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 Basics of Forwards and Futures 
 

A forward contract is an agreement between a buyer and a seller to 
transfer ownership of some asset or commodity (“the underlying”) 
at an agreed upon price at an agreed upon date in the future. 
 
A forward contract is a promise to engage in a transaction at some 
later date. 
 
The forward contract specifies the characteristics of the 
underlying.  For example, for a commodity, it specifies the type of 
commodity (e.g., silver), the quality of the commodity (e.g., 99.9 
percent pure silver), the location of delivery, the time of delivery, 
and the quantity to be delivered.   
 
The primary use of a forward contract is to lock in the price at 
which one buys or sells a particular good in the future.  This 
implies that the contract can be utilized to manage price risk. 
 
Most forward contracts are traded in the “over the counter” (OTC) 
market.   
 
Some forward contracts are traded on organized exchanges such as 
the Chicago Board of Trade or the New York Mercantile 
Exchange.  These exchange traded contracts are called “futures 
contracts.” 
 
Forward contracts traded OTC can be customized to suit the needs 
of the transacting parties.  Exchange traded contracts are 
standardized.  This enhances liquidity.   
 
Performance on futures contracts are guaranteed by third parties 
(brokers and the clearinghouse.)  Performance on OTC forwards is 
not guaranteed.  The quality of the contractual promise is only as 
reliable as the firm making it.   
 



Forwards and futures are traded on a wide variety of commodities 
and financial assets. 
 
Commodity futures and forwards are traded on agricultural 
products (corn, soybeans, wheat, cattle, hogs, pork bellies); 
precious metals (silver, gold, platinum, palladium); industrial 
metals (copper, lead, zinc, aluminum, tin, nickel); forest products 
(lumber and pulp); and energy products (crude oil, gasoline, 
heating oil, natural gas, electricity). 
 
Financial futures and forwards are traded on stock indices (S&P 
500, Dow Jones Industrials, foreign indices); government bonds 
(US Treasury bonds, US Treasury notes, foreign government 
bonds); and interest rates (Eurodollars, EuroEuros). 
 
More recently, forward/futures trading has begun on weather and 
credit risk.  These are (no pun intended) the hottest areas in 
derivatives development. 
 



 
The Uses of Derivative Markets 

• Derivatives markets serve to shift risk. 

• Hedgers use derivatives to reduce risk exposure.  For 
instance, a refiner can lock in costs and revenues by buying 
crude oil futures and selling oil and gasoline futures. 

• Speculators use derivatives to increase risk exposure in the 
anticipation of making a profit. 

• Thus, derivatives markets facilitate the shifting of risk from 
those who bear it at a high cost (the risk averse) to those who 
bear it at a low cost (the risk tolerant). 

• Speculators perform a valuable service by absorbing risk 
from hedgers.  In return, they receive a reward—a risk 
premium.  The risk premium is the expected profit on a 
derivatives transaction.  Speculators may win or lose in any 
given trade, but on average speculators expect to profit. 

• The risk premium is also the cost of hedging.   





Commodity Derivatives: Precious Metals 
 

Cash and Carry Arbitrage  
 

Call St the spot price of a commodity (silver, for instance) at time 

t.  Moreover, Ft T,  is the futures price at t for delivery at time T, r is 
the riskless interest rate between time t and T, and s is the cost of 
storage between t and T.  Assume that there is no benefit of 
holding inventories of the commodity (i.e., the rental/lease rate is 
zero).  Consider the following set of transactions.  Buy the spot 
commodity at t, store it until T.  Finance this purchase and storage 
with borrowing.  Sell the futures contract for delivery at T.  
Consider the cash flows from these transactions at dates t and T.   
 
