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Lecture 8-a2
Time Series: 

Stationarity, AR(p) & MA(q)

Brooks (4th edition): Chapter 6

© R. Susmel, 2020 (for private use, not to be posted/shared online).

Review: Times Series

• A time series 𝑦௧ is a process observed in sequence over time, 

t = 1, ...., T  𝑌௧ = {𝑦ଵ, 𝑦ଶ , 𝑦ଷ, ..., 𝑦்}.

• Given the sequential nature of 𝑌௧, we expect 𝑦௧ & 𝑦௧ିଵ to be 
dependent This is the main feature of time series: dependence. 

• With dependent observations, the classical results (based on LLN & 
CLT) are not to valid. New assumptions and tools are needed: 
stationarity, ergodicity, & CLT for martingale difference sequences.

• Roughly speaking, stationarity requires constant moments for 𝑌௧; 
ergodicity requires that the dependence is short-lived, eventually 𝑦௧
has only a small influence on 𝑦௧ା௞, when 𝑘 is relatively large.
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Time Series: Introduction – Dependence

• Given the sequential nature of the time series 𝑦௧, we expect 𝑦௧ & 
𝑦௧ିଵ to be dependent. This is the main feature of time series: 
dependence. It creates statistical problems.

• We need new conditions in the DGP to make sure the sample 
moments are good estimators population moments. 

• The new assumptions and tools are needed: stationarity, 
ergodicity, CLT for martingale difference sequences (MDS CLT).

• The most common measure of dependence: Covariance.

Cov 𝑦௧,𝑦௧ା௞ ൌ 𝐸ሾሺ𝑦௧ െ μሻሺ𝑦௧ା௞െ μሻሿ ൌ γሺ𝑘ሻ

Note: When μ = 0, then Cov 𝑦𝑡,𝑦௧ା௞ ൌ 𝐸ሾ𝑦௧ 𝑦௧ା௞ሿ

• Two popular models for E௧[𝑦௧|𝐼௧]:
– An autoregressive (AR) process models Et[𝑦௧|𝐼௧ିଵ] with lagged 
dependent variables:

E௧[𝑦௧|𝐼௧] = 𝑓ሺ𝑦௧ିଵ, 𝑦௧ିଶ, 𝑦௧ିଷ, .... , 𝑦௧ି௣)

Example: AR(1) process, 𝑦௧ = 𝛼 + 𝛽 𝑦௧ିଵ + ε௧.

– A moving average (MA) process models E௧[𝑦௧|𝐼௧] with lagged 
errors, ε௧:

E௧[𝑦௧|𝐼௧] = 𝑓ሺε௧ିଵ, ε௧ିଶ, ε௧ିଷ, .... , ε௧ି௤)

Example: MA(1) process, 𝑦௧ = μ + θ1 ε௧ିଵ + ε௧

• There is a third model, ARMA, that combines lagged dependent 
variables and lagged errors.

Time Series: Introduction – AR and MA models
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• We want to select an appropriate time series model to forecast 𝑦௧. 
In this class, we will use linear models, with choices: AR(𝑝), MA(𝑞) 
or ARMA(𝑝, 𝑞). 

• Steps for forecasting:

(1) Identify the appropriate model. That is, determine 𝑝, 𝑞.

(2) Estimate the model.

(3) Test the model.

(4) Forecast.

• In this lecture, we go over the statistical theory (stationarity, 
ergodicity), the main models (AR, MA & ARMA) and tools that will 
help us describe and identify a proper model.

Time Series: Introduction – Forecasting (again)

• Consider the joint probability distribution of  the collection of  RVs:

𝐹 𝑦௧భ ,𝑦௧మ , … ,𝑦௧೅ ൌ 𝐹 𝑌௧భ ൑ 𝑦௧భ ,𝑌௧మ ൑ 𝑦௧మ , … ,𝑌௧೅ ൑ 𝑦௧೅

To do statistical analysis with dependent observations, we need extra 
assumptions. If  the distribution 𝐹 is changing with every observation, 
estimation and inference become very difficult. 

• Stationarity is an invariant property: The statistical characteristics of  
the time series do not change over time. We focus on Weak 
stationarity, which considers means & covariances independent of  
time:  

Eሾ𝑌௧ሿ ൌ μ

Var 𝑌௧ ൌ σଶ ൌ 𝐸ሾሺ𝑌௧ െ μሻଶሿ

Covሺ𝑌௧భ ,𝑌௧మ ሻ ൌ  𝐸ሾሺ𝑌௧భ െ μሻሺ𝑌௧మെ μሻሿ = γሺ𝑡1 
−𝑡2ሻ

Time Series – Stationarity 
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• From the autocovariances, we derive the autocorrelations:

ρ 𝑘 ൌ ஓሺ௞ሻ 
ஓ(0) = ρ 𝑘

• Corr 𝑦௧,𝑦௧ା௞ ൌ ρ 𝑘 is called the auto-correlation function 
(ACF), –think of  it as a function of  𝑘. The ACF is also symmetric.

• Unlike autocovoriances, autocorrelations are not unit dependent. It is 
easier to compare dependencies across different time series.

• Stationarity requires all these moments to be independent of  time. If  
the moments are time dependent, we say the series is non-stationary.

