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Lecture 8-al
Time Series: Introduction

Brooks (4™ edition): Chapter 6
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Time Series: Introduction

* A time series Y is a process observed in sequence over time,

t:l,....,T :Yt:{Y1ay23y3a'”>yT}‘

Examples: IBM monthly stock prices from 1973:January till
2024:September (plot below); or USD/GBP daily exchange rates
from February 15, 1923 to March 19, 1938.

Time Series: IBM Monthly Price
Poriod: 19732 - 2024
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Time Series: Introduction

Examples (continuation): Different ways to do the plot in R:

* Using plot.ts, creating a timeseries object in R:

# the function ts creates a timeseries object, start = 1973,1 (start of sample), frequency =
12(=monthly)

ts_ibm <- ts(x_ibm, start=c(1973,1), frequency=12)

plot.ts(ts_ibm,xlab="Time",ylab="IBM price", main="Time Series: IBM Stock Price")

* Using R package ggplot2
x_ibm <- SFX_da$IBM
x_date <- as.Date(SFX_da$Date, "%m/%d/%Y")
df <- data.frame(x_date, x_ibm)
goplot(df, aes(x = x_date, y = x_ibm)) +
geom_line(color="blue") +
labs(x = "Date", y = "IBM Price", col = "blue", title = "Time Series: IBM Monthly Price",
subtitle = "Period: 1973 - 2024")

Time Series: Introduction — Categories

* Usually, time series models are separated into two categories:

— Univariate (y; € R, it is a scalar)

Example: We are interested in the behavior of IBM stock
prices as function of its past.

=> Primary model: Autoregressions (ARs).

— Multivariate (y; € R”, it is a vector-valued)

Example: We are interested in the joint behavior of IBM

returns, Tgy, & bond yields, by, as function of their past
_ TIBM,t]
Ve bIBM,t

= Primary model: Vector autoregressions (VARs).
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Time Series: Introduction — Dependence

* Given the sequential nature of y;, we expect ¥y & Y¢_1 to be
dependent. This is the main feature of time series: dependence. It
creates statistical problems.

* In classical statistics, we usually assume we observe several zz.4.
realizations of y¢. We use ¥ to estimate the mean.

* With several independent realizations we are able to sample over the
entire probability space and obtain a “good” —i.e., consistent or close
to the population mean— estimator of the mean.

* But, if the samples are highly dependent, then it is likely that Yy is
concentrated over a small part of the probability space. Then, the
sample mean will not converge to the mean as the sample size grows.

Time Series: Introduction — Dependence

Technical note: With dependent observations, the classical results
(based on LLN & CLT) are not to valid.

* We need new conditions in the DGP to make sure the sample
moments (mean, variance, etc.) are good estimators population
moments. The new assumptions and tools are needed: stationarity,
ergodicity, CLT for martingale difference sequences (MDS CLT).

Roughly speaking, stationarity requires constant moments for Y;
ergodicity requires that the dependence is short-lived, eventually Y,
has only a small influence on Y4k, when K is relatively large.

Ergodicity describes a situation where the expectation of a random
variable can be replaced by the time series expectation.
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Time Series: Introduction — Dependence

An MDS is a discrete-time martingale with mean zero. In particular,
its increments, €;’s, are uncorrelated with any function of the available
dataset at time t. To these &;’s we will apply a CLT.

* The amount of dependence in y; determines the ‘quality’ of the
estimator. There are several ways to measure the dependence. The
most common measure: Covariance.

Cov(ye, Yk ) = E[(Ve, D) Dare— W]
Note: When p = 0, then Cov(y, Ve4x ) = E[Ye Vel

Time Series: Introduction — Forecasting

* In a time series model, we describe how y; depends on past y;’s.
That is, the information set is Iy = {Y¢_1, Ve—2, Ve—3, -}

* The purpose of building a time series model: Forecasting.