 
TRANSACTION  Date t  Date T 
 
Buy spot    −S

t
   S

T
 

 

Borrow    S s
t
+  − +−e S sr T t

t
( )[ ] 

 
Sell Futures   0   F S

t T T,
−  

 
Pay storage   -s   0   

Net Cash Flows   0  F e S st T
r T t

t,
( )[ ]− +−  



 
All of the prices that determine net cash flows at T are known and 
fixed as of t.  Therefore, this transaction is riskless.  Since this 
transaction involves zero investment at t, in order to avoid the 
existence of an arbitrage opportunity it must be the case that the 
cash flows at T are identically 0.  Therefore, in order to prevent 
arbitrage, the following relation between spot and futures prices, 
interest rates, and storage charges must hold at t: 
 

    F e S st T
r T t

t,
( )[ ]= +−  



Reverse Cash and Carry Arbitrage 
 
Cash and carry arbitrage involves buying the spot, borrowing 
money, and selling futures.  Reverse cash and carry arbitrage 
involves selling the spot short, investing the proceeds, and buying 
futures.  In order to short sell the spot asset, an investor borrows 
the asset and sells it on the spot market.  The asset borrower must 
purchase the asset at T in order to return it to the lender.  The cash 
flows from this transaction are: 
 
TRANSACTION  Date t  Date T 
 
Sell spot    S s

t
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Note that this implies the same arbitrage relation as cash and carry 
arbitrage.   
 
Note: This analysis assumes that the arbitrageur holds inventories 
of the commodity.  If he doesn’t, he does not save on storage 
charges by selling the commodity.  This drives a wedge (equal to 
the cost of storage) between the cash-and-carry and reverse-cash-
and-carry arbitrage restrictions. 
 



Implied Repo Rates 
 
Arbitrage restrictions define relations between spot and futures 
prices and interest rates that must hold in order to prevent traders 
from earning riskless profits with no investment.  Since there are 
many futures markets, in order to identify arbitrage opportunities 
in several markets simultaneously, it is convenient to convert spot-
futures price relations into a common variable.  Since for a given 
trader the same interest rate should apply to any arbitrage 
transaction, regardless of whether the transaction is in gold, silver, 
Treasury bonds or corn, the obvious common variable is an interest 
rate.  Therefore, traders use spot and futures price to calculate an 
implied interest rate.  This is commonly called the implied 
repurchase ("repo") rate, because the repo rate represents the rate at 
which most large traders can borrow or lend. 
 
To calculate an implied repo rate, take natural logarithms of the 
basic arbitrage expression.  This implies: 
 
   ln ( ) ln[ ],F r T t S st T t= − + +  
 
Simplifying this expression, and recognizing that the difference 
between two logs equals the log of their ratio, produces: 
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This is the interest rate implied by spot and futures prices.  If this 
implied repo rate is lower than the actual repo rate at which a 
trader can borrow/lend, the trader can borrow cheaply through the 
futures market, and lend through the repo market.  Conversely, if 
the implied repo rate exceeds the rate at which the trader can 
borrow/lend through the money market, he should lend through the 
futures market and borrow through the repo market.  Moreover, by 
comparing implied repo rates from futures on different 
commodities (e.g., gold vs. S&P 500) a trader can identify cheap 
borrowing and rich lending opportunities. 



The Pricing of Energy and Industrial Metal Futures: 
Spread Relations 

  
Precious metal futures are pretty straightforward.  Usually they sell 
at near full carry (i.e., in contango).  Lease rates are typically 
small, and there is an active market for leasing precious metal 
inventories.   
 
Pricing energy and industrial metal futures is a little more 
complicated.  In particular, the relations between spot and futures 
prices, and between nearby and deferred futures prices are much 
more complex than is the case with precious metals. 
 
For example, sometimes oil, heating oil, or copper trade at nearly 
full carry.  Other times, the futures prices are far below spot prices-
-that is, the market is in “backwardation.”  Moreover, the market 
can move from contango to backwardation to contango very 
quickly.   
 
This raises the question: what determines the spreads between 
futures and spot prices for energy products and industrial metals? 
 
The so-called “theory of storage” provides the answer to this 
question.  In essence, this theory states that futures prices serve to 
ensure that consumption of these commodities is distributed 
efficiently over time.   
 



Consider two situations: 
 
Case 1.  Supplies of the commodity (e.g., copper) are abundant.  
Delivery warehouses are full.  Producers are operating with excess 
capacity.   
 Under these conditions, it makes sense to store some of the 
commodity.  Abundant supplies are on hand, and to consume them 
all would glut the market today, and perhaps leave us exposed to a 
shortage in the future. 
 Traders will store the commodity (i.e., hold inventories) if 
and only if this is profitable.  By storing (rather than selling) the 
commodity, the trader gives up the spot price (which he could 
capture by selling the commodity), and incurs interest and 
warehousing expenses.  Storage is profitable only if 
futures/forward prices are above the spot price by the costs of 
interest and storage.  That is, storage is profitable only if the 
market is at a carry/contango.  If stores are huge, the market must 
be at full carry. 
 