Time Series – Stationarity & Autocorrelations 

Time Series – Stationarity & Constant Moments 

Example: Informally, we check if  in any two periods separated by 𝑘
observations, we have similar means, variances and covariances. That is,

μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ
Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

𝑡ଵ 𝑡ଶ
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Time Series – Stationarity & Constant Moments 

Example: Informally, we check if  in any two periods separated by 𝑘
observations, we have similar means, variances and covariances. That is,

μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ
Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

𝑡ଵ 𝑡ଶ

Time Series – Weak (Covariance) Stationary 

• 𝑍௧ is covariance stationary if:

E 𝑍௧ = constant = μ 

Var 𝑍௧ = constant = 𝜎ଶ 

Cov 𝑍௧భ ,𝑍௧మ ൌ γሺ𝑘 ൌ 𝑡ଵെ 𝑡ଶሻ

Remark: Covariance stationarity is only concerned with the covariance 
of  a process, only the mean, variance and covariance are time-invariant. 
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Example: Assume 𝑦௧ follows an AR(1) process:

𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧, with ε௧ ~ WN(0, 𝜎ଶ).

•  Mean
Taking expectations on both side:

E[ 𝑦௧] = 𝜙 E[𝑦௧ିଵ] + E[ε௧] 
μ = 𝜙 μ + 0
E[ 𝑦௧ ] = μ = 0 (assuming 𝜙 ≠ 1)

•  Variance
Applying the variance on both side:

Var[𝑦௧] = γ 0 ൌ 𝜙ଶ Var[𝑦௧ିଵ] + Var[𝜀௧] 

γሺ0ሻ = 𝜙ଶ γሺ0ሻ + 𝜎ଶ

γሺ0ሻ =
ఙమ

ଵ ି థమ
(assuming |𝜙 |< 1)

Time Series – Stationarity: Example 

Example (continuation):  𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧, ε௧ ~ WN(0, 𝜎ଶሻ

•  Covariance
γሺ1ሻ = Cov[𝑦௧, 𝑦௧ିଵ] = E[𝑦௧ 𝑦௧ିଵ] = E[(𝜙 𝑦௧ିଵ + ε௧) 𝑦௧ିଵ] 

= 𝜙 E[𝑦௧ିଵ 𝑦௧ିଵ] + E[ ε௧ 𝑦௧ିଵ] 
= 𝜙 E[𝑦௧ିଵ2] 
= 𝜙 Var[𝑦௧ିଵ2] 
= 𝜙 γሺ0ሻ

γሺ2ሻ = Cov[𝑦௧, 𝑦௧ିଶ] = E[𝑦௧ 𝑦௧ିଶ] = E[(𝜙 𝑦௧ିଵ + ε௧) 𝑦௧ିଶ] 
= 𝜙 E[𝑦௧ିଵ 𝑦௧ିଶ] 
= 𝜙 Cov[𝑦௧, 𝑦௧ିଵ] 
= 𝜙 γሺ1ሻ
= 𝜙ଶ γሺ0ሻ

⋮

γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = 𝜙௞ γሺ0ሻ

Time Series – Stationarity: Example 
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Example (continuation):

•  Covariance
γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = 𝜙௞ γሺ0ሻ

 If  |𝜙|< 1, 𝑦௧ process is covariance stationary: mean, variance, 
and covariance are constant.

Remark: To establish stationarity, we need to impose conditions on 
the AR parameters. (Conditions are not needed for MA processes.) 

Note: From the autocovariance function, we derive ACF:

ρ 𝑘 ൌ ஓሺ௞ሻ 
ஓ(0) ൌ

థೖ ஓሺ଴ሻ
ஓ(0) ൌ 𝜙௞

If  |𝜙 |< 1, autocovariance function & ACF show exponential decay.

Time Series – Stationarity: Example 

Example: Assume 𝑦௧ follows a Random Walk with drift process:

𝑦௧ = 𝜇 ൅  𝑦௧ିଵ + ε௧, with ε௧ ~ WN(0, σ2).

Doing backward substitution:
𝑦௧ = 𝜇 + (μ + 𝑦௧ିଶ + ε௧ିଵ) + ε௧

= 2 * μ + 𝑦௧ିଶ + ε௧ + ε௧ିଵ
= 2 * μ + (μ + 𝑦௧ିଷ + ε௧ିଶ) + ε௧ + ε௧ିଵ
= 3 * μ + 𝑦௧ିଷ + ε௧ + ε௧ିଵ+ ε௧ିଶ

 𝑦௧ = μ  𝑡 + ∑ ε௧ି௝
௧ିଵ
௝ୀ଴ + 𝑦଴

•  Mean & Variance
E[𝑦௧] = μ  𝑡 + 𝑦଴
Var[𝑦௧] = γሺ0ሻ = ∑ σ2௧ିଵ

௝ୀ଴ = σ2 𝑡

 the process 𝑦௧ is non-stationary: moments are time dependent.

Time Series – Non-Stationarity: Example 
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Stationary Series: Examples

Examples: Assume ε௧ ~ WN(0, σ2). 
𝑦௧ ൌ 0.08 ൅ 𝜀௧ ൅ 0.4 𝜀௧ିଵ - MA(1) process
𝑦௧ ൌ 0.13 𝑦௧ିଵ ൅ 𝜀௧  - AR(1) process

Non-Stationary Series: Examples

Examples: Assume ε௧ ~ WN(0, σ2).

𝑦௧ ൌ 𝜇 𝑡 ൅ 𝜙ଵ 𝑦௧ିଵ ൅ 𝜙ଶ 𝑦௧ିଶ ൅ 𝜀௧ - AR(2) with deterministic trend
𝑦௧ ൌ 𝜇 ൅ 𝑦௧ିଵ ൅ 𝜀௧     - Random Walk with drift
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• Main characteristic of  time series: Observations are dependent.

• If  we have non-stationary series (say, mean or variance are changing 
with each observation), it is not possible to make inferences.  

• Stationarity: The statistical characteristics of  the time series do not 
vary over time.

• If  IBM is weak stationary, then, the returns of  IBM may change 
month to month or year to year, but the average return and the variance 
in two equal-length time intervals will be more or less the same.

