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CHAPTER V 
 
FORECASTING EXCHANGE RATES 
 
One of the goals of studying the behavior of exchange rates is to be able to forecast exchange rates. 
Chapters III and IV introduced the main theories used to explain the movement of exchange rates. 
These theories fail to provide a good approximation to the behavior of exchange rates. Forecasting 
exchange rates, therefore, seems to be a difficult task. 
 
This chapter analyzes and evaluates the different methods used to forecast exchange rates. This chapter 
closes with a discussion of exchange rate volatility. 
 
 
I. Forecasting Exchange Rates 
 
International transactions are usually settled in the near future. Exchange rate forecasts are necessary 
to evaluate the foreign denominated cash flows involved in international transactions. Thus, exchange 
rate forecasting is very important to evaluate the benefits and risks attached to the international 
business environment.   
 
A forecast represents an expectation about a future value or values of a variable. The expectation is 
constructed using an information set selected by the forecaster. Based on the information set used by the 
forecaster, there are two pure approaches to forecasting foreign exchange rates: 
 
(1) The fundamental approach. 
(2) The technical approach. 
 
 
1.A Fundamental Approach 
 
The fundamental approach is based on a wide range of data regarded as fundamental economic 
variables that determine exchange rates. These fundamental economic variables are taken from 
economic models. Usually included variables are GNP, consumption, trade balance, inflation rates, 
interest rates, unemployment, productivity indexes, etc. In general, the fundamental forecast is based 
on structural (equilibrium) models. These structural models are then modified to take into account 
statistical characteristics of the data and the experience of the forecasters. It is a mixture of art and 
science. (See Appendix IV.) 
 
Practitioners use structural model to generate equilibrium exchange rates. The equilibrium exchange 
rates can be used for projections or to generate trading signals. A trading signal can be generated every 
time there is a significant difference between the model-based expected or forecasted exchange rate 
and the exchange rate observed in the market. If there is a significant difference between the expected 
foreign exchange rate and the actual rate, the practitioner should decide if the difference is due to a 
mispricing or a heightened risk premium. If the practitioner decides the difference is due to mispricing, 
then a buy or sell signal is generated. 
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1.A.1 Fundamental Approach: Forecasting at Work 
 
The fundamental approach starts with a model, which produces a forecasting equation. This model 
can be based on theory, say PPP, a combination of theories or on the ad-hoc experience of a 
practitioner. Based on this first step, a forecaster collects data to estimate the forecasting equation. The 
estimated forecasting equation will be evaluated using different statistics or measures. If the forecaster 
is happy with the model, she will move to the next step, the generation of forecasts. The final step is 
the evaluation of the forecast. 
 
As mentioned above, a forecast represents an expectation about a future value or values of a variable. In 
this chapter, we will forecast a future value of the exchange rate, 𝑆௧ା். The expectation is constructed 
using an information set selected by the forecaster. The information set should be available at time t. 
The notation used for forecasts of 𝑆௧ା்is: 

Et[𝑆௧ା்], 
 

where Et[.] represent an expectation taken at time t. 
 
Each forecast has an associated forecasting error, t+T. We will define the forecasting error as: 
 

𝜀௧ା்  = 𝑆௧ା்- Et[𝑆௧ା்] 
 
The forecasting error will be used to judge the quality of the forecasts. A typical metric used for this 
purpose is the Mean Square Error or MSE. For 𝑇 =1, the MSE is defined as: 
 

MSE = [(𝜀௧ାଵ)2 + (𝜀௧ାଶ)2 + (𝜀௧ାଷ)2 + ... + (𝜀௧ାொ)2]/Q, 
 
where Q is the number of forecasts. We will say that the higher the MSE, the less accurate the 
forecasting model. 
 
There are two kinds of forecasts: in-sample and out-of-sample. The first type of forecasts works within 
the sample at hand, while the latter works outside the sample. 
 
In-sample forecasting does not attempt to forecast the future path of one or several economic variables. 
In-sample forecasting uses today's information to forecast what today's spot rates should be. That is, 
we generate a forecast within the sample (in-sample). The fitted values estimated in a regression are 
in-sample forecasts. The corresponding forecast errors are called residuals or in-sample forecasting 
errors. 
 
On the other hand, out-of-sample forecasting attempts to use today’s information to forecast the future 
behavior of exchange rates. That is, we forecast the path of exchange rates outside of our sample. In 
general, at time t, it is very unlikely that we know the inflation rate for time t+1. That is, in order to 
generate out-of-sample forecasts, it will be necessary to make some assumptions about the future 
behavior of the fundamental variables.  
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Summary: Fundamental Forecasting Steps 
 (1) Selection of Model (for example, PPP model) used to generate the forecasts. 
 (2) Collection of St, Xt (in the case of PPP, exchange rates and CPI data needed.)  
 (3) Estimation of model, if needed (regression, other methods) 
 (4) Generation of forecasts based on estimated model. Assumptions about Xt+T may be needed. 
 (5) Evaluation. Forecasts are evaluated. If forecasts are very bad, model must be changed. 
 
 
Example V.1: In-sample Forecasting Exchange Rates with PPP 
Suppose you work for a U.S. firm. You are given the following quarterly CPI series in the U.S. and in the U.K. 
from 2008:1 to 2009:3. The exchange rate in 2008:1 is equal to 1.9754 USD/GBP. You believe that this 
exchange rate, 1.5262 USD/GBP, is an equilibrium rate. Your job is to generate equilibrium exchange rates 
using PPP. In order to do this, you do quarterly in-sample forecasts of the USD/GBP exchange rate using 
relative PPP. That is,  
 

 Et[𝑠௧ାଵ] = 𝑠௧ାଵ
ி  =  

ௌ೟శభ 
ಷ

𝑺𝒕
 – 1   𝐼ௗ,௧ାଵ െ 𝐼௙,௧ାଵ 

 
The forecasted level of the exchange rate USD/GBP for next period is given by Et[St+1]=SF

t+1=: 
 Et[𝑆௧ାଵ] = 𝑺𝒕 * [1 + 𝑠௧ାଵ

ி ] = 𝑺𝒕 * [1 + (𝐼௎ௌ,௧ାଵ  – 𝐼௎௄,௧ାଵ)] 
 

Date CPI U.S. CPI U.K. Inflation 
U.S. (IUS) 

Inflation 
U.K. (IUK) 

In-Sample 
Forecast  (SF

t+1) 
Actual (St) Forecast Error 

t+1=SF
t+1-St+1 

2008.1 108.6 106.2 - -  1.9754 - 

2008.2 111.0 108.2 0.0221 0.019091 1.9813 1.9914 -0.0100 
2008.3 112.3 109.3 0.0117 0.009813 1.9951 1.7705 0.2246 
2008.4 109.1 108.4 -0.0285 -0.00795 1.7341 1.4378 0.2964 
2009.1 108.6 106.1 -0.0046 -0.02137 1.4619 1.4381 0.0237 
2009.2 109.7 106.9 0.0101 0.007279 1.4422 1.6481 -0.2059 
2009.3 110.5 107.8 0.0073 0.009033 1.6452 1.5990 0.0463 

 
Some calculations for SF

2008:2 and SF
2008:3: 

 
1. Forecast SF

2008:2. 
IUS,2008:2 = (USCPI2008:2/USCPI2008:1) - 1 = (111.0/108.6) - 1 = 0.0221. 
IUK,2008:2 = (UKCPI2008:2/UKCPI2008:1) - 1 = (108.2/106.2) - 1 = 0.0191. 
sF

2008:2 = IUS,2008:2 - IUK,2008:2 = 0.0221 - 0.0191 = 0.0030. 
SF

2008:2 = SF
2008:1 x [1 + sF

2008:2] = 1.9754 USD/GBP x [1 + (0.0030)] = 1.9813 USD/GBP. 
2008:2 = SF

2008:2-S2008:2 = 1.9813 – 1.9914 = -0.01. 
  