Case 2.  Current supplies are very scarce relative to expected 
future production and supplies.  That is, there is a temporary 
shortage.  Producers are operating at or near capacity. 
 In these circumstances, it is foolish to store the commodity--
it is scarce today relative to expected future supplies.  Therefore, 
we should consume available supplies and hold close to zero 
inventories.  (This exhaustion of inventories is sometimes called a 
“stock-out.”)   
 Since the commodity is scarce today relative to what we 
expect in the future, the current spot price may be above the 
forward price.  That is, the spot price must rise as high as 
necessary to ration the limited supplies.  Moreover, there is no 
need to reward storage.  Therefore, the market need not exhibit a 
carry.  Thus, backwardation is possible.



 
There are some implications of this analysis: 
 
Implication 1. The spread between spot and futures prices, 
adjusted for carrying costs, should depend upon the stocks held in 
inventory.   When stocks are low, the market should be in 
backwardation; when stocks are high, the market should be at 
nearly full carry. 
 
The industrial metals markets illustrate this clearly. 
 
The theory also has implications for the volatility of prices, and the 
correlation between spot and forward/future prices.  This is of 
great importance in risk management and option pricing 
applications. 
 
Implication 2. When stocks are short prices should be more 
volatile.  For those who are familiar with supply and demand 
analysis, a shortage implies that the supply curve is inelastic, i.e., 
steep.  The steeper the supply curve, the more volatile spot prices.  
Since shortages are associated with backwardation, we expect very 
volatile prices in an inverted market (i.e., a market with 
backwardation), and less volatile prices when the market shows a 
carry.  
 



Implication 3. Again calling upon supply and demand analysis, 
we know that short run supply curves are less elastic than long run 
supply curves.  This implies that spot prices should be more 
volatile than forward/futures prices.  Moreover, the difference in 
short run and long run supply elasticities should be greatest, the 
shorter are supplies today.  Thus, the difference between spot 
volatility and forward volatility should rise as the market moves 
towards backwardation.  Furthermore, this difference should be 
greater, the longer the time to delivery on the deferred contract. 
 
Implication 4. When a stockout occurs, the cash-and-carry 
arbitrage link between spot and forward prices is broken.   Under 
these conditions, spot and forward prices can move independently.  
When stocks are abundant, arbitrage ensures that spot and futures 
prices move together--the futures-spot spread equals the cost of 
carry.  Thus, spot and forward/futures prices should be highly 
correlated when the market is at a carry, but may exhibit very low 
correlation when the market is in backwardation.  Moreover, since 
a stockout is more likely, the longer the time to expiration of the 
deferred forward, the correlation between spot and forward/future 
prices should be lower, the greater the maturity of the 
forward/future.  
 



Squeezes, Hugs, and Corners 
 
Another factor which affects spot-futures spreads is a 
manipulation.  A manipulation--sometimes referred to as a squeeze 
or corner, or a “hug” for a mild manipulation--occurs when a 
single trader accumulates a long futures/forward position that is 
larger than the physical supplies that can be delivered 
economically against these contracts.  Rather than incur large costs 
to acquire deliverable supplies, as contract expiration approaches 
shorts are willing to buy back their contracts from the long at a 
premium.  
 
This causes a unique pattern in prices.  The price of the expiring 
future/forward that is being cornered rises--sometimes 
precipitously--relative to the deferred futures/forward price.  Since 
the expiring future/forward and the spot price must converge 
during the delivery period, this means that the spot price rises 
relative to the deferred forward/future too.  As soon as shorts close 
out their positions, the spot price collapses.  The effect of final 
liquidation of a corner on spot prices is sometimes called the 
“burying the corpse effect.”  A sharp increase in shipments to 
delivery warehouses also occurs.   
 
Squeezes/corners are not unknown in commodity derivative 
markets.  Exchanges and governments attempt to prevent or deter 
them, but they still occur from time to time. The experience of the 
zinc market in 1989 provides a good illustration of the effects of a 
squeeze on spreads. 
 
