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Lecture 8-a1
Time Series: Introduction

Brooks (4th edition): Chapter 6
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Time Series: Introduction

• A time series 𝑦௧ is a process observed in sequence over time, 

𝑡 = 1, ...., 𝑇  𝑌௧ = {𝑦ଵ, 𝑦ଶ , 𝑦ଷ, ..., 𝑦்}.

Examples: IBM monthly stock prices from 1973:January till 
2024:September (plot below); or USD/GBP daily exchange rates 
from February 15, 1923 to March 19, 1938.
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Time Series: Introduction

Examples (continuation): Different ways to do the plot in R:

• Using plot.ts, creating a timeseries object in R:
# the function ts creates a timeseries object, start = 1973,1 (start of sample), frequency = 
12(=monthly) 

ts_ibm <- ts(x_ibm, start=c(1973,1), frequency=12) 

plot.ts(ts_ibm,xlab="Time",ylab="IBM price", main="Time Series: IBM Stock Price")

• Using R package ggplot2
x_ibm <- SFX_da$IBM

x_date <- as.Date(SFX_da$Date, "%m/%d/%Y")

df <- data.frame(x_date, x_ibm)

ggplot(df, aes(x = x_date, y = x_ibm)) +

geom_line(color="blue") +

labs(x = "Date", y = "IBM Price", col = "blue", title = "Time Series: IBM Monthly Price",

subtitle = "Period:  1973 - 2024")

Time Series: Introduction – Categories

• Usually, time series models are separated into two categories: 

– Univariate (𝑦௧ ∊ R, it is a scalar)

Example: We are interested in the behavior of IBM stock 
prices as function of its past.

 Primary model: Autoregressions (ARs).

– Multivariate (𝑦௧ ∊ Rm, it is a vector-valued)

Example: We are interested in the joint behavior of IBM 
returns, 𝑟ூ஻ெ, & bond yields, 𝑏ூ஻ெ, as function of their past 

𝑦௧= 
𝑟ூ஻ெ,௧

𝑏ூ஻ெ,௧

 Primary model: Vector autoregressions (VARs). 
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Time Series: Introduction – Dependence

• Given the sequential nature of 𝑦௧, we expect 𝑦௧ & 𝑦௧ିଵ to be 
dependent. This is the main feature of time series: dependence. It 
creates statistical problems.

• In classical statistics, we usually assume we observe several i.i.d. 
realizations of 𝑦௧. We use 𝑦ത to estimate the mean. 

• With several independent realizations we are able to sample over the 
entire probability space and obtain a “good” –i.e., consistent or close 
to the population mean– estimator of the mean. 

• But, if the samples are highly dependent, then it is likely that 𝑦௧ is 
concentrated over a small part of the probability space. Then, the 
sample mean will not converge to the mean as the sample size grows. 

Time Series: Introduction – Dependence

Technical note: With dependent observations, the classical results 
(based on LLN & CLT) are not to valid. 

• We need new conditions in the DGP to make sure the sample 
moments (mean, variance, etc.) are good estimators population 
moments. The new assumptions and tools are needed: stationarity, 
ergodicity, CLT for martingale difference sequences (MDS CLT).

Roughly speaking, stationarity requires constant moments for 𝑦௧; 
ergodicity requires that the dependence is short-lived, eventually 𝑦௧
has only a small influence on 𝑦௧ା௞, when 𝑘 is relatively large.

Ergodicity describes a situation where the expectation of a random 
variable can be replaced by the time series expectation.
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Time Series: Introduction – Dependence

An MDS is a discrete-time martingale with mean zero. In particular, 
its increments, ε௧’s, are uncorrelated with any function of the available 
dataset at time 𝑡. To these ε௧’s we will apply a CLT.

• The amount of dependence in 𝑦௧ determines the ‘quality’ of the 
estimator. There are several ways to measure the dependence. The 
most common measure: Covariance.