• In the long run, say 100-200 years, stationarity may not be realistic. 
After all, technological change has affected the return of  IBM over the 
long run. But, in the short-run, stationarity seems likely to hold.

Time Series – Stationarity: Remarks

• We want to estimate the mean of  the process {𝑍௧}, 𝜇ሺ𝑍௧ሻ. But, we 
need to distinguishing between ensemble average (with 𝑚 observations) 
and time average (with 𝑇 observations):

- Ensemble Average:  𝑧̿ ൌ
∑ ௓೔
೘
೔సభ

௠

- Time Series Average:  𝑧 ൌ
∑ ௓೟
೅
೟సభ

்

Q: Which estimator is the most appropriate? 
A: Ensemble Average. But, it is impossible to calculate for a time series. 
We only observe one 𝑍௧ , with dependent observations.

• Q: Under which circumstances we can use the time average (with only 
one realization of  {𝑍௧})? Is the time average an unbiased and consistent 
estimator of  the mean? The Ergodic Theorem gives us the answer.

Ergodicity
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• Intuition behind Ergodicity:
We go to a casino to play a game with 20% return, but on average, one 
gambler out of  100 goes bankrupt. If  100 gamblers play the game, 
there is a 99% chance of  winning and getting a 20% return. This is the 
ensemble scenario. Suppose that gambler 35 is the one that goes bankrupt. 
Gambler 36 is not affected by the bankruptcy of  gamble 35.

Suppose now that instead of  100 gamblers you play the game 100 times. 
This is the time series scenario. You win 20% every day until day 35 when 
you go bankrupt. There is no day 36 for you (dependence at work!).

Result: The probability of  success from the group (ensemble scenario) 
does not apply to one person (time series scenario). 

Ergodicity describes a situation where the ensemble scenario outcome 
applies to the time series scenario.

Time Series – Ergodicity

• With dependent observation, we cannot use the LLN as we have done 
before with i.i.d. observations. The ergodicity theorem plays the role of  the 
LLN with dependent observations.

The formal definition of  ergodicity is complex and is seldom used in 
time series analysis. One consequence of  ergodicity is the ergodic 
theorem, which is extremely useful in time series. 

It states that if  𝑍௧ is an ergodic stochastic process, then
ଵ

்
∑ 𝑔ሺ𝑍௧ሻ ௧ୀଵ

௔.௦.
E[𝑔ሺ𝑍௧ሻ]

for any function 𝑔(.). And, for any time shift 𝑘
ଵ

்
∑ 𝑔ሺ𝑍௧భା௞ ,𝑍௧మା௞ , … ,𝑍௧ഓା௞ሻ ௧ୀଵ

௔.௦.
E[𝑔ሺ𝑍௧భ ,𝑍௧మ , … ,𝑍௧ഓሻሻ]

where a.s. means almost sure convergence, a strong form of  convergence.

Ergodicity
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• Definition: A covariance-stationary process is ergodic for the mean if

 𝑧̅
   ௣  

E[𝑍௧] = 𝜇

Theorem: A sufficient condition for ergodicity for the mean: 
ρ௞ → 0   as   𝑘 ൌ 𝑡௜ െ 𝑡௝ → ∞

We need the correlation between (𝑦௧೔ ,𝑦௧ೕ) to decrease as they grow 

further apart in time.

• If  the conditions of  the Ergodic Theorem are met, we can use 𝑧 instead 
of  𝑧̿.

Ergodicity of  the Mean 

• Define the operator L as
L௞ 𝑧௧ = 𝑧௧ି௞.

• It is usually called Lag operator. But it can produce lagged or forward 
variables (for negative values of  𝑘). For example:

Lିଷ 𝑧௧ = 𝑧௧ାଷ.

• Also note that if  𝑐 is a constant  L 𝑐 = 𝑐.

• Sometimes the notation for L when working as a lag operator is B 
(backshift operator), and when working as a forward operator is F.

• Important application: Differencing
Δ 𝑧௧ = (1 െ L) 𝑧௧ = 𝑧௧ െ 𝑧௧ିଵ.
Δଶ 𝑧௧ = (1 െ L)ଶ 𝑧௧ = 𝑧௧ െ 2𝑧௧ିଵ ൅ 𝑧௧ିଶ.

Time Series – Lag Operator
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• The function  𝑓ሺ𝑥ሻ ൌ ሺ1 െ 𝑥ሻିଵ can be written as an infinite 
geometric series (use a Maclaurin series around 𝑐 =0):

𝑓 𝑥 ൌ  ଵ

ଵ ି ௫
 ൌ 1 ൅ 𝑥 ൅ 𝑥ଶ ൅ 𝑥ଷ ൅ 𝑥ସ ൅ . . .ൌ ∑ 𝑥௡ஶ

௡ୀ଴

• If  we multiply 𝑓ሺ𝑥ሻ by a constant, 𝑎:

∑ 𝑎𝑥௡ஶ
௡ୀ଴ ൌ ௔

ଵ ି ௫
→  ∑ 𝑎𝑥௡ஶ

௡ୀଵ ൌ  𝑎 ଵ

ଵ ି ௫
െ 1

Example: In Finance we have many applications of  the above results.
- A stock price, 𝑃, equals the discounted some of  all futures dividends. 
Assume dividends are constant, 𝑑, and the discount rate is 𝑟. Then:

𝑃௧ = ∑ ௗ

ሺଵ ା ௥ሻ೟
ൌ 𝑑ሺ ଵ

ଵ ି 
భ

భ శ ೝ

ஶ
௧ୀଵ െ 1) = 𝑑ሺ ଵ

భ శ ೝ షభ
భ శ ೝ

െ 1ሻ = 
ௗ

௥

where 𝑥 ൌ  ଵ

ଵ ା ௥

Time Series – Useful Result: Geometric Series

• We will use this result when, under certain conditions, we invert a lag 
polynomial (say, θሺLሻ) to convert an AR (MA) process into an infinite 
MA (AR) process.