* We estimate time series models to forecast out-of-sample. For
example, the ~step abead forecast: Y = E¢[Verr [1¢]-

Historical Note: In the 1970s it was found that very simple time series

models out-forecasted very sophisticated (big) economic models.

This finding represented a big shock to the big multivariate models
that were very popular then. It forced a re-evaluation of these big

models.
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Time Series: Introduction — White Noise

¢ In general, we assume the error term, &, is uncorrelated with
everything, with mean 0 and constant variance, 62 We call a process
like this a white noise (WIN) process.

* We denote a WN process as
g ~ WN(0, 6?)

* White noise is the basic building block of all time series. It can be
written as simple function of a WIN(O, 1) process:

Zy = O Uy, U ~ 2.i.d. WN(@O, 1) =z, ~ WN(0, ¢?)

¢ The z,’s are random shocks, with no dependence over time,
representing unpredictable events. It represents a model of news.

Time Series: Introduction — Conditionality

* We make a key distinction: Conditional & Unconditional moments. In
time series we model the conditional mean as a function of its past,
for example in an AR(1) process, we have:

Ye=a+BYiq TE.

Then, the conditional mean forecast at time ¢, conditioning on
information at time I;_q, is:

Ee[ye [ le-1] = Eeyel = a + B Yeq

Notice that the unconditional mean, |, is given by:
By =a + B E[y;4] = ﬁ = U = constant B#£1

The conditional mean is time varying; the unconditional mean is not!

Key distinction: Conditional vs. Unconditional moments.
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Time Series: Introduction — AR and MA models

* Two popular models for E¢[y; | I]:

— An autoregressive (AR) process models E, [y, | [;—1] with lagged
dependent variables:

Ee[Velle] = f Vi1, Ye—2> V=35 v Ye—p)
Example: AR(1) process, Ye=a+ L Y1 t+ g

— A moving average (MA) process models E¢[y;|[;] with lagged
errors, €;:

Ee[Ve|le] = f(€-1, €t-2, €E¢—35 wr > Et—q)
Example: MA(1) process,  Y¢=U+0,&_1+ &

* There is a third model, ARMA, that combines lagged dependent
variables and lagged errors.

Time Series: Introduction — Forecasting (again)

* We want to select an appropriate time series model to forecast .
In this class, we will use linear models, with choices: AR(p), MA(q)
or ARMA(p, q).

¢ Steps for forecasting:

(1) Identify the appropriate model. That is, determine p, q.
(2) Estimate the model.

(3) Test the model.

(4) Forecast.

¢ In this lecture, we go over the statistical theory (stationarity,
ergodicity), the main models (AR, MA & ARMA) and tools that will
help us describe and identify a proper model.
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CLM Revisited: Time Series Implications

* With autocorrelated data, we get dependent observations. For
example, with autocorrelated errors:

€& = PE-1 T U

the independence assumption is violated. The LLN and the CLT
cannot be easily applied in this context. We need new tools.

* We introduce the concepts of stationarity and ergodicity. The
ergodic theorem will give us a counterpart to the LLN.

To get asymptotic distributions, we also need a CLT for dependent
variables, using new technical concepts: mixing and stationarity. Or

we can rely on a new CLT: The martingale difference sequence C1.T.

* We will not cover these technical points in detail.

Time Series — Stationarity

* Consider the joint probability distribution of the collection of RVs:
F()’tl'YtZ' ---»YtT) = F(Ytl S Ve Yo, S Veyoor Yop < }’tT)

To do statistical analysis with dependent observations, we need extra
assumptions. We need some form of invariance on the structure of
the time series.

If the distribution F is changing with every observation, estimation
and inference become very difficult.

e Stationarity is an invariant property: The statistical characteristics of
the time series do not change over time.

