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We’ve seen that the Greeks are important to market participants. We’ve

also seen that two of the most important Greeks–Delta and Gamma–fall right

out of finite difference algorithms. Things aren’t quite so nice with Monte

Carlo.

One way to estimate Delta is merely to estimate the option value using

MC with two slightly different initial prices, e.g., S0 = 50 and S0 = 50.01,

taking the difference between the estimates, and then dividing through by

the assumed price difference (.01 in this example). (Use the same set of

random numbers in each simulation.) This tends to be relatively inaccurate,

however, because it blows up errors (because you are dividing errors by a

small number).

There are two better alternatives. The first is path-wise estimation. Note

that for a non-path dependent derivative, MC estimates

V (S0) = Ẽe−r(T−t)f(ST )

so

∆ =
∂V

∂S0
= Ẽe−r(T−t)

∂f

∂ST

∂ST

∂S0
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Consider a European call. Here f(ST ) = max[ST −K, 0], so

∂f

∂ST
= e−r(T−t)1ST≥K

Recall:

ST = S0e
(r−.5σ2)(T−t)+σ

√
T−tZ

where Z is our normal variate. Thus,

∂ST

∂S0
= e(r−.5σ2)(T−t)+σ

√
T−tZ =

ST

S0

Thus, when running MC simulations, to calculate ∆ also calculate:

∆̃ =
1

N
e−r(T−t)

N
∑

i=1

1ST(Zi)≥K

ST (Zi)

S0

This method can also be applied to path dependent options. Consider an

Asian option with a payoff dependent on the average price S̄ =
∑m
j=1 S(tj).

Here:
∂f

∂ST
= e−r(T−t)1S̄≥K

Further:
∂S(tj)

∂S0
=
S(tj)

S0

implying:
∂VAsian

∂S0
= e−r(T−t)1S̄≥K

m
∑

j=1

S(tj)

S0

Thus:

∆̃Asian =
1

N
e−r(T−t)

N
∑

i=1

1S̄i≥K

m
∑

j=1

Si(tj)

S0

where Si(tj) is the simulated price at tj on simulation run i.

The second method is the Likelihood Ratio Method. Note that for a

non-path dependent claim:

V (S0) = e−r(T−t)
∫ ∞

0
f(ST )

e−.5ψ
2(ST )

STσ
√

2Π(T − t)
dST
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where:

ψ(ST ) =
ln(ST

S0

) − (r − .5σ2)(T − t)

σ
√

(T − t)

Denote:

g(ST ) =
e−.5ψ

2(ST )

STσ
√

2Π(T − t)

and

g′(ST ) =
∂g(ST )

∂S0

and note:
∂V (S0)

∂S0
= e−r(T−t)

∫ ∞

0
f(ST )

g′(ST )

g(ST )
g(ST )dST

Further:

g′(ST ) = −ψ(ST)
∂ψ

∂S0

e−.5ψ
2(ST )

σ
√

2Π(T − t)

Thus:

g′(ST )

g(ST )
= −ψ(ST )

∂ψ

∂S0
=

ln(ST

S0

) − (r − .5σ2)(T − t)

S0σ2(T − t)

Further, note that
ln(ST

S0

) − (r − .5σ2)(T − t)

σ
√

(T − t)

is a standard normal variate (Z, say), so:

g′(ST )

g(ST )
=

Z

S0σ
√

(T − t)

Recalling that for a call (as an example) f(ST ) = max[ST (Z)−K, 0], this

all implies:

∂V (S0)

∂S0
= e−r(T−t)

∫ ∞

0
max[ST (Z) −K, 0]

Z

S0σ
√

(T − t)

e−.5Z
2

√
2Π

dZ
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This implies an estimate of Delta:

∆̃ =
1

N
e−r(T−t)

N
∑

i=1

max[ST (Zi) −K, 0]
Zi

S0σ
√

(T − t)

For path dependent options, things are only slightly more complicated

when you recognize that:

g(S1, S2, . . . ST |S0) = g(S1|S0)g(S2|S1) . . . g(ST |ST−1)

where each of these conditional distributions is lognormal. Note that only

g(S1|S0) depends on S0, so:

∂g(S1, S2, . . . ST |S0)

∂S0

1

g(S1, . . . ST |S0)
=
∂g(S1|S0)

∂S0

1

g(S1|S0)
=

Z(1)

S0σ
√

(t1 − t0)

where the last equality can be derived the same way as we did above, and

here Z(1) refers to the random variable for the period t1 − t0. Thus:

∆̃Asian =
1

N
e−r(T−t)

N
∑

i=1

max[S̄(Zi) −K, 0]
Zi(1)

S0σ
√

(T − t)

where Zi is the vector of shocks on simulation run i (i.e., [Zi(1), Zi(2), . . . Zi(T )]).

4