Example: Suppose we have an MA(1) process:

𝑦௧ = 𝜇 ൅ θଵε௧ିଵ+ ε௧ = 𝜇 + θሺLሻ ε௧ – θሺLሻ = (1 ൅ θ1L)

Recall,

𝑓 𝑥 ൌ ଵ

ଵ ି ௫
ൌ 1 ൅ 𝑥 ൅ 𝑥ଶ ൅ 𝑥ଷ ൅ 𝑥ସ൅ . . .ൌ ∑ 𝑥௡ஶ

௡ୀ଴

Let 𝑥 = −θ1L. Then, assuming that 𝜃 𝐿 ିଵ is well defined,

𝜃 𝐿 ିଵ = 
ଵ

ଵ ିሺ−θ1Lሻ
ൌ 1 ൅ ሺ−θ1Lሻ ൅ ሺ−θ1Lሻଶ൅ ሺ−θ1Lሻଷ ൅ ሺ−θ1Lሻସ ൅ ...

ൌ ∑ ሺെθ1Lሻ௡
ஶ
௡ୀ଴ = 1 െ θଵL ൅ θଵ

ଶLଶ െ θଵ
ଷLଷ ൅ θ1

ସLସ ൅ ⋯ 

Time Series – Useful Result: Application 
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Example (continuation):

𝜃 𝐿 ିଵ ൌ ∑ ሺെθ1 
𝐿ሻ௡ஶ

௡ୀ଴ = 1 െ θଵL ൅ θଵ
ଶLଶ െ θଵ

ଷLଷ ൅ θ1
ସLସ ൅

⋯ 
Now, we multiply 𝜃 𝐿 ିଵon both sides of  the MA process

𝑦௧ = 𝜇 + θሺLሻ 𝜀௧.
Then,

𝜃 𝐿 ିଵ 𝑦௧ = 𝜃 𝐿 ିଵ𝜇 + 𝜃 𝐿 ିଵθሺLሻ 𝜀௧ = 𝜇* + 𝜀௧

𝜃 𝐿 ିଵ 𝑦௧ = 𝑦௧ െ θଵ  𝑦௧ିଵ൅  θଵ
ଶ 𝑦௧ିଶെ  θଵ

ଷ 𝑦௧ିଷ൅  θଵ
ସ 𝑦௧ିସ൅⋯

=  𝜇* + 𝜀௧

Then, solving for 𝑦௧:
𝑦௧ ൌ 𝜇∗ ൅ θ1𝑦௧ିଵ െ θଵ

ଶ 𝑦௧ିଶ ൅ θଵ
ଷ  𝑦௧ିଷെ θଵ

ସ  𝑦௧ିସ൅ ⋯൅ 𝜀௧

That is, we get an AR(∞)!

Time Series – Useful Result: Application 

Example (continuation):

Then, solving for 𝑦௧:
𝑦௧ ൌ 𝜇∗ ൅ θଵ𝑦௧ିଵ െ θଵ

ଶ 𝑦௧ିଶ ൅ θଵ
ଷ  𝑦௧ିଷെ θଵ

ସ  𝑦௧ିସ൅⋯൅ 𝜀௧
ൌ 𝜇∗ ൅ ଵ𝑦௧ିଵ ൅ ଶ 𝑦௧ିଶ ൅   ଷ 𝑦௧ିଷ൅  ସ 𝑦௧ିସ൅ ⋯൅ 𝜀௧

That is,  ௝  ൌ െ1 ∗ ሺെθଵሻ௝

• Now, 𝑦௧ ൌ 𝜇∗ ൅∑ 𝜋௝  𝑦௧ି௝  ஶ
௝ୀଵ ൅ 𝜀௧

We express 𝑦௧ as infinite AR process. We have an infinite sum of  
 ௜𝑦௧ି௜! To be useful for forecasting purposes, we need to make sure 
that this infinite sum is finite. 

Restriction: Make sure the  ௜’s do not explode –i.e., θଵ ൏ 1. Under  
this condition, we will call the polynomial θሺLሻ invertible. 

Time Series – Useful Result: Invertibility
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• An MA process models E௧[𝑦௧|𝐼௧ିଵ] with lagged error terms. An 
MA(𝑞) model involves 𝑞 lags. 

• We keep the white noise assumption for 𝜀௧: 𝜀௧ ~ WN(0, σ2)

Example: A linear MA(𝑞) model: 
𝑦௧ ൌ μ + θଵ 𝜀௧ିଵ + θଶ 𝜀௧ିଶ + ... + θ௤ 𝜀௧ି௤ + 𝜀௧ = 𝜇 + θሺLሻ 𝜀௧,

where
𝜃 𝐿 = 1 ൅ θଵ L ൅ θଶ Lଶ ൅ θଶ Lଷ ൅ …൅ θ௤  L௤

• In time series, the constant does not affect the properties of  AR and 
MA process. It is usually removed (think of  the data analyzed as 
demeaned). Thus, in this situation we say “without loss of  
generalization”, we assume 𝜇 = 0.

