumption (& difficult to verify in practice). *2nd order* (weak) stationarity is weaker. **Weak stationarity** only considers means & covariances (easier to verify in practice). • Moments describe a distribution. We calculate moments as usual: $E[Y_t] = \mu$ $Var(Y_t) = \sigma^2 = E[(Y_t - \mu)^2]$ $Cov(Y_{t_1}, Y_{t_2}) = E[(Y_{t_1} - \mu)(Y_{t_2} - \mu)] = \gamma(t_1 - t_2)$ **Time Series – Stationarity**

Time Series – Stationarity & Autocovariances

• Cov(Y_{t_1}, Y_{t_2}) = $\gamma(t_1 - t_2)$ is called the **auto-covariance function**. It measures how y_t , measured at time t_1 , and y_t , measured at time t_2 , covary.

<u>Notes</u>: $γ(t_1 - t_2)$ is a function of $k = t_1 - t_2$ $γ(0)$ is the variance.

• The autocovariance function is symmetric. That is, $\gamma(t_1 - t_2) = \text{Cov}(Y_{t_1}, Y_{t_2}) = \text{Cov}(Y_{t_2}, Y_{t_1}) = \gamma(t_2 - t_1)$ \Rightarrow $v(k) = v(-k)$

• Autocovariances are unit dependent. We have different values if we calculate the autocovariance for IBM returns in % or in decimal terms.

Remark: The autocovariance measures the (linear) dependence between two Y_t 's separated by k periods.

Time Series – Stationarity & Autocorrelations

• From the autocovariances, we derive the **autocorrelations**:
\n
$$
Corr(Y_{t_1}, Y_{t_2}) = \rho(Y_{t_1}, Y_{t_2}) = \frac{\gamma(t_1 - t_2)}{\sigma_{t_1} \sigma_{t_2}} = \frac{\gamma(t_1 - t_2)}{\gamma(0)}
$$
\nthe last step takes assume: $\sigma = \sigma = \sqrt{\gamma(0)}$

the last step takes assumes: $\sigma_{t_1} = \sigma_{t_2} = \sqrt{\gamma(v)}$

• Corr $(Y_{t_1}, Y_{t_2}) = \rho(Y_{t_1}, Y_{t_2})$ is called the **auto-correlation function** (ACF), –think of it as a function of $k = t_2 - t_1$. The ACF is also symmetric.

• Unlike autocovoriances, autocorrelations are not unit dependent. It is easier to compare dependencies across different time series.

• Stationarity requires all these moments to be independent of time. If the moments are time dependent, we say the series is **non-stationary***.*

Time Series – Stationarity & Constant Moments • For a strictly stationary process (constant moments), we need: $\mu_t = \mu$ $\sigma_t = \sigma$ because $F(y_{t_1}) = F(y_{t_{1+k}}) \Rightarrow \mu_{t_1} = \mu_{t_{1+k}} = \mu$ $\sigma_{t_1} = \sigma_{t_{1+k}} = \sigma$ Then, $F(y_{t_1}, y_{t_2}) = F(y_{t_1+k}, y_{t_2+k}) \Rightarrow \text{Cov}(y_{t_1}, y_{t_2}) = \text{Cov}(y_{t_1+k}, y_{t_2+k})$ $\Rightarrow \rho(t_1, t_2) = \rho(t_{1+k}, t_{2+k})$ Let $t_1 = t - k$ & $t_2 = t$ \Rightarrow $\rho(t_1, t_2) = \rho(t - k, t) = \rho(t, t - k) = \rho(k) = \rho_k$ The correlation between any two RVs depends on the time difference. Given the symmetry, we have $\rho(k) = \rho(-k)$.