Cov 𝑦௧,𝑦௧ା௞ ൌ  𝐸ሾሺ𝑦௧௧ െμሻሺ𝑦௧ା௞െ μሻሿ

Note: When μ = 0, then Cov 𝑦𝑡,𝑦௧ା௞ ൌ 𝐸ሾ𝑦௧ 𝑦௧ା௞ሿ

Time Series: Introduction – Forecasting

• In a time series model, we describe how 𝑦௧ depends on past 𝑦௧’s. 
That is, the information set is 𝐼௧ = {𝑦௧ିଵ, 𝑦௧ିଶ, 𝑦௧ିଷ, ....}

• The purpose of building a time series model: Forecasting.

• We estimate time series models to forecast out-of-sample. For 
example, the l-step ahead forecast: 𝑦ො்ା௟ = E௧[𝑦௧ା௟|𝐼௧]. 

Historical Note: In the 1970s it was found that very simple time series 
models out-forecasted very sophisticated (big) economic models. 

This finding represented a big shock to the big multivariate models 
that were very popular then. It forced a re-evaluation of these big 
models.
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• In general, we assume the error term, ε௧, is uncorrelated with 
everything, with mean 0 and constant variance, σ2. We call a process 
like this a white noise (WN) process. 

• We denote a WN process as

ε௧ ~ WN(0, σ2)

• White noise is the basic building block of all time series. It can be 
written as simple function of a WN(0, 1) process:

𝑧௧ = σ 𝑢௧, 𝑢௧ ~ i.i.d. WN(0, 1)  𝑧௧ ~ WN(0, σ2)

• The 𝑧௧’s are random shocks, with no dependence over time, 
representing unpredictable events. It represents a model of news.

Time Series: Introduction – White Noise

• We make a key distinction: Conditional & Unconditional moments. In
time series we model the conditional mean as a function of its past,
for example in an AR(1) process, we have:

𝑦௧ = 𝛼 + 𝛽 𝑦௧ିଵ + ε௧.

Then, the conditional mean forecast at time 𝑡, conditioning on 
information at time 𝐼௧ିଵ, is:

E௧[𝑦௧|𝐼௧ିଵ] = E௧[𝑦௧] = 𝛼 + 𝛽 𝑦௧ିଵ

Notice that the unconditional mean, μ, is given by: 
E[𝑦௧] = 𝛼 + 𝛽 E[𝑦௧ିଵ] =

ఈ

1 − ఉ
= μ = constant (𝛽 ≠ 1)

The conditional mean is time varying; the unconditional mean is not!

Key distinction: Conditional vs. Unconditional moments.

Time Series: Introduction – Conditionality 
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• Two popular models for E௧[𝑦௧|𝐼௧]:
– An autoregressive (AR) process models Et[𝑦௧|𝐼௧ିଵ] with lagged 
dependent variables:

E௧[𝑦௧|𝐼௧] = 𝑓ሺ𝑦௧ିଵ, 𝑦௧ିଶ, 𝑦௧ିଷ, .... , 𝑦௧ି௣)

Example: AR(1) process, 𝑦௧ = 𝛼 + 𝛽 𝑦௧ିଵ + ε௧.

– A moving average (MA) process models E௧[𝑦௧|𝐼௧] with lagged 
errors, ε௧:

E௧[𝑦௧|𝐼௧] = 𝑓ሺε௧ିଵ, ε௧ିଶ, ε௧ିଷ, .... , ε௧ି௤)

Example: MA(1) process, 𝑦௧ = μ + θ1 ε௧ିଵ + ε௧

• There is a third model, ARMA, that combines lagged dependent 
variables and lagged errors.

Time Series: Introduction – AR and MA models

• We want to select an appropriate time series model to forecast 𝑦௧. 
In this class, we will use linear models, with choices: AR(𝑝), MA(𝑞) 
or ARMA(𝑝, 𝑞). 

• Steps for forecasting:

(1) Identify the appropriate model. That is, determine 𝑝, 𝑞.

(2) Estimate the model.

(3) Test the model.

(4) Forecast.

• In this lecture, we go over the statistical theory (stationarity, 
ergodicity), the main models (AR, MA & ARMA) and tools that will 
help us describe and identify a proper model.

Time Series: Introduction – Forecasting (again)
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CLM Revisited: Time Series Implications

• With autocorrelated data, we get dependent observations. For 
example, with autocorrelated errors:  

ε௧ =   ε௧ିଵ +  𝑢௧ ,

the independence assumption is violated. The LLN and the CLT 
cannot be easily applied in this context. We need new tools.