Moving Average Process  

Example: MA(1) process (𝜇 = 0):

𝑦௧ = 𝜇 ൅ θଵ 𝜀௧ିଵ + 𝜀௧ = 𝜇 + θሺLሻ 𝜀௧, with 𝜃 𝐿 = (1 + θଵL)

•  Mean 
E[𝑦௧] = 0

•  Variance

Var[𝑦௧] = γሺ0ሻ = 𝜎ଶ+ θଵ
ଶ 𝜎ଶ= 𝜎ଶ (1+ θଵ

ଶ)

•  Covariance
Cov[𝑦௧, 𝑦௧ିଵ] = γሺ1ሻ = E[𝑦௧ 𝑦௧ିଵ] 

= E[(θ1𝜀௧ିଵ + 𝜀௧)*(θଵ𝜀௧ିଶ + 𝜀௧ିଵ)] = θଵσ2 

Cov[𝑦௧, 𝑦௧ିଶ] = γሺ2ሻ = E[𝑦௧ 𝑦௧ିଶ] 
= E[(θ1𝜀௧ିଵ + 𝜀௧) * (θଵ 𝜀௧ିଷ+ 𝜀௧ିଶ)] = 0

MA Process – MA(1): Stationarity
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Example (continuation): MA(1) process:

•  Covariance
Cov[𝑦௧, 𝑦௧ିଵ] = γሺ1ሻ = E[𝑦௧ 𝑦௧ିଵ] 

= E[(θ1𝜀௧ିଵ + 𝜀௧)*(θଵ𝜀௧ିଶ + 𝜀௧ିଵ)] = θଵσ2 

Cov[𝑦௧, 𝑦௧ିଶ] = γሺ2ሻ = E[𝑦௧ 𝑦௧ିଶ] 
= E[(θ1𝜀௧ିଵ + 𝜀௧) * (θଵ 𝜀௧ିଷ+ 𝜀௧ିଶ)] = 0

⋮

γሺ𝑘ሻ = E[𝑦௧ 𝑦௧ି௞] = E[(θ1𝜀௧ିଵ+𝜀௧) * (θଵ𝜀௧ିሺ௞ାଵሻ+𝜀௧ି௞)] = 0 (for 𝑘>1)

That is, for |𝑘| > 1, γሺ𝑘ሻ = 0.

 MA(1) is always stationary –i.e., independent of  values of  θଵ.

Remark: The MA(𝑞=1) process has γሺ𝑞ሻ = 0, for 𝑞 > 1. This result  
generalizes to MA(𝑞) process: after lag q , the autocovariances are 0.

MA Process – MA(1): Stationarity

Example (continuation): To get the ACF, we divide the 
autocovariances by γ 0 . Then, the autocorrelation function (ACF):

ρ 0 ൌ γሺ0ሻ/γሺ0ሻ = 1 

ρ 1 ൌ γሺ1ሻ/γሺ0ሻ = 
θభ ఙమ

ఙమ (1 + θభమ)
= 

θభ 

 (1 + θభమ)
⋮
ρሺ𝑘ሻ ൌ γሺ𝑘ሻ/γሺ0ሻ = 0 (for 𝑘 > 1)

Remark: The autocovariance function is zero after lag 1. Similarly, the 
ACF is also zero after lag 1, that is, 𝑦௧ is correlated with itself  (𝑦௧) and 
𝑦௧ିଵ, but not 𝑦௧ିଶ, 𝑦௧ିଷ, ... Contrast this with the AR(1) model, 
where the correlation between 𝑦௧ and 𝑦௧ି௞ is never zero.

The ACF is usually shown in a plot, the autocorrelogram. When we 
plot ρ 𝑘 against 𝑘, we plot also ρ 0 which is 1.

MA(1) Process – ACF
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Example (continuation): 

ρ 1  = 
θభ 

 (1 + θభమ)
 

Note that |ρ 1 | ≤ 0.5. 

When θ1 = 0.5  ρ 1 = 0.4.

θ1 = -0.9  ρ 1 = -0.497238. 

θ1 = -2  ρ 1 = -0.4.

θ1 = 2  ρ 1 = 0.4. (same ρ 1 for θଵ & 
1

 θభ
.)

Note: Both MA(1) processes, with θଵ = 0.5 and θଵ = 2, have the same 
ACF. That is, ACFs are not unique. This is a problem: we deduce the 
order and the coefficients through the ACF, which is what we observe.

MA(1) Process – ACF

• Q: Is MA(𝑞) stationary? Check the moments (assume 𝜇 = 0).
𝑦௧ = 𝜀௧ ൅ θଵ 𝜀௧ିଵ + θଶ 𝜀௧ିଶ + ... + θ௤ 𝜀௧ି௤

•  Mean
E[𝑦௧] = E[𝜀௧] + θଵ E[𝜀௧ିଵ] + θ2 E[𝜀௧ିଶ] + ... + θ௤ E[𝜀௧ି௤] = 0

•  Variance
Var[𝑦௧] = Var[𝜀௧] + θଵ2 Var[𝜀௧ିଵ] + θଶ2 Var[𝜀௧ିଶ] + ... + θq

2Var[𝜀௧ି௤] 
= (1 + θଵ2 + θଶ2 + ... + θ௤2) σ2.

To get a positive variance, we require
(1 + θଵ2 + θ2

2 + ... + θ௤2) > 0. (always positive)
• Covariance
It can shown (check book) for the 𝑘 autocovariance:

γሺ𝑘ሻ = σ2 ∑ θ௝  θ௝ି௞
௤
௝ୀ௞ for | 𝑘 | ൑ q (where θ0 = 1)

γሺ𝑘ሻ = 0 for | 𝑘 | ൐ q

MA Process – MA(𝒒): Stationarity
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• Covariance
γሺ𝑘ሻ = σ2 ∑ θ௝  θ௝ି௞

௤
௝ୀ௞ for | 𝑘 | ൑ q (where θ0 = 1)

γሺ𝑘ሻ = 0 for | 𝑘 | ൐ q

Remark: After lag q, the autocovariances are 0.