2. Forecast SF

2008:3. 
SF

2008:3 = S2008:2 x [1 + sF
2008:3] = 1.9914 USD/GBP x [1 + (0.0019)] = 1.9951 USD/GBP. 

2008:3 = SF
2008:3-S2008:3 = 1.9951 – 1.7705 = 0.2246.  

 
3. Evaluation of forecasts. 
MSE: [(-0.01)2 + (0.2246)2 + (0.2964)2  + .... + (0.0463)2]/6 = 0.0306 
 
Now, you can generate trading signals. According to this PPP model, the equilibrium exchange rate in 2008:2 
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should be 1.9813 USD/GBP. The market price, however, is 1.9914 USD/GBP. That is, the market is valuing 
the GBP higher than your fundamental model. Suppose you believe that the difference (1.9813-1.9914) is due 
to miss-pricing factors, then you will generate a sell GBP signal. ¶ 
 
In general, practitioners will divide the sample in two parts: a longer sample (estimation period) and 
a shorter sample (validation period). The estimation period is used to select the model and to 
estimate its parameters. Suppose we are interested in one-step-ahead forecasts. The one-step-ahead 
forecasts made in this period are in-sample forecasts, not “true forecasts.” These one-step-ahead 
forecasts are just fitted values. The corresponding forecast errors are called residuals.  
 
The data in the validation period are not used during model and parameter estimation. One-step-
ahead forecasts made in this period are “true forecasts,” often called backtests. These true forecasts 
and their error statistics are representative of errors that will be made in forecasting the future. A 
forecaster will use the results from this validation step to decide if the selected model can be used 
to generate outside the sample forecasts. 
 
Figure V.1 shows a typical partition of the sample. Suppose that today is March 2015 and a 
forecaster wants to generate monthly forecasts until January 2016. The estimation period covers 
from February 1978 to December 2009. Different models are estimated using this sample. Based on 
some statistical measures, the best model is selected. The validation period covers from January 
2010 to March 2015. This period is used to check the forecasting performance of the model. If the 
forecaster is happy with the performance of the forecasts during the validation period, then the 
forecaster will use the selected model to generate out-of-sample forecasts. 
 

Figure V.1: Estimation, Validation & Out-of-sample Periods. 
 

 
 
 
Example V.2: Out-of-sample Forecasting Exchange Rates with PPP 
Go back to Example V.1. Now, you want to generate out-of-sample forecasts. You need to make some 
assumptions about the future behavior of the inflation rate.  
(A) Naive assumption: Et[It+1] = IF

t+1 = It.   



 

 
 
 V.5 

You can generate out-of-sample forecasting by assuming that today's inflation is the best predictor for 
tomorrow's inflation. That is, Et[𝐼௧ାଵ ] = 𝐼௧ .   
 
This "naive" forecasting model leads us to a simplified version of the Relative PPP: 
 
 Et[𝑠௧ାଵ ] = 𝑠௧ାଵ

ி = (Et[𝑆௧ାଵ]/𝑆௧) – 1  𝐼ௗ,௧ െ 𝐼௙,௧  
 
With the above information we can predict S2008:3: and, then, calculate the forecast error, 2008:3: 
 
sF

2008:3 = IUS,2008:2 - IUK,2008:2 = 0.0221 - 0.0191 = 0.0030. 
SF

2008:3 = S2008:2 x [1 + sF
2008:3] = 1.9914 USD/GBP x [1 + (0.0030)] = 1.99735 USD/GBP. 

2008:3 = SF
2008:3-S2008:3 = 1.99735 – 1.7705 = 0.2269.  

  
 
(B) Autoregressive model: E[It+1] = 0 + 1 It. 
More sophisticated out-of-sample forecasts can be achieved by estimating regression models, using survey data 
on expectations of inflation, etc. For example, consider the following regression model: 
 
IUS,t = US

0 + US
1 IUS,t-1 + US.t. 

IUK,t = UK
0 + UK

1 IUK,t-1 + UK,t. 
 
This autoregressive model can be estimated using historical data, say 1978:1-2008:1. Then, we have 119 
quarterly inflation rates for both series. We estimate both equations. 
 
(1) Excel output for autoregressive model for the US. 
 

Regression Statistics     
Multiple R 0.715136     
R Square 0.51142     
Adjusted R 
Square 0.507244     
Standard Error 0.005517     
Observations 119     
      
ANOVA      

  df SS MS F 
Significance 

F 
Regression 1 0.003727 0.00373 122.469 6.48E-20 
Residual 117 0.003561 3.04E-05   
Total 118 0.007288       

      

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Intercept 0.00292 0.00082 3.55993 0.00054 0.001295 
X Variable 1 0.700106 0.063263 11.0666 6.48E-20 0.574817 
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(2) Excel output for autoregressive model for the UK. 
 

Regression Statistics     
Multiple R 0.416771     
R Square 0.173698     
Adjusted R 
Square 0.166635     
Standard Error 0.011067     
Observations 119     
      
ANOVA      

  df SS MS F 
Significance 

F 
Regression 1 0.003013 0.00301 24.5947 2.42E-06 
Residual 117 0.014331 0.00012   
Total 118 0.017344       

      

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Intercept 0.007128 0.001455 4.89963 3.12E-06 0.004247 
X Variable 1 0.414376 0.083555 4.95930 2.42E-06 0.248899 

 
 
That is, we obtain the following estimated coefficients: US

0=.00292, US
1=.7001, UK

0=.00713, and 
UK

1=.4144.  
 
First, you evaluate the regression by looking at the t-statistics and the R2. The t-statistic is used to test the null 
hypothesis that a coefficient is equal to zero. The R2 measures how much of the variability of the dependent 
variables is explained by the variability of the independent variables. That is, the R2 measures the explanatory 
power of our regression model. Both R2 coefficients are far from zero, relatively high for the U.S. inflation rate 
(51%). All coefficients have a t-stats higher than 1.96. That is, you will say that they are significant at the 5% 
level –i.e., with p-values smaller than .05. That is, all the coefficients are statistically different from zero.  
 
Second, you use the regression to forecast inflation rates. Then, you will use these inflation rate forecasts to 
forecast the exchange rate. That is,  
 
IF

US,2008:3 = .00292 + .7001 x (.0221) = .01839 
IF

UK,2008:3 = .00713 + .4144 x (.0191) = .01505 
sF

2008:3 = IF
US,2008:3 - IF

UK,2008:3 = .01839 - 01505 = .00334. 
SF

2008:3 1.9914 USD/GBP x [1 + (.00334)] = 1.99802 USD/GBP. 
2008:3 = SF

2008:3-S2008:3 = 1.99802 – 1.7705 = 0.22752. 
 