• We introduce the concepts of stationarity and ergodicity. The 
ergodic theorem will give us a counterpart to the LLN.

To get asymptotic distributions, we also need a CLT for dependent 
variables, using new technical concepts: mixing and stationarity. Or 
we can rely on a new CLT: The martingale difference sequence CLT. 

• We will not cover these technical points in detail.

• Consider the joint probability distribution of  the collection of  RVs:

𝐹 𝑦௧భ ,𝑦௧మ , … ,𝑦௧೅ ൌ 𝐹 𝑌௧భ ൑ 𝑦௧భ ,𝑌௧మ ൑ 𝑦௧మ , … ,𝑌௧೅ ൑ 𝑦௧೅

To do statistical analysis with dependent observations, we need extra 
assumptions. We need some form of  invariance on the structure of  
the time series. 

If  the distribution 𝐹 is changing with every observation, estimation 
and inference become very difficult. 

• Stationarity is an invariant property: The statistical characteristics of  
the time series do not change over time. 

• There different definitions of  stationarity, they differ in how strong is 
the invariance of  the distribution over time.

Time Series – Stationarity 
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• We say that a process is stationary of    

1st order if  𝐹 𝑦௧భ ൌ 𝐹 𝑦௧భశೖ for any 𝑡1, 𝑘

2nd order if 𝐹 𝑦௧భ ,𝑦௧మ ൌ 𝐹 𝑦௧భశೖ ,𝑦௧మశೖ for any 𝑡1, 𝑡2, 𝑘

Nth-order if 𝐹 𝑦௧భ , … ,𝑦௧೅ ൌ 𝐹 𝑦௧భశೖ , … ,𝑦௧೅శೖ for any 𝑡1, ..., 𝑡T, 𝑘

• Nth-order stationarity is a strong assumption (& difficult to verify in 
practice). 2nd order (weak) stationarity is weaker. Weak stationarity only 
considers means & covariances (easier to verify in practice).  

• Moments describe a distribution. We calculate moments as usual:  
Eሾ𝑌௧ሿ ൌ μ

Var 𝑌௧ ൌ σଶ ൌ 𝐸ሾሺ𝑌௧ െ μሻଶሿ

Covሺ𝑌௧భ ,𝑌௧మ ሻ ൌ  𝐸ሾሺ𝑌௧భ െ μሻሺ𝑌௧మെ μሻሿ = γሺ𝑡1 
−𝑡2ሻ

Time Series – Stationarity 

• Covሺ𝑌௧భ ,𝑌௧మ ሻ = γ 𝑡1 
−𝑡2 is called the auto-covariance function. It 

measures how 𝑦௧, measured at time 𝑡1, and 𝑦௧, measured at time 𝑡2, 
covary. 

Notes: γ 𝑡1 
− 𝑡2 is a function of  𝑘 = 𝑡1 

− 𝑡2

γሺ0ሻ is the variance.

• The autocovariance function is symmetric. That is, 
γ 𝑡1 

− 𝑡2 ൌ Covሺ𝑌௧భ ,𝑌௧మ ሻ = Covሺ𝑌௧మ ,𝑌௧భ ሻ = γ 𝑡2 
− 𝑡1

 γ 𝑘 ൌ γ െ𝑘

• Autocovariances are unit dependent. We have different values if  we 
calculate the autocovariance for IBM returns in % or in decimal terms.

Remark: The autocovariance measures the (linear) dependence between 
two 𝑌௧ ’s separated by 𝑘 periods.

Time Series – Stationarity & Autocovariances
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• From the autocovariances, we derive the autocorrelations:

Corr 𝑌௧భ ,𝑌௧మ ൌ ρ 𝑌௧భ ,𝑌௧మ ൌ ஓሺ௧1 
−௧2ሻ 

஢೟భ஢೟మ
ൌ ஓሺ௧1 

−௧2ሻ 
ஓ(0)

the last step takes assumes: σ௧భ ൌ σ௧మൌ γሺ0ሻ

• Corr 𝑌௧భ ,𝑌௧మ ൌ ρ 𝑌௧భ ,𝑌௧మ is called the auto-correlation function 
(ACF), –think of  it as a function of  𝑘 = 𝑡2 

− 𝑡1. The ACF is also 
symmetric.