¢ There different definitions of stationarity, they differ in how strong is
the invariance of the distribution over time.
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Time Series — Stationarity

* We say that a process is stationary of

1 order if F(ytl) = F(}’t1+k) forany t, k

2" order if F(ytl, Ve, ) = F(yt1+k, yt2+k) forany t,, t,, k
N"-order if F(ytl, e Vg ) = F(yf1+k' e Verek ) forany t, .., tp k
* N?-order stationatity is a strong assumption (& difficult to verify in

practice). 2" order (weak) stationarity is weaker. Weak stationarity only
considers means & covariances (easier to verify in practice).

* Moments describe a distribution. We calculate moments as usual:
E[Y;] =n
Var(y,) = o? = E[(¥; — 7]

Cov(Y,, Y, ) = E[(Y:, — W) (Ye,— W] =v(t, —t,)

Time Series — Stationarity & Autocovariances

¢ Cov(Y:,, Y;, ) = y(t, —t,) is called the auto-covariance function. It
measures how Y, measured at time t,, and y;, measured at time ¢,,
covary.

Notes: Y(t, — t,) is a function of k = t, — t,
Y(0) is the variance.

¢ The autocovariance function is symmetric. That is,
= y(k) =y(=k)

* Autocovariances are unit dependent. We have different values if we
calculate the autocovariance for IBM returns in % or in decimal terms.

Remark: The autocovariance measures the (linear) dependence between
two Y;’s separated by k periods.
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Time Series — Stationarity & Autocorrelations

* From the autocovariances, we derive the autocorrelations:

~ vt )yt —ty)
Corr(Ytl, Ytz ) - p(Yt1’Yt2 ) - 0':10-: o ;((DZ

the last step takes assumes: 0, = 0, = 1/Y(0)

. Cor‘r(Yt oY, ) = p(Yt oY, ) is called the auto-correlation function
(ACF), —think of it as a function of k =t,— t,. The ACF is also
symmetric.

* Unlike autocovoriances, autocorrelations are not unit dependent. It is
easier to compare dependencies across different time series.

* Stationarity requires all these moments to be independent of time. If
the moments are time dependent, we say the series is non-stationary.

Time Series — Stationarity & Constant Moments

* For a strictly stationary process (constant moments), we need:

He = 1

O =0
because F(Ytl) = F(yt1+k) = He, = My = 0
Oty =0t14, =0

Then,
F(yf1’yt2 ) = F(yf1+k’yt2+k) = Cov(yf1’ytz): Cov(yt1+k'yt2+k)

= p(ty, t2) = p(tisks ta4k)

Lett]_:t_k &tzzt
= p(ty,ty) =p(t —k,t) =p(t, t — k) =p(k) = pg

The correlation between any two RVs depends on the time difference.
Given the symmetry, we have p(k) = p(—k).
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Time Series — Stationarity & Constant Moments

Example: Informally, we check if in any two petiods separated by k
observations, we have similar means, variances and covariances. That is,

utl = I"l‘t1+k = IJ'
Oty =0ty =0
Cov(yt1' ytz): CoV(:Yt1+k' yf2+k)

eries: IBM Monthly Returns

Feriod: 1973 - 2023

Bl Retums

Time Series — Stationarity & Constant Moments

Example: Informally, we check if in any two petiods separated by k
observations, we have similar means, variances and covariances. That is,

utl = I"l‘t1+k = IJ'

Oty =0ty =0
Cov(yt1' ytz): CoV(:Yt1+k' yf2+k)

Time Series: IBM Monthly Stock Price

Period: 1973 - 2023
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Time Series — Weak Stationary

* A Covariance stationary process (ot 2nd -order weakly stationary) has:
- constant mean, [

- constant variance, 0’2

- covariance depends on time difference, k, between two RVs, y(k)

That is, Z; is covariance stationary if:
E(Z;) = constant =
Var(Z,) = constant = 02

Cov(Ze,, Zy, ) =y(k = t;— t;)

Remark: Covariance stationarity is only concerned with the covariance

of a process, only the mean, variance and covariance are time-invariant.