Moral of the story: When trading commodities, if you are short you 
must always be aware of the possibility of a manipulation.  
Monitor futures market and cash market activity continuously to 
make sure that you are not unexpectedly caught in a squeeze.  
 



Non-Storable Commodities 
 

• There are also futures and forward contracts traded on non-
storable commodities. 

• These include: electricity, weather, bandwidth, live animals 
(e.g., hogs and cattle). 

• Non-storability has a big impact on price dynamics and 
forward pricing. 

• Storage mitigates price volatility—inventories are 
accumulated when demand is low and supply is high, thereby 
reducing the magnitude of price declines under these 
conditions, and are drawn from when demand is high and 
supply is low, thereby mitigating the magnitude of price 
increases. 

• Without storage, inventories cannot “smooth” the effects of 
supply and demand shocks.   

• This implies that prices of non-storables—notably 
electricity—can be extremely volatile.  



Forward Prices for Non-Storables 
 

• Due to non-storability, cash-and-carry arbitrage is 
impossible—you can’t hold an inventory of electricity 
from the nighttime to the afternoon. 

• This contributes to considerable intra-day variation in 
prices for non-storables with systematic intra-day variation 
in demand or supply. 

• It also makes cash-and-carry arbitrage pricing methods—
“preference free” pricing techniques—impossible for non-
storables. 

• Therefore, estimating forward prices (and forward curves) 
for non-storables must take a different tack. 

• Forward price=expected spot price + risk premium 



Electricity Forward Pricing 
 

• For electricity, for markets in which good spot price and 
demand (load) data are available, such as PJM, California, 
or Australia, can estimate expected spot prices using 
traditional statistical techniques.   

• Statistical distribution of demand can be estimated 
accurately. 

• Use observed spot-price/load data to estimate a function 
that relates prices to load. 

• Combine demand distribution and spot price/load relation 
to estimate an expected spot price. 

• Estimating risk premium is trickier—need to use market 
forward price data. 

• Essential to take risk premium into account when  pricing 
power forwards because this risk premium is huge, 
especially on-peak. 



Power Derivatives Markets 

• Power derivatives markets have grown, albeit somewhat 
slower than had been anticipated in the mid-1990s. 

• Virtually all power forward and options trading done over-
the-counter. 

• Exchange markets have languished. 

• Heterogeneity of electricity (especially locational 
differences) have impeded development of liquid power 
forward markets—heterogeneity fragments liquidity. 

• Credit issues (note effects of 1998 Midwest price spike, 
California crisis) have also impeded market development. 

• Finally, lack of integration of financial and physical 
markets has impeded development. 

• Until these issues are resolved, power derivatives trading 
may prove treacherous. 



 

 

Weather Derivatives 

• Weather derivatives are a new frontier in derivatives 
trading. 

• Weather derivatives trading almost exclusively OTC, 
although there are exchange-listed contracts on the CME. 

• Typical weather derivative product is based on heating- or 
cooling degree days. 

• One heating degree day occurs when the low temperature 
is one degree below 65o for one day.  A cooling degree 
day occurs when the high temperature is one degree above 
65o for one day. 

• Most weather derivatives are heating or cooling degree 
day options.  For instance, you could have a contract that 
pays $1 per cooling degree day times the difference 
between total cooling degree days in Chicago in July, 
2002 and 250, if that difference is positive and zero if it is 
not. 

• Weather derivatives can be used to manage quantity risk.  
For instance, the quantity of power or natural gas sold by 
an energy company depends on weather conditions.  So 
does the price.  Can use weather derivatives to manage 
this risk.   

• Retailers can use them to manage risks due to weather.  
Retail sales for certain products are very sensitive to 
weather.   



• Although degree-day options are the most common, 
weather derivatives can be based on rainfall, snowfall, or 
any other measurable weather variable. 

• Like power derivatives, due to lack of storability 
arbitrage-based pricing of weather derivatives not 
possible.  Need to utilize historical data on weather 
(corrected for global warming???) to estimate expected 
payoffs, then adjust by a risk premium. 