That is, you predict, over the next quarter, an appreciation of the GBP. You can use this information to manage 
currency risk at your firm. For example, if, during the next quarter, the U.S. firm you work for expects to have 
GBP outflows, you can advise management to hedge. ¶ 
 
 
Example V.3: Out-of-sample Forecasting Exchange Rates with a Structural Ad-hoc Model 
Suppose a Malaysian firm is interested in forecasting the MYR/USD exchange rate. This Malaysian firm is an 
importer of U.S. goods. A consultant believes that monthly changes in the MYR/USD exchange rate are driven 
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by the following econometric model (MYR = Malaysian Ringitt): 
 
𝑠ெ௒ோ/௎ௌ஽,௧ = α0 + α1 ሺ𝐼ெ௒ோ – 𝐼௎ௌ஽ሻ௧ + α2 ሺ𝑦ெ௒ – 𝑦௎ௌሻ௧ + 𝜀௧    (V.1) 
 
where, ሺ𝐼ெ௒ோ – 𝐼௎ௌ஽ሻ௧represents the inflation rate differential between Malaysia and the U.S., and 
ሺ𝑦ெ௒ – 𝑦௎ௌሻ௧ represents the income growth rates differential between Malaysia and the U.S. The spot rate this 
month is St=3.1021 MYR/USD. Suppose equation (V.1) is estimated using 10 years of monthly data with 
ordinary least squares (OLS). We have the following excel output: 
 

SUMMARY OUTPUT         

Regression Statistics      

Multiple R 0.092703      

R Square 0.018594      

Adjusted R Square -0.0087      

Standard Error 0.051729      

Observations 112      

         

ANOVA           

  df SS MS F Significance F 

Regression 2 0.002528 0.00126 0.47242 0.624762 

Residual 109 0.291666 0.00268    

Total 111 0.294195       

            

  Coefficients 
Standard 

Error t Stat P-value   

Intercept 0.006934 0.005175 1.3399 0.18028   

(IMYR – IUSD)t  0.215927 0.105824 2.04044 0.04131   

(yMYR – yUSD)t  0.091592 0.051676 1.77243 0.07633   
 
That is, the coefficient estimates are: a0 = 0.00693, a1 = 0.21593, and a2 = 0.09159. That is, the output from your 
OLS regression is: 
 
E[𝑠ெ௒ோ/௎ௌ஽,௧] =  0.00693   + 0.21593 ሺ𝐼ெ௒ோ – 𝐼௎ௌ஽ሻ௧  +  0.09159 ሺ𝑦ெ௒ – 𝑦௎ௌሻ௧,  R2 = .0186. 
      (1.34) (2.04)    (1.77)  
 
Let’s evaluate our ad-hoc model. The t-statistics (in parenthesis) for the two variables are all bigger than 1.65. 
Therefore, all the explanatory variables are statistically significant at the 10% level. This regression has an R2 
equal to .0186. That is, ሺ𝐼ெ௒ோ – 𝐼௎ௌ஽ሻ௧  and ሺ𝑦ெ௒ – 𝑦௎ௌሻ௧ explain less than two percent of the variability of 
changes in the MYR/USD exchange rate. This is not very high, but the t-stats give some hope for the model. 
The t-statistics (in parenthesis) for the two variables are all bigger than 1.65. Therefore, all the explanatory 
variables are statistically significant at the 10% level. The Malaysian firm decides to use this model to generate 
out-of-sample forecasts.  
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Suppose the Malaysian firm has forecasts for next month for ሺ𝐼ெ௒ோ – 𝐼௎ௌ஽ሻ௧   and ሺ𝑦ெ௒ – 𝑦௎ௌሻ௧: 3% and 2%, 
respectively. Then, 
 
sF

MYR/USD,t+one-month = 0.00693   + 0.21593  * (0.03) + 0.09159 * (0.02) = .0152. 
 
The MYR is predicted to depreciate 1.52% against the USD next month. The spot rate this month is St=3.1021 
MYR/USD, then, for next month, we predict: 
 
  𝑆௧ାଵ

ி  = 3.1021 MYR/USD (1 + .0152) = 3.1493 MYR/USD. 
 
Based on these results, the Malaysian firm, which imports goods from the U.S., decides to hedge its next month 
USD anticipated outflows. ¶ 
 
 

  Some Practical Issues in Fundamental Forecasting 
 
There are several practical issues associated with any fundamental analysis forecasting, such as the 
forecasting model of equation (V.1): 
 
(1) Correct specification. That is, are we using the "right model?" (In econometrics jargon, "correct 
specification.") 
 
(2) Estimation of the model. This is not a trivial issue. For example, in equation (V.1) we need to 
estimate the model to get a0, a1, and a2. Bad estimates of a0, a1, and a2 will produce a bad forecast for 
sMYR/USD,t+one-month. This issue sometimes is related to (1). 
 
(3) Contemporaneous variables. In a model like equation (V.1), some of the explanatory variables are 
contemporaneous. We also need a model to forecast the contemporaneous variables. For example, in 
the equation (V.1) we need a model to forecast INTt and INCt. In econometrics jargon, this is called 
simultaneous equations models.  
 
 
1.A.2 Fundamental Approach: Evidence 
 
In 1979 Richard Levich, from New York University, made a comparison of the forecasting 
performance of several models for the magazine Euromoney. Levich studied the forecasting 
performance of various services relative to the forward rate. The forward rate is a free, observable 
forecast. A good forecaster has to beat the forward rate. 
 
Let SF

j,i be the forecasting service j's forecasted exchange rate for time t=i and Si the realized exchange 
rate at time t=i. Let Ft,i denote the forward rate for time T=i. 
 
Levich compared the mean absolute error (MAE) of the forecasting service and the forward market, 
defined as 
 
 MAEFSj = { |𝑆௧ାଵ

ி   - 𝑆௧ାଵ| + |𝑆௧ାଶ
ி  - 𝑆௧ାଶ| +...+ 𝑆௧ା௡ி  - 𝑆௧ା௡| } * (1/n), 
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MAEFM = { |Ft,1 - 𝑆௧ାଵ| + ||Ft+1,2 - 𝑆௧ାଶ| +...+ ||Ft+n-1,n - 𝑆௧ା௡| } * (1/n). 
 
For the sample period 1977-1980 and for twelve major forecasting services, Levich compared the 
percentage of times the services did better than the forward market, that is MAEFS < MAEFM. The 
results were: 
 

 
Time Horizon 

% of Observations  
with MAEFS < MAEFM 

1 month 28.8% 

3 months 24.0% 

6 months 28.8% 

12 months 32.7% 

 
In terms of mean absolute error, on average the forecasting services underperformed the forward rate 
more than two-thirds of the time. Since observation of the forward rate is free and since, as mentioned 
above, the forward rate is not an unbiased forecast of the future spot rate, these results suggest that 
paying a forecasting service might not be a wise expense. However, Levich found that forecasting 
services have some ability to predict whether the future spot rate will be greater than or smaller than 
the current forward rate. For some investors the direction of the forecast maybe as important as the 
absolute or squared error. 
 
Example V.4: Suppose the current one-month forward rate is Ft,1-mo = .7335 USD/CAD and the forecast for the 
future spot rate is .7342 USD/CAD. Based on the forecasted CAD appreciation over the forward rate, Ms. 
Sternin, a U.S. speculator, decides to buy CAD forward. Suppose that the CAD appreciates to St+1-mo = .7390 
USD/CAD. The direction of the forecast (relative to the forward rate) was right, the CAD appreciated over the 
forward rate. 
 
Then the (absolute) size of the forecast error in this case is:  
 .7390 - .7342 = .0052 USD/CAD.  
Ms. Sternin would not be unhappy with the forecasting error, since she made a profit of: 
 .7390 - .7335 = .055 USD/CAD. 
 
On the other hand, suppose that the CAD depreciates to St+1-mo = .7315 USD/CAD. Now, the direction of the 
forecast (relative to the forward rate) was wrong.  
 
The (absolute) size of the error was smaller: 
 |.7315 - .7342| = .0027 USD/CAD.  
But, Ms. Sternin would have lost:  
 .7315 - .7335 = -.0020 USD/CAD.  
 
Therefore, Ms. Sternin might prefer to have a forecast that is correct in direction, and might not care about the 
MAE. ¶ 
 
In 1980, Levich tested the number of times a profit is made from taking advantage of the direction 
forecasted by some forecasting services. He found that some forecasting services were able to 
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correctly predict the direction more than 50 percent of the time. In 1982 and 1983, Levich repeated 
the same study and found that the forecasting services that performed well in 1980 were not the same 
as those that did well in the updated study. Therefore, it seems that it is very difficult to consistently 
predict the future spot rate relative to the forward rate. 
 