Time Series — Stationarity: Example

Example: Assume y; follows an AR(1) process:
Ve =P Vi1 + &,  withg ~ WN(, 0?).
* Mean
Taking expectations on both side:
E[ye] = ¢ E[ye-1] + E[g¢]
L=¢pto
Ely;]=u=0 (assuming ¢ # 1)
* Variance
Applying the variance on both side:
Varly;] = y(0) = ¢* Var[y,_4] + Var|g,]
¥(0) = ¢ y(0) + o?
2

v(0) =0 (assuming [¢ | < 1)
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Time Series — Stationarity: Example

Example (continuation): y; = ¢ y;_1 + &, g ~ WN(, 02)

e Covariance
Y(1) = Covl[ye, Ye-1] = B[Ye Ye-1] = BI(@ Vi1 + &) Vi-1]
= ¢ E[Ye—1 Ye-1] + B[ & Yi-1]
= ¢ E[ye-17]
= ¢ Var[y, 1]
= ¢ v(0)

Y(2) = Cov[ye, Ye-2] = BVt Ye-2] = E[(@ Vi1 + &) Ye-2]
= ¢ E[ye—1 ye-2]
= ¢ Cov[ye, Ve-1]
=¢y()
= ¢*v(0)

y(k) = Cov|ys, Ye—i] = ¢k y(0)

Time Series — Stationarity: Example

Example (continuation): y; = ¢ y;_1 + &, g ~ WN(, 02)

e Covariance

Y(k) = Cov[ys, Ye—kl = ¢k v(0)

= If |@|<1,y; process is covariance stationary: mean, variance,
and covariance are constant.

Remark: To establish stationarity, we need to impose conditions on
the AR parameters. (Conditions are not needed for MA processes.)

Note: From the autocovariance function, we derive ACF:

_Y® oy _ Lk
K =J0=70 - ¢

If |¢ | <1, autocovatiance function & ACF show exponential decay.
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Time Series — Non-Stationarity: Example

Example: Assume y; follows a Random Walk with drift process:
Ye = U + Veoq t &, with £, ~ WN(0, 02).

Doing backward substitution:

Ye =M+ @+ Vo tE1) T &
A e e R
=2%u+ (Wt Yoz T &) T & &g
=3*Ut Y3t et e gt e

_ t—1
=Sy =Rt Xs08—j Yo

e Mean & Variance
Elye] = t+y
Varlye] = y(0) = ¥jZp 0* = 0” t

= the process Y; is non-stationary: moments are time dependent.

Stationary Series: Examples

Examples: Assume € ~ WN(0, 0?).
Ye=0.08+¢& +04¢e_1 -MA(1) process
Ve =013y, 4 + & - AR(1) process

JPY/USD Exchange Rate: Monthly % Rates (1971-2020)

% Change
000
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010

T T T T T T
1970 1980 1990 2000 2010 2020

Date
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Non-Stationary Series: Examples

Examples: Assume € ~ WN(0, 0?).
Ve = U t+ d)l Vi-1 + d)z Vt-2 + Et 'AR(Z) with deterministic trend
Ve=Uu+y1+¢& - Random Walk with drift

JPY/USD Exchange Rate: Monthly Rates (1971-2020)

250 300 380
I | |

FXRate

200
|

T T T
1970 1980 1990 2000 2010 2020

Date

Time Series — Stationarity: Remarks
* Main characteristic of time series: Observations are dependent.

* If we have non-stationary series (say, mean or variance are changing
with each observation), it is not possible to make inferences.

e Stationarity is an invariant property: the statistical characteristics of
the time series do not vary over time.

e If IBM is weak stationary, then, the returns of IBM may change
month to month or year to year, but the average return and the variance
in two equal-length time intervals will be more or less the same.
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Time Series — Stationarity (Again)

¢ In the long run, say 100-200 years, the stationarity assumption may
not be realistic. After all, technological change has affected the return
of IBM over the long run. But, in the short-run, stationarity seems
likely to hold.

* In general, time series analysis is done under the stationarity
assumption.
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