Determining the Risk Premium 

• For storables, our arbitrage analysis shows that the risk 
premium is irrelevant to determining the relation between 
spot and forward prices.  That is, for these goods we can use 
“risk preference free” pricing to determine these relative 
prices.  However, even for storables the risk premium affects 
the level of futures and spot prices, and their average 
movements through time. 

• The earliest theory of the risk premium is due to Keynes.  
Keynes posited that hedgers are typically short futures.  That 
is, they are typically holders of inventories of a commodity 
(e.g., corn) and they sell futures as a hedge.   

• Since hedgers are net short, speculators must be net buyers in 
equilibrium (since total buys=total sells).  Speculators will 
not absorb risk unless they are rewarded by profiting on 
average.  Buying futures is profitable on average if futures 
prices rise on average.  That is, speculators will enter the 
market only if the futures price is below the spot price 
expected at contract expiration.  In this theory, the futures 
price tends to “drift up” over time—the speed of the drift 
measures the risk premium. 



• In Keynes’ theory, futures prices are “downward biased.”  

• In Keynes’ theory, this downward bias makes short hedging 
costly (since short hedgers lose on average) so they will tend 
to hedge less than 100 percent of their risk. 

• If long hedgers outnumber short hedgers (at a futures price 
equal to the expected spot price) futures prices must be 
upward biased to attract speculative interest.  

• Thus, net hedging interest determines whether futures prices 
are upward or downward biased. 

• For some markets (exchange traded futures) there is data on 
net hedging interest in the form of the CFTC’s “Commitment 
of Traders Reports” available on the www.  



The Magnitude of the Risk Premium 

• The foregoing implies that the size of the risk premium 
depends on (a) net hedging demand at a price equal to the 
expected spot price, and (b) the risk aversion of speculators.   

• The greater the hedging imbalance, the greater the risk 
premium (in absolute value). 

• The more risk averse the speculators, the greater the risk 
premium (in absolute value). 

• The risk aversion of speculators depends on (a) how well the 
futures market is integrated with the broader financial 
markets, and (b) the correlation between the futures price and 
movements in the market portfolio. 

• Usually it is the case that risk premia will be smaller if the 
futures market is well integrated with broader financial 
markets because integration makes it possible for diversified 
speculators to participate in the market; diversification 
reduces speculator risk exposure.  

• CAPM-type models imply that the higher the beta between 
the futures price and the overall market, the greater the 
upward drift in the futures price. 



Estimating the Risk Premium 

• The risk premium is the difference between the futures price 
and the expected spot price.  Also, the risk premium affects 
the expected change in the futures price.  

• Thus, estimation of the risk premium requires either 
estimation of the expected spot price, or estimation of the 
drift in futures prices. 

• Since the risk premium affects both the costs of hedging and 
the benefits of speculation, both require estimation of 
expected spot prices.  Thus, spot price forecasting is an 
important part of hedging and speculation. 

• For most goods and commodities it is hard to estimate 
expected spot prices with accuracy.  Electricity and weather 
may be exceptions. 

 



Credit Derivatives 
 

• Credit derivatives are another new type of financial 
contract.  This is a rapidly growing market. 

• Credit derivatives allow firms to hedge the risks of default 
on loans.  For example, a bank that loans money to a 
customer loses if that customer defaults.  The bank may be 
able to sell-off some portion of the credit risk without 
selling the loan, by entering into a credit derivatives 
transaction. 

• Almost all credit derivatives are traded over the counter.   

• There are a variety of credit derivative products in wide 
use. 



Credit Event Derivatives 
 

• A credit event derivative between party A and party B 
involves (a) a periodic payment from A to B, (b) the 
definition of a “credit event”, and (c) a payment from B to 
A if a “credit event” occurs. 

• A credit event may be a bankruptcy or ratings downgrade, 
for instance.  Although defining a credit event seems 
straightforward, it is not.  The events in Russia in 1998 
provide an illustration of the difficulties of defining a 
credit event.   

• A may be a bank that wants to reduce its exposure to 
default by a particular borrower.  B may be an insurance 
company or other financial firm that is willing to bear 
default risk. 

• The size of the payment made in the event of a credit 
event is related to the impact of the event on the value of 
the loan. 