 Forecasting: “Que sera, sera… the future’s not ours to see” 
Forecasting exchange rates is very difficult. As mentioned above, forward rates are poor predictors of 
future spot rates. Forecasting services on average have a difficult time just beating the forward rate. 
The random walk tends to outperform the other foreign exchange rate models. Paraphrasing a popular 
American TV show from the fifties and early sixties, we can say: “Doris Day knows best.”  
 
 
 
1.B Technical Approach 
 
The technical approach (TA) focuses on a smaller subset of the available data. In general, it is based 
on price information. The analysis is "technical" in the sense that it does not rely on a fundamental 
analysis of the underlying economic determinants of exchange rates or asset prices, but only on 
extrapolations of past price trends. Technical analysis looks for the repetition of specific price patterns. 
Technical analysis is an art, not a science. 
 
Computer models attempt to detect both major trends and critical, or turning, points. These turning 
points are used to generate trading signals: buy or sell signals.  
 
The most popular TA models are simple and rely on moving averages (MA), filters, or momentum 
indicators.  
 
 
1.B.1 Technical Analysis Models 
 
1.B.1.i  MA Models 
 
The goal of a MA model is to smooth erratic daily swings of asset prices in order to signal major 
trends. A MA is simply an average of past prices. We will use the simple moving average (SMA).  
An SMA, 𝑆௧ெ஺, is the unweighted mean of the previous Q data points: 
   𝑆௧ெ஺ = (𝑆௧ + 𝑆௧ିଵ + 𝑆௧ିଶ + ... + 𝑆௧ିሺொିଵሻ)/Q 
 
If we include the most recent past prices, then we calculate a short-run MA (SRMA). If we include a 
longer series of past prices, then we calculate a long-term MA (LRMA). The double MA system uses 
two 𝑆௧ெ஺’s: a LRMA and a SRMA. A LRMA will always lag a SRMA because it gives a smaller 
weight to recent movements of exchange rates.  
 
In MA models, buy and sell signals are usually triggered when a SRMA of past rates crosses a LRMA. 
For example, if a currency is moving downward, its SRMA will be below its LRMA. When it starts 
rising again, it soon crosses its LRMA, generating a buy foreign currency signal. 
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  Sell FC  

 
Buy FC signal: When SRMA crosses LRMA from below. 
Sell FC signal: When SRMA crosses LRMA from above. 
 
 
Example V.5: Generating trading signals for the (USD/GBP) using the Double MA model. 
We generate a SRMA using 30 days of information (red line) 
We generate a LRMA using 150 days of information (green line). 
 
Every time there is a crossing, the double MA model generates a trading signal. 

 
 
The double MA model generates many trading signals, as indicated by the crossings between the SRMA 
(red line) and the LRMA (green line).  For example, there is a sell GBP signal in late 2007. By April 
2009, the model generates a buy GBP signal. ¶ 
 
 
1.B.1.ii  Filter Models 

time 

LRMA
SRM Buy FC 
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This is probably the most popular TA model. It is based on the finding that asset prices show 
significant small autocorrelations. If price increases tend to be followed by increases and price 
decreases tend to be followed by decreases, trading signals can be used to profit from this 
autocorrelation. The key of the system relies on determining when exchange rates start to show 
significant changes, as opposed to irrelevant noisy changes. Filter methods generate buy signals when 
an exchange rate rises X percent (the filter) above its most recent trough, and sell signals when it falls 
X percent below the previous peak. Again, the idea is to smooth (filter) daily fluctuations in order to 
detect lasting trends. The filter size, X, is typically between 0.5% and 2.0%. 
 
Example V.6: Determination of  Trading signals with a filter model.  
Let the filter, X, be 1%  => X= 1%.  
First, we need to determine a peak or a through. Then, we generate trading signals. 

 
Peak = 1.486 CHF/USD (X = CHF .01486)  When St crosses 1.47114 CHF/USD, Sell USD 
 
Trough = 1.349 CHF/USD (X = CHF .01349)  When St crosses 1.36249 CHF/USD, Buy USD. ¶ 
 
 
Note that there is a trade-off between the size of the filter and transaction costs. Low filter values, say 
0.5%, generate more trades than a large filter, say 2%. Thus, low filters are more expensive than large 
filters. Large filters, however, can miss the beginning of trends and then be less profitable. 
 
 
1.B.1.iii  Momentum Models 
 
Momentum models determine the strength of an asset by examining the change in velocity of the 
movements of asset prices. If an asset price climbs at significant increasing speed, a buy signal is 
issued. The trader needs to determine what constitutes “significant” increasing speed. 
 
 
1.B.1.iv Newer Models 

Trough 

Peak  

St = 1.47114 CHF/USD 

Sell USD 
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These models monitor the derivative (slope) of a time series graph. Signals are generated when the 
slope varies significantly. There is a great deal of discretionary judgement in these models. Signals 
are sensitive to alterations in the filters used, the period length used to compute MA models and the 
method used to compute rates of change in momentum. These facts can make two TA practitioners 
using the same model, but different parameters, to generate different signals.  
 
To solve this problem, there are several newer TA methods that use more complicated mathematical 
formulas to determine when to buy/sell, without the subjectivity of selecting a parameter. Clements 
(2010, Technical Analysis in FX Markets) describes four of these methods: Relative strength 
indicator (RSI), Exponentially weighted moving average (EWMA), Moving average convergence 
divergence (MACD) and (iv) Rate of change (ROC).   
 
 
1.B.2 Technical Approach: Evidence 
 
In Chapter III we presented evidence that for out-of-sample forecasts, the random walk model seems 
to be as good as any other model. Therefore, it should not be a surprise that many economists have a 
strong negative view of technical analysis forecasts. The usual argument against technical analysis is 
based on the concept of market efficiency (discussed in the Review Chapter). The efficiency argument 
says that there cannot be reliable price patterns in exchange rates. If there were reliable price patterns, 
traders would use them, and, then, by using them, traders would destroy them. The marketplace, 
however, is full of newsletters and consultants selling technical analysis forecasts and predictions.  
 
Recall that the random walk model makes the exchange rate independent of its past history. Empirical 
studies that test the efficiency of exchange rate markets usually employ simple linear regression 
analysis. John F. O. Bilson (1990) points out that linear comparisons are meaningless, since technical 
analysts rely on nonlinearities.  
 
For example, Bilson estimates the following model: 
 
  y = b1 X1 + b2 X2 + b3 X3 + u, 
 
where 
 y = (St+1 - Ft,1)/Ft,1,  realized ex-post returns on the currency, 
 X1 = (Ft,1 - St)/Ft,1,  a yield indicator (interest rate differential), 
 X2 = (St - Ft-3,1)/Ft-3,1,  a trend indicator, 
 X3 = X2 exp(|X2|/std(X2)), 
 
where Ft,1 is the one-month exchange rate forecast.. The third variable accounts for the nonlinear 
pattern of serial correlation by discounting large trend values. 
 
Bilson collected New York interbank spot and one-month forward rates, from April 1975 to April 
1991, on the three major currencies -GBP, DEM, and JPY. The estimates of the above equation are 
(t-statistics in parentheses): 
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Ŷ = -1.0041 X1    - .0939 X2     + .6009 X3. 
 (3.03)  (2.66) (5.10) 
 
All the coefficients are significantly different from zero at the 1, which shows that past information 
has some predictive power. 
 
Bilson later examined the forecast ability of the above model. Let Ŷ denote the fitted value from the 
regression estimated above. He regressed y against Ŷ, that is, 
 
yt = a + b Ŷt + t. 
 