Time Series – Weak Stationary • A **Covariance stationary** process (or *2nd -order weakly stationary*) has: - constant mean, μ - constant variance, σ^2 - covariance depends on time difference, k, between two RVs, $\gamma(k)$ That is, Z_t is covariance stationary if: $E(Z_t) =$ constant = μ $Var(Z_t) = \text{constant} = \sigma^2$ $Cov(Z_{t_1}, Z_{t_2}) = \gamma(k = t_1 - t_2)$ Remark: Covariance stationarity is only concerned with the covariance of a process, only the mean, variance and covariance are time-invariant.

Example: Assume y_t follows an AR(1) process: $y_t = \phi y_{t-1} + \varepsilon_t$, with $\varepsilon_t \sim \text{WN}(0, \sigma^2)$. **• Mean** Taking expectations on both side: $E[y_t] = \phi E[y_{t-1}] + E[\varepsilon_t]$ $\mu = \phi \mu + 0$ E[y_t] = μ = 0 (assuming $\phi \neq 1$) **• Variance** Applying the variance on both side: $Var[y_t] = \gamma(0) = \phi^2 Var[y_{t-1}] + Var[\varepsilon_t]$ $γ(0) = φ² γ(0) + σ²$ $\gamma(0) = \frac{\sigma^2}{1-\phi^2}$ (assuming $|\phi| < 1$) **Time Series – Stationarity: Example**

Example (continuation): $y_t = \phi y_{t-1} + \varepsilon_t$, $\varepsilon_t \sim \text{WN}(0, \sigma^2)$ **• Covariance** $\gamma(1) = \text{Cov}[y_t, y_{t-1}] = \text{E}[y_t \ y_{t-1}] = \text{E}[(\phi \ y_{t-1} + \varepsilon_t) \ y_{t-1}]$ $= \phi \mathop{\rm E}[y_{t-1} y_{t-1}] + \mathop{\rm E}[\varepsilon_t y_{t-1}]$ $= \phi \, E[y_{t-1}^2]$ $= \phi \text{Var}[y_{t-1}^2]$ $= \phi \gamma(0)$ $\gamma(2) = \text{Cov}[y_t, y_{t-2}] = \text{E}[y_t \ y_{t-2}] = \text{E}[(\phi \ y_{t-1} + \varepsilon_t) \ y_{t-2}]$ $= \phi \text{ E}[y_{t-1} y_{t-2}]$ $= \phi \text{Cov}[y_t, y_{t-1}]$ $= \phi \gamma(1)$ $= \phi^2 \gamma(0)$ \vdots $\gamma(k) = \text{Cov}[y_t, y_{t-k}] = \phi^k \gamma(0)$ **Time Series – Stationarity: Example**

Example (continuation): $y_t = \phi y_{t-1} + \varepsilon_t$, $\varepsilon_t \sim \text{WN}(0, \sigma^2)$ **• Covariance** $\gamma(k) = \text{Cov}[y_t, y_{t-k}] = \phi^k \gamma(0)$ \Rightarrow If $|\phi|$ < 1, y_t process is covariance stationary: mean, variance, and covariance are constant. Remark: To establish stationarity, we need to impose conditions on the AR parameters. (Conditions are not needed for MA processes.) Note: From the autocovariance function, we derive ACF: $\rho(k) = \frac{\gamma(k)}{\gamma(0)} = \frac{\phi^k \gamma(0)}{\gamma(0)} = \phi^k$ If $|\phi|$ < 1, autocovariance function & ACF show exponential decay. **Time Series – Stationarity: Example**

Time Series – Stationarity: Remarks

• Main characteristic of time series: Observations are **dependent**.

• If we have non-stationary series (say, mean or variance are changing with each observation), it is not possible to make inferences.

• Stationarity is an invariant property: the statistical characteristics of the time series do not vary over time.

• If IBM is weak stationary, then, the returns of IBM may change month to month or year to year, but the average return and the variance in two equal-length time intervals will be more or less the same.

Time Series – Stationarity (Again)

• In the long run, say 100-200 years, the stationarity assumption may not be realistic. After all, technological change has affected the return of IBM over the long run. But, in the short-run, stationarity seems likely to hold.

• In general, time series analysis is done under the stationarity assumption.