• The size of periodic payment depends on the price the 
market charges to bear credit risk.  Yield spreads between 
bonds of differing credit risk measure the market price of 
credit risk.   Thus, the periodic payment should be related 
to yield spreads. 



Total Return Swaps 
 

• Total return swaps are another common type of credit 
derivative. 

• In a total return swap, A and B exchange payments, where 
the magnitude of the payments swapped depend on the 
total returns on instruments of different credit-worthiness. 

• For instance, the swap may involve A paying B the total 
return (interest plus capital gain/loss) on a BBB bond, and 
B paying A the LIBOR rate. 

• This would make sense for A if he owned BBB bonds and 
didn’t want to bear the credit risk.  In essence, this deal 
passes the credit risk to B without selling the actual bond. 



Why Use Credit Derivatives? 
 

• It seems somewhat weird that firms would alter credit risk 
exposures through credit derivatives—why don’t they just 
trade the underlying loans?  That is, why would a bank 
that wants to reduce credit exposure enter a total return 
swap instead of just selling off credit-risky loans? 

• Taxes, accounting, and regulatory arbitrage.  Sales of 
loans may have adverse impact on taxes or reported 
earnings or the balance sheet.  For instance, a gain or loss 
must be recognized on sale for tax or accounting purposes, 
but may not be recognized if credit risk is transferred 
through a credit derivatives transaction.  Also, some 
intermediaries may operate under regulations that limit 
their ability to purchase below-investment grade bonds, 
but that do not limit their ability to use credit derivatives. 

• Liquidity.  Credit derivatives may be more liquid than the 
underlying securities.  This is typically the case since most 
credit derivatives have shorter maturities (e.g., one year) 
than the underlying securities (e.g., five years).  
Information asymmetries are plausibly smaller for shorter 
term instruments, making them more liquid 



Eurodollar Futures and their European Cousins 
 

Eurodollar futures contracts traded on the CME are the most 
heavily traded futures contracts in the world.  The contract is cash 
settled--shorts don’t deliver an ED deposit at expiration.  Instead, 
on the second London business day before the third Wednesday of 
the contract month (March, June, September, or December) the 
CME calculates the average LIBOR rate.  The mark-to-market 
price of the contract on this day is set equal to: 
 
   V R= −10000 100 25( . )  
 
where R is the annualized LIBOR rate at settlement.  The .25 
multiplying the LIBOR rate converts the annual rate into a 
quarterly rate.  Note that the contract price fluctuates inversely 
with interest rates (just like a bond price).  A one bp increase in the 
interest rate leads to a $25 decrease in contract value.  
 
Prior to expiration, the contract price is: 
 
   10000 100 25 100[ . ( )]− − F  
 
where F is the futures price on the day in question.  This price is 
used to determine margin payments.  Note that every .01 change in 
the futures price results in a $25.00 change in contract value.  This 
is the price value of a basis point (PVBP) for the EDF. 
 
There are currently related countracts in Europe on short term 
German, French, British, Spanish, and Dutch interest rates.   



Eurodollar Futures Arbitrage 
 

At contract expiration at T, the ED futures price is 100 1 4 90( ),− +rT T
T

, where this interest rate is not 

annualized, but quarterly.  Prior to T, the ED futures price is 100 1 4( *)− r  where r* is the interest 
rate currently embedded in the futures price.   
 
     Date t   Date T    Date T+90 
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Borrow k, with 

maturity T.     k    − +k rt T
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T

 

maturity T+90 



  
We choose k such that profits at T+90 are approximately equal to zero.  We can't make profits 
riskless (i.e., we can't make them identically equal to 0 because we don't know the rate at which we 
will reinvest our futures profits/losses. 
 