The regression results, for the three major currencies, are given below:  
 

Currency a b R2  

GBP -.1071 
(0.41) 

1.0948 
(3.26) 

.052, 

DEM .2436 
(0.41) 

1.2637 
(3.64) 

.065, 

JPY .5911 
(0.41) 

1.4089  
(4.23) 

.085. 

 
The expected returns estimated by Bilson account for between 5% and 8% of the monthly variation in 
the ex-post realized returns on the currency. It should be noted, however, that the R2's are small. 
Therefore, one should be very careful in the interpretation of the above results. 
 
Bilson argues that these results demonstrate that the expected returns are a statistically significant 
indicator of actual returns. The relation between past trends and the present might be non-linear. His 
model predictions are entirely based on past price information. He argues in favor of technical analysis 
and non-linear filters. 
 
Many practitioners claim that technical analysis has value since it can be useful to forecast exchange 
rates, especially in the short term. They claim that, using technical analysis forecasts, profitable trading 
strategies can be constructed. In general, in-sample results tend to be good –i.e., profitable– for TA 
strategies in the FX markets. For example, an old paper by Richard Sweeney (1986), published in the 
Journal of Finance, investigates the power of technical forecasting. He finds that simple filter rules 
were able to generate excess returns during the period 1973-1980. For example, Sweeney estimated 
that a 1% filter rule generated a return of 2.8% while a buy-and-hold strategy generated a 1.6% return. 
But, the  out of sample performance of TA models is weak. LeBaron (1999) speculates that the 
apparent success of TA in the FX market is influenced by the periods where there is CB intervention. 
There is also some evidence that, even in-sample, the performance of TA models has declined over 
time. Ohlson (2004) finds that the profitability of TA strategies in the FX market have significantly 
declined over time, with about zero profits by the 1990s. 
 
In a 2007 survey, Park and Irwin (2007) published in the  Journal of Economic Surveys, review the TA 
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recent literature in different markets. They report that out of 92 modern academic papers, 58 found that 
TA strategies are profitable. Park and Irwin point out, however, many problems with most studies: data 
snooping, ex-post selection of trading rules, difficulties in the estimation of risk and transaction costs. 
 
 
 
II. Looking Ahead: Exchange Rate Volatility 
 
We have seen that exchange rates are very difficult to forecast. This difficulty makes it difficult to 
estimate the future value assets and liabilities denominated in foreign currency. In finance, uncertainty 
about the value of securities creates risk. Many financial models associate the variance of an asset 
with an asset's riskiness. Investors require higher rates of return for riskier assets. The volatility of an 
asset is also important in other fields of finance. For example, option pricing formulas use as a vital 
input an estimate for the variance.  
 
For many years, researchers assumed that the variance of asset returns was constant. The assumption 
of a constant variance is called homoscedasticity. This assumption is a common assumption in 
econometrics. For example, in the derivations of Appendix III we state that the variance of the error 
term is constant. Homoscedasticity is a convenient assumption. It simplifies the estimation of time 
series models. 
 
Variances of asset returns, however, tend to be time-varying. That is, the returns of financial assets 
are heteroscedastic over time -i.e., non-constant variance. For example, Figure V.2 plots on the first 
panel the weekly CHF/USD exchange rate and on the second panel the CHF/USD percent changes. 
There are periods where exchange rates are quite volatile, while during other periods exchange rates 
do not move very much. For example, consider the volatile 1978-1980 period with the more quiet 
2006-2007 period. It is easily observed that the assumption of a constant variance does not hold for 
the CHF/USD exchange rate. 
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FIGURE V.2 
CHF/USD Levels and Changes (January 1971-January 2010) 

 

 

 
 
 
Many researchers found the variance of asset returns to be predictable over time. The problem faced 
by researchers was to find an appropriate model that incorporated the empirical characteristic of 
financial assets returns. Robert F. Engle, in a paper published in Econometrica in 1982, introduced the 
Autoregressive Conditional Heteroskedastic (ARCH) model. This model became very popular 
because of its simplicity and intuitive appeal. Engle's ARCH(q) model is specified as: 
 
2

t = 0 + i
q i e2

t-i.       (V.2) 
 
The variance at time t depends on past conditional errors. Therefore, the variance at time t is 
predictable with the information set available at time t-1. This information set will be labeled t-1. The 
ARCH(q) model has a familiar time-series structure. If we consider the squared error, e2

t, as an 
approximation for the variance at time t, the ARCH(q) model has a similar structure than the AR(q) 
model (see Appendix V). 
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Empirical Regularities and ARCH Models 
 
Rob Engle's model incorporates an empirical fact observed in returns of financial assets: large (small) 
changes in returns are likely to be followed by large (small) changes in returns. A large shock 
yesterday (et-1 is big) tends to increase the variance today, 2

t. This phenomenon is called volatility 
clustering and it is typical of financial assets. Volatility clustering is easily observed in the second 
panel of Figure V.2. Another empirical fact that the ARCH(q) model incorporates is that the 
unconditional distribution of financial assets' returns has thicker (fatter) tails than the normal 
distribution. That is, in statistical language, the unconditional distribution is leptokurtic. 
 
Later, Tim Bollerslev, in a paper published in the Journal of Econometrics, in 1986, introduced the 
GARCH model, which generalized the ARCH model. The GARCH(q,p) model is specified as 
follows: 
 
2

t = 0 + i
q i e2

t-i + i
p ßi 2

t-i.     (V.3) 
 
Now, in equation (V.3), the variance at time t depends on past errors and past variances. It can be 
shown that the GARCH(q,p) is similar to an ARMA model.  
 
Since a variance has to be positive, the restrictions 00, i0 (i=1,...,q), and ßi0 (i=1,...,p) are usually 
imposed. If we take expectations in equation (V.3), and set E[e2

t]=E[2
t]=2, we can obtain the 

unconditional (or average) variance, 2, that is, 
 
2 = 0/(1 - i

q i - i
p ßi). 

 
For the unconditional variance to be well defined (i.e., bounded and positive), we need the following 
condition: 
 
i

q i + i
p ßi < 1. 

 
GARCH models have been successfully employed for exchange rates and other financial series at 
different frequencies: monthly, weekly, daily and intradaily. In several of these applications a useful 
regularity has emerged: in general, a GARCH(1,1) specification is able to capture the dynamics of the 
conditional variance: 
 
2

t = 0 + 1 e2
t-1 + ß1 2

t-1.      (V.4) 
 
The GARCH(1,1) model says that the current variance estimate can be calculated from the variance 
estimated last period, 2

t-1, modified by the squared error also observed last period. In the 
GARCH(1,1) the unconditional variance is well defined when 1+ß1<1. Let =1+ß1. For reasons that 
will become clear below, the parameter  is called the persistence parameter. 
 
Estimation of GARCH models is usually done using a method called maximum likelihood estimation. 
To use this method of estimation, we have to assume a distribution for the conditional errors, et. We 
will assume that et, conditional on the information set t-1, follows a normal distribution with mean 
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zero and variance 2
t. That is, et|t-1 ~ N(0,2

t). 
 
Given the GARCH structure, the estimation involves nonlinear optimization techniques. Sometimes, 
it is difficult to obtain convergence for the GARCH model. For those familiar with nonlinear 
optimization, it is well-known that initial values are very important. Many statistical packages, like 
SAS and TSP, estimate GARCH models. Once the parameters i's and ßi's are estimated, equation 
(V.3) can be used to forecast the next-period variance.  
 