Applying formula:

γሺ1ሻ = σ2 ∑ θ௝  θ௝ିଵ
௤
௝ୀଵ (where θ0 = 1)

= σ2 θଵ + σ2 θଶ θଵ+ σ2 θ3 θଶ + ... + σ2 
θ௤ θ௤ିଵ 

γሺ2ሻ = σ2 ∑ θ௝  θ௝ିଶ
௤
௝ୀଶ

= σ2 θଶ + σ2 θ3 θଵ + σ2 θ4 θଶ + ... + σ2 
θ௤ θ௤ିଶ

⋮

γሺ𝑞ሻ = σ2 ∑ θ௝  θ௝ି௤
௤
௝ୀ௤ = σ2 θ௤ 

MA Process – MA(𝒒): Stationarity

• The 𝑘 autocovariance:
γሺ𝑘ሻ = σ2 ∑ θ௝  θ௝ି௞

௤
௝ୀ௞ for | 𝑘 | ൑ q (where θ0 = 1)

γሺ𝑘ሻ = 0 for | 𝑘 | ൐ q

• It is easy to verify that the sums ∑ θ௝  θ௝ି௞
௤
௝ୀ௞ are finite. Then, mean, 

variance and covariance are constant. 
 MA(q) is always stationary –i.e., independent of  values of  θ௝ ’s.

• Check for MA(1): 
𝑘 = 0 γሺ0ሻ = 𝜎ଶ ∑ θ௝  θ௝ି଴

ଵ
௝ୀ଴ ൌ 𝜎ଶ(1 + θଵ

ଶ)
𝑘 = 1 γሺ1ሻ = 𝜎ଶ ∑ θ௝  θ௝ିଵ

ଵ
௝ୀଵ ൌ 𝜎ଶθଵ

𝑘 ൐ 1 γሺ𝑘ሻ = 0 

Remark: After lag q ൌ 1 , the autocovariances of  an MA(1) are 0.

MA Process – MA(𝒒): Stationarity for MA(1)
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• As mentioned above, the autocovariances are non-unique. 

Example: Two MA(1) processes that produce the same γ 𝑘 :
𝑦௧ = 𝜀௧ + 0.2 𝜀௧ିଵ, 𝜀௧ ~ i.i.d. N(0, 25)
𝑧௧ = υ௧ + 5 υ௧ିଵ, υ௧ ~ i.i.d. N(0; 1)

We only observe the time series, 𝑦௧ or 𝑧௧, and not the noise, 𝜀௧ or υ௧.
We cannot distinguish between the models using the autocovariances. 

We want to select one process to forecast: We select the model with an 
AR(∞) representation that does not explode: That is, we select the 
process that is invertible.

• Assuming 𝜃 𝐿 ≠ 1, we invert 𝜃 𝐿 : 

𝑦௧ = μ ൅  𝜃 𝐿  𝜀௧  𝜃 𝐿 ିଵ 𝑦௧ = Πሺ𝐿ሻ 𝑦௧ = μ* + 𝜀௧.
 𝑦௧ = 𝜇∗ ൅∑ 𝜋௝  𝑦௧ି௝  ஶ

௝ୀଵ ൅ 𝜀௧

MA Process – Invertibility  

• We convert an MA(q) into an AR(∞):
𝑦௧ = 𝜇∗ ൅∑ 𝜋௝  𝑦௧ି௝  ஶ

௝ୀଵ ൅ 𝜀௧

We need to make sure that Πሺ𝐿ሻ = 𝜃 𝐿 ିଵ is defined: We require 
𝜃 𝐿 ≠0. When this condition is met, we can write 𝜀௧ as a causal 
function of 𝑦௧. We say the MA is invertible. For this to hold, we require:

∑ |𝜋௝ 𝐿 |ஶ
௝ୀ଴ ൏ ∞

Technical note: An invertible MA(q) is typically required to have roots 
of  the lag polynomial equation 𝜃 𝑧 = 0 greater than one in absolute 
value (outside the unit circle). In the MA(1) case, 

𝜃 𝑧 = (1 ൅ θ1 𝑧) = 0  root: 𝑧 ൌ െ ଵ

 θభ
( |θ1|< 1)

In the previous example, we select the model with θ1 = 0.2. 

MA Process – Invertibility  
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Simulated Example: We simulate with R function arima.sim (& plot)
three MA(1) processes, with standard normal 𝜀௧ -i.e., 𝜇 = 0 & σ= 1: 

𝑦௧ = 𝜀௧ + 0.5 𝜀௧ିଵ
𝑦௧ = 𝜀௧ െ 0.9 𝜀௧ିଵ
𝑦௧ = 𝜀௧ െ 2 𝜀௧ିଵ

R script to plot 𝑦௧ = 𝜀௧ + 0.5 𝜀௧ିଵ with 200 simulations
> plot(arima.sim(list(order=c(0,0,1), ma = 0.5), n = 200), ylab="ACF",
main=(expression(MA(1)~~~theta==+.5)))

MA(1) Process: Simulations 

Simulated Example (continuation): 

Note: The process θ1 > 0 is smoother than the ones with θ1 < 0. 