Formally, after doing a little algebra, profits at T+90 are: 
 

 k r r r r r r r rt T
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T

T T
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The two terms in the middle of this expression represent the difference between the product of two 
interest rates.  This is small relative to the level of interest rates, so we will ignore it.  Note, however, 
that this difference will seldom equal zero, and is unpredictable as of time t.  Therefore, we cannot 
construct a perfect arbitrage because of the reinvestment risk on our ED futures.  Thus, we get: 
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Solving for k gives: 
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Now turn to period T.  Our net cash flows then are: 
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Note this cash flow is riskless as of t.  In order for these cash flows to equal 0, the following 
expression must hold: 
 

  1 1 190+ = + ++r r rt T
t

t T
t

, ,( )( *)  

 
Note that by the definition of a forward rate of interest, this expression implies that r* is the forward 

rate of interest at t for the period T to T+90.  That is, r rT T
t* ,= + 90  



 
This is the basic no-arbitrage expression for ED futures because by substituting for r* we get: 
 
 

    F rt T T T
t

, ,( )= − +100 1 4 90  

 
In essence, the arbitrage strategy involves long term lending financed by back-to-back short term 

borrowing.  The ED futures position locks in the rate at which I can borrow over the period T to 
T+90.  If I can borrow back-to-back over the period t to T+90 at a lower rate than I can lend over 
this period, there is an arbitrage opportunity.  The no-arb expression essentially sets the 
borrowing and lending costs equal.   

 







An example is useful here.   Assume that date t is 10/15/01.  Date 
T is 12/15/01.  Date T+90 is 3/15/02.   Assume that the annualized 
quarterly compounded interest rate over the period 10/15-12/15 is 
4 percent, and the annualized quarterly compounded interest rate 
over the period 10/15/01-3/15/02 is 6 percent.  Then  
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The term multiplying the interest rate in this expression reflects the 
fact that there are 61/90'ths of a quarter from t to T.   
 
Similarly 
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If the actual ED futures price is higher than this value, one should 
short futures, lend from t to T+90, and borrow from t to T and T to 
T+90.  If the actual ED futures price is lower than this value, 
execute the opposite transactions.  Intuitively, if the EDF price is 
too high, one can lock in a low borrowing rate for the period T to 
T+90.   Conversely, if the EDF price is too low, one can lock in a 
high lending rate from T to T+90.  



Futures Rates, Forward Rates, and Convexity 
 
 The preceding analysis ignored one important institutional feature 
of futures contracts: Marking-to-market.  The arbitrage table 
assumed that all cash flows on the futures contract occurred at 
expiration.  This is true of forward contracts, but not futures 
contracts.  Gains and losses on futures contracts are realized on a 
daily basis.  If the futures price goes down (up) on a given day, the 
long (short) pays out this amount and the short (long) receives it.  
This process of daily settlement is a way of reducing default risk 
on futures contracts.   
 
The aggregate amount of gain/loss incurred on a marked-to-market 
futures position equals the amount assumed in the arbitrage table, 
but the timing is different.  This timing difference is important if 
there is a correlation between the futures price and interest rates.  
This timing difference can cause a difference between the no-
arbitrage futures price, and the no-arbitrage forward price (which is 
what we actually derived in the ED futures analysis). 



Case 1. Interest rate changes are negatively correlated with 
futures price changes.  This is the case relevant for interest rate 
futures such as the ED future.   
 
Let’s compare the cash flows of a short position in a futures 
contract with those of a short position in a forward contract on the 
same underlying with the same expiration date.   Let the futures 
price rise.  Because interest rate changes are negatively correlated 
with futures price changes, this futures price increase is typically 
associated with a fall in interest rates.  Thus, although the short 
must pay out losses (because the futures price rose) he can finance 
these at a low interest rate.  Now consider a fall in futures prices.  
This is typically associated with a rise in interest rates under the 
proposed scenario.  Thus, the short receives gains and can invest 
these at a higher interest rate.  
 
The situation for the long is reversed--he can invest his mark-to-
market gains at a low interest rate and must borrow at a high rate to 
finance his mark-to-market losses.   
 
The holder of a forward contract receives no mark-to-market cash 
flows, so the correlation between price changes and interest rate 
changes doesn’t matter to him regardless of whether he is long or 
short. 
 
This implies that in this case there is an advantage (disadvantage) 
to being short (long) a futures contract when futures price changes 
and interest rate changes are negatively correlated.  Competing to 
exploit this advantage, shorts bid down the futures price so that it 
is below the forward price.  That is, shorts are willing to sell 
futures at a lower price than they are willing to sell forwards.  
Thus, given the negative correlation, futures prices should be 
below forward prices. 
 



Case 2. Positive correlation between futures price changes and 
interest rate changes.   
 