Example V.5: Sietes Swiss, a Swiss company, wants estimate the volatility of the weekly CHF/USD exchange 
rate. From their experience, forecasters at Sietes Swiss know that changes in exchange rates are very difficult 
to forecast. Therefore, they use a very simple AR(1) process for the mean return. The variance is modeled using 
the popular GARCH(1,1) specification: 
 
st = [log(St) - log(St-1)]x100 = a0 + a1st-1 + eFt, et|t-1 ~ N(0,2

t).  
2

t = 0 + 1 e2
t-1 + ß1 2

t-1. 
 
Sietes Swiss using SAS estimates the above model using weekly data provided by the Federal Reserve of 
Chicago (http://www.frbchi.org). The sample starts in January 8, 1971 and ends in January 21, 2010, for a total 
of 2038 observations. 
 
The estimated model for st is given by: 
 
st = -0.055 + 0.051 st-1, 
 (0.32) (1.66)  
2

t = 0.236 + 0.092 e2
t-1 + 0.822 2

t-1,  
 (1.71) (4.00) (11.83) 
 
where t-statistics are in parenthesis. 
 
In Figure V.3 we plot the conditional volatility (squared root of the variance) over time for the CHF/USD 
exchange rate, as calculated by the estimated GARCH(1,1) model. Consistent with the visual intuition in Figure 
V.1, volatility changes over time. We observe the high volatility periods associated with the 1978-1980 

FIGURE V.3 
GARCH(1,1) CHF/USD Volatility Estimates (1/1971-1/2010) 
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Note that Sietes Swiss finds that =.955 < 1. That is, the unconditional variance, 2, is well defined. Given that 
e1048 = -0.551, and 2

2038 = 2.554, Sietes Swiss is able to forecast the variance for the week ending on January 
28, 2010 --2

2039. That is, 
 
2

1039 = 0.140 + 0.079 (-0.551)2 + 0.876 (2.554) = 2.401. ¶  
 
Multi-period variance forecasts can be easily calculated using a GARCH(1,1) model. It can be shown 
that the conditional expectation of the variance k periods ahead is given by 
 
Et[2

t+k] = (1 + ß1)k [2
t - 0/(1-1-ß1)] + 0/(1-1-ß1) = k [2

t - 2] + 2 
 
Note that if =(1+ß1)<1, as k, k0. That is, as we forecast more into the future, i.e., k, the 
forecasts converges to the unconditional variance, 2. Note that the parameter  represents the rate of 
convergence (decay) of the conditional variance towards 2.  
 
Example V.6: Suppose Cannigia Co. estimates a GARCH(1,1) model using 300 daily observations for the 
GBP/USD exchange rate. Cannigia Co. uses percentage changes of the USD/GBP exchange rates to estimate 
the GARCH model. Cannigia Co. obtains the following estimates for the variance parameters :0 = .175, 1 = 
.123, and ß1 = .847. The estimate for the conditional variance of the last observation is 2

300 = 1.959. Cannigia 
wants to forecast the variance 10 days from now.  
 
The unconditional variance is given by  
 
2 = .175/(1 - .123 - .847) = 5.833.  
 
Then, the 10-day-ahead variance forecast is: 
 
E300[2

310] = (.97)10 [ 1.959 - 5.833] + 5.833 = 2.976.  
 
That is, the volatility forecast 10 days ahead is 310 = 1.725%. ¶ 
 
Many empirical studies also find that =1+ß1 is close to one. For instance, in Example V.2, we find 
that =.955. When =1, the GARCH(1,1) model is called integrated GARCH model, or IGARCH. 
An IGARCH model does not have a well-defined 2. This formulation reduces the number of 
parameters of the conditional variance equation (V.4) to two. Therefore, (V.4) becomes 
 
2

t = 0 + 1 e2
t-1 + (1-1) 2

t-1. 
 
When a series is described by an IGARCH process, the multi-period variance forecast becomes: 
 
Et[2

t+k] = 2
t + k 0.  

 
The variance at time t affects the conditional variance forecasts into the indefinite future. Thus, today's 
shocks to the conditional variance persists forever in conditional variance forecasts. When  is close 
to one, shocks to the variance today show a high persistence in the conditional variance forecasts. That 
is, a big surprise today (big et-1) has an influence on the variance for several periods. 
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2.A J.P. Morgan's RiskMetrics Approach 
 
In October 1994, J.P. Morgan unveiled and made freely available its risk management software 
RiskMetrics (http://www.jpmorgan.com/RiskManagemet/RiskMetrics). RiskMetrics is a method that 
estimates the market risk of a portfolio, using the Value-at-Risk (VAR) approach. RiskMetrics uses a 
simple specification to model a time-varying variance: 
 
2

t = (1 - ) e2
t-1 +  2

t-1. 
 
That is, next period's variance is a weighted-average of this period's squared forecast error and this 
period's variance. The weights are given by the parameter , which is referred to as the decay factor 
and, then, should be less than one. 
 
You should note the similarity of the RiskMetrics approach with the IGARCH model, with 0=0. In 
this case,  = (1-1) = ß1. Therefore, shocks to exchange rates persist forever in variance forecasting. 
Based on convenience and experience, J.P. Morgan selected to set  equal to .94 for daily data. Ideally, 
this parameter should be estimated for every series, every day. Given the large number of series that 
J.P. Morgan uses (more than 500), RiskMetrics uses the same  for all the series. For monthly 
volatility, RiskMetrics sets =.97. 
 
Example V.7: Suppose Cannigia Co. estimates a time-varying variance using the RiskMetrics model using 300 
daily observations for the GBP/USD exchange rate. Cannigia Co. uses percentage changes of the USD/GBP 
exchange rates to estimate volatility. The estimate for the conditional variance of the last observation is 2

300 = 
1.959 and e300 = 0.663. Cannigia wants to forecast the variance tomorrow. Using RiskMetriks, Cannigia 
forecasts: 
 
E300[2

301] = (.94) 1.959 + .06 (.633)2 = 1.8655 
 
That is, the volatility forecast for tomorrow is 310 = 1.366%. ¶ 
 
 
2.B Using Forecasts of the Variance: Value-at-Risk (VaR) 
 
Value-at-Risk (VaR) provides a number, which measures the market risk exposure of a portfolio 
of a firm over a given length of time. VaR measures the maximum expected loss in a given time 
interval, within a confidence interval. Note that to calculate a VaR of a portfolio, we need to 
specify a time interval and the significance level for the confidence interval. Suppose we specify a 
day as the time interval and 5% as the significance level to calculate the VaR of a FX portfolio. 
Suppose the VaR of the FX portfolio equals to USD 10,000. This VaR amount (USD 10,000) 
represents the potential loss of the FX portfolio in about one every twenty days. 
 
Example V.8: Microsoft uses a VaR computation, within a 97.5% confidence interval, to estimate the 
maximum potential 20-day loss in the fair value of its foreign currency denominated investments and 
account receivables, interest-sensitive investments and equity securities. At the end of June 2001, Microsoft 
calculated a VaR of negligible for foreign currency instruments, USD 363 million for interest sensitive 



 

 
 
 V.21 

instruments, and USD 520 million for equity investments. ¶ 
 
 
2.B.1 Calculating a VaR 
 
Suppose that a firm has a portfolio of foreign currencies, with a value W. Let the returns, r, of this 
portfolio follow a probability distribution, with mean return of  and volatility equal to . The 
initial value of the portfolio is W0. The value of the portfolio at the end of the period is W1= W0 (1 
+ r). Now, let W* be the minimum value of the portfolio within a confidence interval c. That is, 
W*= W0(1 + r*), where r* represents the minimum return of the portfolio within a confidence 
interval.  
 
Now, we can define a measure for the mean exposure: 
 
VaR (mean) = E(W1) -W* = W0(1+) - W0(1+r*) = W0 ( - r*) 
 
Note that computing a VaR is equivalent to computing r*.  
 