• Unlike autocovoriances, autocorrelations are not unit dependent. It is 
easier to compare dependencies across different time series.

• Stationarity requires all these moments to be independent of  time. If  
the moments are time dependent, we say the series is non-stationary.

Time Series – Stationarity & Autocorrelations 

Time Series – Stationarity & Constant Moments 

• For a strictly stationary process (constant moments), we need:
μ௧ ൌ μ
σ௧ ൌ σ

because 𝐹 𝑦௧భ ൌ 𝐹 𝑦௧భశೖ  μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ

Then, 
𝐹 𝑦௧భ ,𝑦௧మ ൌ 𝐹 𝑦௧భశೖ ,𝑦௧మశೖ  Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

 ρ 𝑡ଵ, 𝑡ଶ ൌ ρ 𝑡ଵା௞ , 𝑡ଶା௞

Let 𝑡ଵ ൌ 𝑡 െ 𝑘  & 𝑡ଶ ൌ 𝑡 
 ρ 𝑡ଵ, 𝑡ଶ ൌ ρ 𝑡 െ 𝑘, 𝑡 ൌ ρ 𝑡, 𝑡 െ 𝑘 = ρ 𝑘  = ρ௞

The correlation between any two RVs depends on the time difference. 
Given the symmetry, we have ρ 𝑘 = ρ െ𝑘 .



RS – FEc - Lecture 8-a

10© R. Susmel, 2023 – Do not share/post online without written authorization.

Time Series – Stationarity & Constant Moments 

Example: Informally, we check if  in any two periods separated by 𝑘
observations, we have similar means, variances and covariances. That is,

μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ
Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

𝑡ଵ 𝑡ଶ

Time Series – Stationarity & Constant Moments 

Example: Informally, we check if  in any two periods separated by 𝑘
observations, we have similar means, variances and covariances. That is,

μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ
Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

𝑡ଵ 𝑡ଶ



RS – FEc - Lecture 8-a

11© R. Susmel, 2023 – Do not share/post online without written authorization.

Time Series – Weak Stationary 

• A Covariance stationary process (or 2nd -order weakly stationary) has:
- constant mean, μ
- constant variance, 𝜎ଶ

- covariance depends on time difference, 𝑘, between two RVs, γ 𝑘

That is, 𝑍௧ is covariance stationary if:

E 𝑍௧ = constant = μ 

Var 𝑍௧ = constant = 𝜎ଶ 

Cov 𝑍௧భ ,𝑍௧మ ൌ γሺ𝑘 ൌ 𝑡ଵെ 𝑡ଶሻ

Remark: Covariance stationarity is only concerned with the covariance 
of  a process, only the mean, variance and covariance are time-invariant. 

Example: Assume 𝑦௧ follows an AR(1) process:

𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧, with ε௧ ~ WN(0, 𝜎ଶ).

•  Mean
Taking expectations on both side:

E[ 𝑦௧] = 𝜙 E[𝑦௧ିଵ] + E[ε௧] 
μ = 𝜙 μ + 0
E[ 𝑦௧ ] = μ = 0 (assuming 𝜙 ≠ 1)

•  Variance
Applying the variance on both side:

Var[𝑦௧] = γ 0 ൌ 𝜙ଶ Var[𝑦௧ିଵ] + Var[𝜀௧] 

γሺ0ሻ = 𝜙ଶ γሺ0ሻ + 𝜎ଶ

γሺ0ሻ =
ఙమ

ଵ ି థమ
(assuming |𝜙 |< 1)

Time Series – Stationarity: Example 
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Example (continuation):  𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧, ε௧ ~ WN(0, 𝜎ଶሻ

•  Covariance
γሺ1ሻ = Cov[𝑦௧, 𝑦௧ିଵ] = E[𝑦௧ 𝑦௧ିଵ] = E[(𝜙 𝑦௧ିଵ + ε௧) 𝑦௧ିଵ] 