MA(1) Process: Simulations 
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Simulated Example (continuation): Below, we compute and plot the 
ACF for the 3 simulated process.
1) 𝑦௧ = 𝜀௧ + 0.5 𝜀௧ିଵ
sim_ma1_5 <- arima.sim(list(order=c(0,0,1), ma = 0.5), n = 200) 
acf_ma1_5 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))
> acf_ma1_5

Autocorrelations of  series ‘sim_ma1_5’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000  0.438 0.069  0.014  0.103  0.173  0.107  0.015 -0.080 -0.054  0.011 -0.006  0.041  0.000 

14 15 16 17 18 19  20 21 22 23 
-0.094 -0.147 -0.129 -0.082 -0.150 -0.196 -0.251 -0.235 -0.021  0.110 

MA(1) Process: Simulations (ACF)

Simulated Example (continuation): 
2) 𝑦௧ = 𝜀௧ - 0.9 𝜀௧ିଵ
sim_ma1_9 <- arima.sim(list(order=c(0,0,1), ma = -0.9), n = 200) 
acf_ma1_9 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))
> acf_ma1_9

Autocorrelations of  series ‘sim_ma1_9’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000 -0.584  0.093  0.061 -0.132  0.147 -0.181  0.122 -0.013 -0.023  0.014 -0.012  0.092 -0.199  
14 15 16 17 18 19  20 21 22 23 
0.193 -0.155  0.143 -0.107  0.014  0.174 -0.244  0.196 -0.154  0.105

MA(1) Process: Simulations (ACF)
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Simulated Example (continuation):
3) 𝑦௧ = 𝜀௧ - 2 𝜀௧ିଵ
sim_ma1_2 <- arima.sim(list(order=c(0,0,1), ma = -2), n = 200) 
acf_ma1_2 <- acf(sim_ma1_2, main=(expression(MA(1)~~~theta==-2)))
> acf_ma1_2

Autocorrelations of  series ‘sim_ma1_2’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000 -0.524  0.150 -0.064  0.006 -0.014  0.022 -0.070  0.068 -0.015 -0.002  0.054 -0.121  0.055 
14 15 16 17 18 19  20 21 22 23 
-0.029  0.026 -0.054  0.121 -0.156  0.106 -0.009  0.037 -0.080  0.104 

MA(1) Process: Simulations (ACF)

Simulated Example (continuation):

– Invertibility: If  |θ1|< 1, we can write  (1 + θ1 L)-1  𝑦௧ + 𝜇* = 𝜀௧



That is, 𝜋௜ = θ1
௜ .

The simulated process with θଵ= -2 is non-invertible, the infinite sum 
of 𝜋௜ would explode. We would select the MA(1) with θଵ = -.5.

MA Process – Example: MA(1)
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• MA processes are more complicated to estimate. Consider an MA(1): 
𝑦௧ = 𝜀௧ + θ1 𝜀௧ ିଵ

We cannot do OLS, since we do not observe 𝜀௧ ିଵ. But, based on the 
ACF, we estimate θ1.

• The auto-correlation of  order one is:
ρ 1 ൌ  θ1/(1+ θ1

2) 

Then, we can use the Method of  Moments (MM), which sets the 
theoretical moment equal to the estimated sample moment ρ 1 , 𝑟ଵ. 
Then, we solve for the parameter of  interest, θ1:

• A nonlinear solution and difficult to solve.

MA Process – Estimation 

𝑟ଵ ൌ
θ෠ଵ

ሺ1 ൅ θ෠ଵ
ଶ
ሻ

 ⇒   θ෠ଵ ൌ
1 േ 1 െ 4𝑟ଵ

ଶ

2𝑟ଵ

• Alternatively, if  |θ1|< 1, we can invert the MA(1) process. Then, 
based on the AR representation, we can try finding 𝑎 ∈(-1; 1):

𝜀௧ 𝑎  = 𝑦௧ + 𝑎 𝑦௧ିଵ + aଶ 𝑦௧ିଶ + aଷ 𝑦௧ିଷ + ….

and look (numerically) for the least-square estimator

θ෠ = arg minθ {S(𝒚; θ) = ∑ ε௧ሺ𝑎ሻ்
௧ୀଵ

ଶ
ሽ

where a௧= θ1
௧ .

MA Process – Estimation 
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Autoregressive (AR) Process

• We model the conditional expectation of 𝑦௧, E௧[𝑦௧|𝐼௧ିଵ], as a 
function of its past history. We assume 𝜀௧ ~ WN(0, σ2).

• The most common models are AR models. An AR(1) model 
involves a single lag, while an AR(𝑝) model involves 𝑝 lags. Then, the 
AR(𝑝) process is given by:

𝑦௧ = 𝜇 + 𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ +... + 𝜙௣ 𝑦௧ି௣ + 𝜀௧, 𝜀௧ ~ WN.

Using the lag operator we write the AR(𝑝) process: 𝜙(L) 𝑦௧ = 𝜀௧
with 𝜙(L) = 1 െ 𝜙ଵ L െ 𝜙ଶ L2 െ …െ 𝜙௣ L

௣

• We can look at an AR(𝑝) process as a stochastic (linear) difference 
equation (SDE). We want to work with a stable 𝑦௧ process (not 
explosive).

• We analyze the stability of an AR(𝑝) process from the point of view 
of the roots of the lag polynomial. For the AR(1) process

𝜙(z) = 1 െ 𝜙1 z = 0  |z| = 
ଵ

|థ1|
> 1 

That is, the AR(1) process is stable if the root of 𝜙(z) is greater than 
one (also said as “the roots lie outside the unit circle”).

This result generalizes to AR(𝑝) process: 

Theorem

A necessary and sufficient condition for global asymptotical stability 
of a 𝑝th order deterministic difference equation with constant 
coefficients is that all roots of the associated lag polynomial equation 
𝜙(z)=0 have moduli strictly more than 1.

(For the case of real roots, moduli = “absolute values.”)

AR Process – AR(1): Stability
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• An AR(1) model: 
𝑦௧ = 𝜙1 𝑦௧ିଵ + 𝜀௧, 𝜀௧~ WN.