We can derive the VaR using the distribution of the future values of the portfolio, f(w). Within a 
confidence interval c, we can find W* such that 

  

 
A usual assumption is to convert f(w) into a standard Normal distribution. Let’s calculate the VaR 
(mean) using a standard Normal distribution. 
 
Recall that a standard normal distribution has =0 and =1. First, we need to standardize the data. 
That is, Z = (r-)/ . 
 
Our goal is to find W*. That is, we want to find r*, which is equivalent to find - = (r*-)/. Note 
that >0. 
 

1    
 



 c f w d w d N
W

( ) ( ) ( ) ( ) ( )
*

*
   



 
 
For a one-tail 95% confidence interval,  = 1.65. For a one-tail 97.5% confidence interval,  = 
1.96. 
 
Now, we can easily find r*, for a given confidence interval: r* = - +  
 
Therefore, the VaR (mean) is equal to: 
 
VaR (mean) = W0(-r*) = W0() 
 
In general,  and  are annualized. We have to adjust these numbers to the VaR’s time interval. 
This can be done by multiplying the numbers by t, which represent the VaR’s frequency in years. 

c f w d w
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That is, VaR can be calculated by 
 
VaR (mean)  W0 t. 
 
You should notice now the usefulness of a good volatility forecast. The only variables needed to 
calculate VaRs are variances. All the other parameters are given to us. 
 
Example V.9: Suppose we want to calculate the VAR of a portfolio of foreign currencies. The value of 
the portfolio is USD 220 million. Using a GARCH model, we estimated the annualized volatility of 
changes in exchange rates as 12%. The time interval is ten days (t=10/252=.03968). We want to use a 
95% confidence interval. 
 
VaR (mean) = W0t. = USD 220Mx1.65x0.12x.03968 = USD 8,677,082. 
 
That is, the maximum one-day loss of this portfolio is USD 8,677,082. ¶ 
 
 
It is possible to calculate a VaR without calculating variances. One way to do this is to use the 
empirical distribution. That is, we can find W*, such that, p = P(wW*) = 1-c. Thus, we can 
calculate W* by looking at the histogram (empirical distribution). We can locate W* from the past 
history. For example, if we use a 95% confidence interval, W* is the value in the histogram that 
leaves 5% of the observations to the left. 
 
Example V.10: Suppose we have managed the same portfolio for two years and we have recorded the value 
of the portfolio at the end of each day. That is, we have roughly 500 observations. If we use a 95% confidence 
interval, W* is calculated by looking at the 25th (500x.05) ordered observation, which is equal to USD -6.1M. 
The mean of the daily value of the portfolio is USD 3.2M. Thus, the daily VAR is:  
 
VaR (mean) = E(W1) -W* = USD 3.2M - (-USD 6.1M) = USD 9.3M. ¶ 
 
 
Interesting readings: 
 
Parts of Chapter V were based on the following books: 
 
International Financial Markets, by J. Orlin Grabbe, published by McGraw-Hill. 
 
International Investments, by Bruno Solnik, published by Addison Wesley. 
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APPENDIX V-A 
 
BASIC FORECASTING MODELS 
 
A.I Forecasting from Econometric Models 
 
The econometric approach to forecasting consists first of formulating an econometric model that 
relates a dependent variable to a number of independent variables that are expected to affect it. The 
model is then estimated and used to obtain conditional or unconditional forecasts of the dependent 
variable. The models are generally formulated using economic theory and the statistical properties of 
the variables included in the model. 
 
Example A.V.1: In Example V.3, a company believes that monthly changes in the MYR/USD exchange rate 
are related to the interest rates differential between Malaysia and the U.S. (INTt) and income growth rates 
differential (INCt) between Malaysia and the U.S. That is, the econometric model is given by: 
 
sMYR/USD,t,one-month = a0 +  INTt +  INCt + t, (A.1) 
 
where t is a prediction error assumed to follow a normal distribution with zero mean and constant variance, 2. 
 
The IFE predicts that INTt should have a positive coefficient. That is, if Malayan interst rates increase relative 
to U.S. interest rates, then the MYR should depreciate with respect to the USD (i.e.,  should be positive). 
Similarly, the Asset Approach predicts that INCt should have a negative coefficient. That is, if income grows 
in Malaysia at a faster rate than in the U.S., the MYR should appreciate with respect to the USD (i.e.,  should 
be negative). ¶ 
 
Several economic series seem to show seasonal effects. For example, many researchers have found a 
Monday effect in the U.S. stock market. Since these seasonal effects are predictable, many forecasters 
include seasonal variables in an econometric model like equation (A.1). 
 
Example A.V.2: In Example A.V.1 a forecaster might like to introduce monthly seasonal variables to predict 
the monthly change in the MYR/USD. In this case, equation (A.1) would include eleven monthly dummy 
variables.  
 
sMYR/USD,t,one-month = a0 +  INTt +  INCt + Jan DJan + ... +  Nov DNov +t, 
 
where  
 
Di = 1   if t=i,   i= Jan,..., Nov. 
 = 0  otherwise. ¶ 
 
 
A.II Forecasting from Time Series Models 
 
Econometric models are generally based on some underlying economic model. A popular alternative 
to econometric models, especially for short-run forecasting is known as time series models. These 
models typically relate a dependent variable to its past and to random errors that may be serially 
correlated. 
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Time series models are generally not based on any underlying economic behavior. 
 
A powerful time series model is the ARMA (Autoregressive Moving Average) process. The basic 
idea is that the series st at time t is affected by past values of st in a predictable manner. A general 
ARMA(p,q) can be written as: 
 
st = 0 + 1 st-1 + ... + p st-q + ß1 t-1 + ... + ßp t-q + t, (A.2) 
 
where t is the prediction error at time t assumed to have a constant variance 2. The terms with the 
's coefficients are the moving average terms. The terms with the ß's coefficients are the moving 
average terms. 
 
In order for the ARMA model in (A.2) to have nice properties -i.e., to be stationary-, we need to check 
that the roots of the polinomial 
 
1 - (1 z + 2 z2 + ... + p zp) = 0 
 
lie outside the unit circle. In general, this requires that |I| < 1. 
 
 
The prediction error, t, is just the difference between the realization of st and the prediction of st using 
the ARMA(p,q) model.  
 
Example A.V.3: Suppose we estimate equation (A.2) and we obtain 
 
sp

t = a0 + a1 st-1 + ... + ap st-q + b1 t-1 + ... + bp t-q, 
 
where sp

t is the predicted change in st, the ai's are the estimated i's coefficients, and the bi's are the estimated 
ßi's coefficients. Then,  
 
t = st - sp

t. ¶ 
 
Note: Suppose that st represents changes in the MYR/USD exchange rate. According to (A.2), the past 
p changes in the MYR/USD exchange rate affect today's change in the MRY/USD exchange rate. 
Also, the past q prediction errors affect today's change in the MYR/USD exchange rate. 
 
The key component of the ARMA model is to determine q and p. Several statistical packages provide 
identification tools to determine q and p. Many forecasters prefer to work with simpler AR(p) models. 
In this case, to determine p, a simple rule of thumb can be followed: start with an AR(1) model and 
add terms until the added terms are not statistically significant. 
 
 
A.III Forecasting Using a Combination of Methods 
 
Many forecasters use a combination of the methods described in A.I and A.II. The dependent variable 
might depend on theoretical grounds on a set of independent variables. On empirical grounds it has 
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been found that the dependent variable shows a high degree of autocorrelation. Although this 
autocorrelation is not present in the economic model, an economist might combine an economic model 
with an ARMA model to produce a better forecast. 
 