= 𝜙 E[𝑦௧ିଵ 𝑦௧ିଵ] + E[ ε௧ 𝑦௧ିଵ] 
= 𝜙 E[𝑦௧ିଵ2] 
= 𝜙 Var[𝑦௧ିଵ2] 
= 𝜙 γሺ0ሻ

γሺ2ሻ = Cov[𝑦௧, 𝑦௧ିଶ] = E[𝑦௧ 𝑦௧ିଶ] = E[(𝜙 𝑦௧ିଵ + ε௧) 𝑦௧ିଶ] 
= 𝜙 E[𝑦௧ିଵ 𝑦௧ିଶ] 
= 𝜙 Cov[𝑦௧, 𝑦௧ିଵ] 
= 𝜙 γሺ1ሻ
= 𝜙2 γሺ0ሻ

⋮

γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = 𝜙௞ γሺ0ሻ

Time Series – Stationarity: Example 

Example (continuation):  𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧, ε௧ ~ WN(0, 𝜎ଶሻ

•  Covariance
γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = 𝜙௞ γሺ0ሻ

 If  |𝜙|< 1, 𝑦௧ process is covariance stationary: mean, variance, 
and covariance are constant.

Remark: To establish stationarity, we need to impose conditions on 
the AR parameters. (Conditions are not needed for MA processes.) 

Note: From the autocovariance function, we derive ACF:

ρ 𝑘 ൌ ஓሺ௞ሻ 
ஓ(0) ൌ

థೖ ஓሺ଴ሻ
ஓ(0) ൌ 𝜙௞

If  |𝜙 |< 1, autocovariance function & ACF show exponential decay.

Time Series – Stationarity: Example 
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Example: Assume 𝑦௧ follows a Random Walk with drift process:

𝑦௧ = 𝜇 ൅  𝑦௧ିଵ + ε௧, with ε௧ ~ WN(0, σ2).

Doing backward substitution:
𝑦௧ = 𝜇 + (μ + 𝑦௧ିଶ + ε௧ିଵ) + ε௧

= 2 * μ + 𝑦௧ିଶ + ε௧ + ε௧ିଵ
= 2 * μ + (μ + 𝑦௧ିଷ + ε௧ିଶ) + ε௧ + ε௧ିଵ
= 3 * μ + 𝑦௧ିଷ + ε௧ + ε௧ିଵ+ ε௧ିଶ

 𝑦௧ = μ  𝑡 + ∑ ε௧ି௝
௧ିଵ
௝ୀ଴ + 𝑦଴

•  Mean & Variance
E[𝑦௧] = μ  𝑡 + 𝑦଴
Var[𝑦௧] = γሺ0ሻ = ∑ σ2௧ିଵ

௝ୀ଴ = σ2 𝑡

 the process 𝑦௧ is non-stationary: moments are time dependent.

Time Series – Non-Stationarity: Example 

Stationary Series: Examples

Examples: Assume ε௧ ~ WN(0, σ2). 
𝑦௧ ൌ 0.08 ൅ 𝜀௧ ൅ 0.4 𝜀௧ିଵ - MA(1) process
𝑦௧ ൌ 0.13 𝑦௧ିଵ ൅ 𝜀௧  - AR(1) process
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Non-Stationary Series: Examples

Examples: Assume ε௧ ~ WN(0, σ2).

𝑦௧ ൌ 𝜇 𝑡 ൅ 𝜙ଵ 𝑦௧ିଵ ൅ 𝜙ଶ 𝑦௧ିଶ ൅ 𝜀௧ - AR(2) with deterministic trend
𝑦௧ ൌ 𝜇 ൅ 𝑦௧ିଵ ൅ 𝜀௧     - Random Walk with drift

• Main characteristic of  time series: Observations are dependent.

• If  we have non-stationary series (say, mean or variance are changing 
with each observation), it is not possible to make inferences.  

• Stationarity is an invariant property: the statistical characteristics of  
the time series do not vary over time.

• If  IBM is weak stationary, then, the returns of  IBM may change 
month to month or year to year, but the average return and the variance 
in two equal-length time intervals will be more or less the same.

Time Series – Stationarity: Remarks
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• In the long run, say 100-200 years, the stationarity assumption may 
not be realistic. After all, technological change has affected the return 
of  IBM over the long run. But, in the short-run, stationarity seems 
likely to hold.

• In general, time series analysis is done under the stationarity 
assumption.

Time Series – Stationarity (Again)