Recall that in a previous example, under the stationarity condition 
|𝜙1|< 1, we derived the mean, variance and auto-covariance function:

E[𝑦௧] = μ = 0 (assuming 𝜙ଵ≠ 1)

Var[𝑦௧] = γሺ0ሻ ൌ  ఙమ 
 (1 ି థభమ)

(assuming |𝜙ଵ|< 1)

γሺ𝑘ሻ = 𝜙ଵ
௞ γሺ0ሻ 

• We also derived the autocorrelations: 

ρ 𝑘 ൌ  ஓሺ௞ሻ 
ஓሺ଴ሻ

ൌ  𝜙ଵ
௞

Remark: When |𝜙ଵ|< 1, the autocorrelations do not explode as 𝑘
increases. There is an exponential decay towards zero.

AR(1) Process – Stationarity & ACF

• ACF for an AR(1) process: 

ρ 𝑘 ൌ  ஓሺ௞ሻ 
ஓሺ଴ሻ

ൌ  𝜙ଵ
௞

Then, the autocorrelogram –i.e., plot of  ρ 𝑘 against 𝑘– shows
– when    0 < 𝜙ଵ< 1  All autocorrelations are positive.
– when  1 < 𝜙ଵ< 0  The sign of  ρ 𝑘 shows an alternating 

pattern beginning with a negative value.
– when 𝜙ଵ = 1  AR(1) is non-stationary, ρ 𝑘 ൌ 1, for all 𝑘.

Present & past are always correlated!

AR(1) Process – Stationarity & ACF
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Simulated Example: We simulate (& plot) three AR(1) processes, with 
standard normal 𝜀௧ -i.e., σ = 1: 

𝑦௧ = 0.5𝑦௧ିଵ + 𝜀௧
𝑦௧ = -0.9𝑦௧ିଵ + 𝜀௧
𝑦௧ = 2𝑦௧ିଵ + 𝜀௧

R script to plot 𝑦௧ = 0.5𝑦௧ିଵ + 𝜀௧ with 200 simulations
> plot(arima.sim(list(order=c(1,0,0), ar = 0.5), n = 200), ylab="ACF",
main=(expression(AR(1)~~~phi==+.5)))

AR(1) Process – Stationarity & ACF: Simulations 

Simulated Example (continuation): 

Note: The process θ1 > 0 is smoother than the ones with θ1 < 0. The 
process with |θ1| > 1, explodes!

AR(1) Process – Stationarity & ACF: Simulations 
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Simulated Example (continuation): Below, we compute and plot the 
ACF for the two stable simulated process.

1) 𝑦௧ = 0.5𝑦௧ିଵ + 𝜀௧
sim_ar1_5 <- arima.sim(list(order=c(1,0,0), ar = 0.5), n = 200) 
acf_ar1_5 <- acf(sim_ar1_5, main=(expression(AR(1)~~~phi==+.5)))
acf_ar1_5
Autocorrelations of  series ‘sim_ma1_5’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000  0.351  0.055 -0.005 -0.054  0.002 -0.036 -0.119 -0.008 -0.099 -0.125 -0.066 -0.036 -0.023 
14 15 16 17 18 19  20 21 22 23 
-0.042  0.062  0.119  0.102  0.087  0.099  0.065  0.056  0.047  0.044 

AR(1) Process – Stationarity & ACF: Simulations 

Simulated Example (continuation): 
2) 𝑦௧ = - 0.9𝑦௧ିଵ + 𝜀௧
sim_ar1_9 <- arima.sim(list(order=c(1,0,0), ar = -0.9), n = 200) acf_ar1_9 <-
acf(sim_ar1_9, main=(expression(AR(1)~~~phi==-.9)))
> acf_ar1_9
Autocorrelations of  series ‘sim_ma1_9’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000 -0.584  0.093  0.061 -0.132  0.147 -0.181  0.122 -0.013 -0.023  0.014 -0.012  0.092 -0.199  
14 15 16 17 18 19  20 21 22 23 
0.193 -0.155  0.143 -0.107  0.014  0.174 -0.244  0.196 -0.154  0.105

AR(1) Process – Stationarity & ACF: Simulations 
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Example: A process with |𝜙1|< 1 (actually, 0.065) is the monthly 
changes in the USD/GBP exchange rate. Below we plot its 
corresponding ACF:

AR(1) Process – Stationarity & ACF: Examples

Example: Below we plot the monthly changes in the USD/GBP 
exchange rate. Stationary series do not look smooth:

AR(1) Process – Stationarity & ACF: Examples
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Example: A process with 𝜙1 ≈ 1 (actually, 0.99) is the nominal 
USD/GBP exchange rate. Below, we plot the ACF, it is not 1 all the 
time, but its decay is very slow (after 30 months, it is still .40 
correlated!): 

AR(1) Process – Stationarity & ACF: Examples

Example: Below we plot the nominal USD/GBP exchange rate.  
Stationary series look smooth, smooth enough that you can clearly 
spot trends: 

AR(1) Process – Stationarity & ACF: Examples
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Theorem: The linear AR(𝑝) process is strictly stationary and ergodic 
if  and only if the roots of 𝜙 𝐿 are |𝑧௝|>1 for all 𝑗, where |𝑧௝| is the 
modulus of  the complex number 𝑟௝ .

Note: If  one of  the 𝑧௝ ’s equals 1, (L) (& 𝑦௧) has a unit root –i.e., 
(1)=0. This is a special case of  non-stationarity.

• Recall  𝐿 ିଵ produces an infinite sum on the 𝜀௧ି௝ ’s. If  this sum 
does not explode, we say the process is stable. 

• If  the process is stable, the  𝐿 polynomial can be inverted. It is 
possible to transform the AR(𝑝) into an MA(∞). Then, we say the 
process 𝑦௧ is causal (strictly speaking, a causal function of {𝜀௧}).

AR Process – Stationarity and Ergodicity