Example A.V.4: Suppose a forecaster believes that changes in the monthly MYR/USD exchange rate are 
determined by the IFE. She also has found that an ARMA(1,1) helps to predict future changes in exchange 
rates. She decides to use the following forecasting model: 
 
sMYR/USD,t,one-month = 0 +  INTt + 1 st-1 + ß1 t-1 + t, 
 
where t is a prediction error with a constant variance, 2. ¶ 
 
 
A.IV Stationarity and Trends in Macroeconomic and Financial Data 
 
In the previous sections, we have implicitly assumed that the dependent variable and independent 
variables are stationary. Roughly speaking, stationarity implies that the unconditional moments of a 
time series are independent of time. That is, they are constant. 
 
Example A.V.5: the process for Yt is said to be weakly stationary if: 
 
E[Yt] =        for all t 
E[(Yt-) (Yt-j-)]  = 2    for j = 0 
   = 0     for j  0. ¶ 
 
The assumption of stationarity might not be appropriate for many of the economic and financial series 
used in practice. Several economic and financial series show clear trends: GDP, Consumption, CPI 
prices, stock prices, exchange rates, etc. For example, in Figure V.2, the CHF/USD shows a clear, 
predictable positive trend. This trend should be incorporated into any forecasting model.  
 
There are two ways to achieve stationarity for these non-stationary series. The idea is to incorporate 
this trend in the model: (1) a deterministic time trend and (2) stochastic trend. The first model, also 
referred as trend-stationary, includes a deterministic time trend. The second model, also referred as a 
unit root process, uses first differences instead of levels. 
 
Example A.V.6: Suppose yt is a non-stationary series. 
(A) Trend-stationary process. 
yt =  +  t + t,  
 
where t is a stationary error. 
 
(B) Unit Root process. 
yt - yt-1 =  + t,  
  
where t is a stationary error. This simple process is called a random walk with drift .  
 
We should note that this unit root process can be written in an AR(1) form: 
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yt = 1 yt-1 +  + t,  
 
where 1=1. ¶ 
 
Both processes have different implications. If the series yt follows a trend-stationary process, a shock 
has a temporary effect on the series, and the series eventually catches up with its trend. On the other 
hand, if yt follows a unit root process, a shock might have permanent consequences for the level of 
future yt's. 
 
There are several tests to check if a series has a unit root. These tests usually find a unit root on all 
major macroeconomic data. Of particular interest to us, exchange rates, GNP, money supply, and price 
levels have unit roots. Therefore, it is highly advisable to estimate models for these series in first 
differences. 
 
It is common to take logs of the data before using it (see the Appendix of the Review Chapter). For 
small changes, the first difference of the log of a variable is approximately the same as the percentage 
change in the variable: 
 
log(yt) - log(yt-1) = log(yt/yt-1) = log[1 + (yt-yt-1)/yt]  (yt-yt-1)/yt, 
 
where we have used the fact that for z close to zero, log(1+z)  z. It is usually convenient to multiply 
log(yt) by 100. Thus, the changes are measured in units of percentage change. 
 
We should notice, however, that several economists claim that unit root tests are not very revealing. 
These economists claim that in finite samples -like the ones available to us- it is very difficult to 
distinguish between models with a unit root -i.e., 1=1- and stationary models with 1 very close to 1.  
 
 
 
 
Interesting readings: 
 
Appendix V is based on Introductory Econometrics with Applications, by Ramu Ramanathan, 
published by Harcourt Brace Jovanovich. 
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Appendix V-B: Taylor Rules 
According to the Taylor rule, the CB raises the target for the short-term interest rate, it, if: 
(1) inflation, It, raises above its desired level 
(2) output, yt, is above “potential” output 
 
The target level of inflation is positive (deflation is thought to be worse than positive inflation for the economy) 
The target level of the output deviation is 0, since output cannot permanently exceed “potential output.” 
 
John Taylor (1993) assumed the following reaction function by the CB: 
 
it = It + φ ( It - It

*
 )+ γ y-gapt + r*   (Equation BC.1) 

 
where y-gapt is the output gap –a percent deviation of actual real GDP from an estimate of its potential level-, and 
r* is the equilibrium level or the real interest rate, which Taylor assumes equal to 2%. The coefficients φ and γ are 
weights, which can be estimated (though, Taylor assumes them equal to .5). 
 
Let It

*
  and r* in equation BC.1 be combined into one constant term, μ = r* - φ It

*. Then, 
 
it = μ + λ It + γ y-gapt, 
 
where λ = 1 + φ. 
 
For many countries, whose CB monitors St closely, the Taylor rule is expanded to include the real exchange rate, 
Rt: 
 
it = μ + λ It + γ y-gapt + δ Rt 
 
Estimating this equation for the US and a foreign country can give us a forecast for the interest rate differential, 
which can be used to forecast exchange rates. 
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Exercises: 
 
1.- Go back to Example V.2. 
 
i. Take the autoregressive forecasting model, estimated above. What is SF

1997:4?  
ii. Calculate the same forecast using the "naive" model.  
iii. Compare both forecasts with the in-sample PPP forecast. 
 
2.- You work for a Tunisian investment bank. You have available the following quarterly interest rate 
series in the U.S., iUSD, and in Tunisia, iTND, from 1998:4 to 1999:3 (TND=Tunisian Dinar). The 
TND/USD in 1998:4 is equal to 1.1646. Your job is to do quarterly out-of-sample forecasts of 
TND/USD exchange rate for the period 1999:2 1999:3, using the linear approximation to the 
International Fisher Effect (IFE).  
 

Date Tunisia U.S. Quarterly Forecast 
(SF) 

1998:4 .0590 .0621 1.1646 

1999:1 .0593 .0635  

1999:2 .0595 .0680  

1999:3 .0599 .0714  

 
i. Generate one-step-ahead forecasts –that is, as new information arrives, a new next period forecast 
is generated- for the period 1999:1-1999:4.  
 
ii. Your firm uses the following forecasting regression model to forecast interest rates. Use a regression 
analysis. 
 
iUSD,t = .0075 + .93 iUSD,t-1 + t. 
iTND,t = .0060 + .97 iTND,t-1 + t. 
 
Generate out-of-sample forecasts for the period 1999:1-1999:4. 
 
3.- Given that firms cannot forecast exchange rates, should they worry about currency risk? 
 
4.- J. Cruyff, a Dutch designer company, wants estimate the monthly volatility of the weekly 
EUR/USD exchange rate. They use the following AR(1)-GARCH(1,1) model: 
 
st = [log(St) - log(St-1)]x100 = a0 + a1st-1 + eFt,  et|t-1 ~ N(0,2

t). 
2

t = 0 + 1 e2
t-1 + ß1 2

t-1 +  e2
t-1 Dt, 

 
where Dt is the following dummy variable: 
 
Dt = 0 if et-1  ≥ 0 
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Dt = 1 if et-1 < 0. 
 
This GARCH model is an asymmetric model. Negative shocks increase the variance more than 
positive shocks. The persistence parameter should be redefined. That is, =[1+ß1+(1/2)]. 
 
Using data from January 1974 till August 1997, the "quants" at J. Cruyff estimated the model for st: 
 
st = 0.178 + 0.064 st-1, 
 (0.90) (1.51)  
2

t = 0.222 + 0.035 e2
t-1 + 0.860 2

t-1  + 0.123e2
t-1 Dt.  

 (2.09) (2.48) (12.44) (0.04) 
 
(a) Find  and calculate the unconditional variance, 2. Is it well defined? 
(b) Given that eAug 97 = -1.073, and 2

Aug 97 = 7.436, forecast the variance for September 1997. 
(c) Forecast the variance for August 1998. 
 
5.- You want to calculate the VAR of a position in EUR. The value of your position is USD 50 
million. You estimated the volatility of changes in the USD/EUR exchange rates as 22%. The time 
interval is seven days. You use a 99% confidence interval to calculate VAR. 
 