The analysis here is exactly the opposite of that in case 1.  There is 
a benefit to long positions arising from marking-to-market.  Thus, 
longs are willing to buy futures at a higher price than they are 
willing to buy forwards.  Thus, given a positive correlation 
between futures price changes and interest rate changes, 
futures prices should be above forward prices.   
 
This difference between futures and forward prices resulting from 
marking-to-market is essentially attributable to convexity.   
 
The size of the difference between forward and futures prices 
depends upon a) the size of the correlation between futures price 
changes and interest rate changes, and b) the volatilities of futures 
price changes and interest rate changes. 
 
Holding volatilities constant, the bigger the correlation (in absolute 
value) the greater the difference because the party benefiting from 
the correlation can do so more often. 
 
Holding correlation constant, the bigger the volatilities, the greater 
the difference because the party benefiting from the correlation can 
invest bigger gains at better interest rates.  (Remember, convexity 
is more valuable, the greater is volatility.) 
 
The effect may be small for some commodities.  For example, the 
correlation between oil price changes and interest rate changes is 
about .01 or less--here there is no big difference between futures 
and forward prices.  For ED futures, however, the effect can be 
large as the correlation is usually above .95.   



 
How to Value the Effect of Convexity Bias 

 
This correlation/convexity effect is important for ED futures 
pricing and hedging.  It is also important for swap pricing.  This is 
true because the ED futures (and other short term interest rate 
futures) are a very transparent, real time source of information 
about the term structure, but one cannot use these prices directly to 
determine a forward yield curve because of the convexity bias: ED 
futures prices tell you the futures interest rates, but for pricing 
FRAs or swaps you need to know the forward interest rates.  
Futures interest rates implied by ED futures are higher than 
forward interest rates because the futures price is biased 
downward by convexity.  To derive a forward yield curve from 
EDF prices you must adjust for this convexity.   
 
How can you do this?  Follow these steps: 
 
1. Assume that there are T days to futures expiration.   Then it is 
possible to show theoretically that the futures price bias is equal to: 
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where σ F t( )  is the volatility of the futures price at time t, 

σ z T t t( ) ( )−  is the volatility on day t of a zero coupon bond 

expiring at time T, and ρ F z T t, ( )−  is the correlation between 

percentage changes in the futures price and percentage changes in 
the price of the zero.  (Note that “volatility” means the daily 
standard deviation of percentage price changes.)  The “cov” term is 
the covariance between daily percentage futures price changes and 
daily percentage zero coupon price changes. 
 



2. Note that all of the parameters affecting bias should changes as 
time to expiration nears.  For example, ED futures prices should 
become more volatile as time to expiration nears (i.e., T-t becomes 
small) because forward rates tend to be less volatile than spot rates.  
Also, zero coupon bond price volatility changes as T-t changes 
because a) spot rates are more volatile than forward rates, and b) 
the duration of the zero falls as expiration nears.  The correlation 
should also change as time passes. 
 
Given this systematic change in parameters, to estimate the bias 
break down the interval between today and T into subperiods.  For 
example, for a ED futures contract with six months to expiration, 
break the six month period into two three month periods.  (You can 
break up periods more finely if you wish.)  Noting that the term in 
the summation is equivalent to the covariance between % futures 
price changes and % zero price changes, use historical data to 
estimate the daily covariance between percentage price changes of 
EDFs with between 6 and 3 months to expiration and the 
percentage price changes of zero coupon bonds with between 6 and 
3 months to expiration.  Call this “cov1”.  Next estimate the daily 
covariance between percentage price changes of EDFs with 
between 3 and 0 months to expiration and the percentage price 
changes of zero coupon bonds with between 3 and 0 months to 
maturity.  Call this “cov2”.   
 
Call t1 the number of days between today and three months from 

today.  Call t2  the number of days between three months from 
today and contract expiration.  Your estimate of total bias is: 
 
   B t t= +1 21 2cov cov  
 
Note that as time passes t1  gets smaller, and your estimate of bias 
falls as a result. 



Interest Rate Swaps 
 
Swaps are over-the-counter agreements between two companies to 
exchange cash flows in the future according to a pre-arranged 
formula. 
 
Most interest rate swaps are so-called "plain vanilla" swaps.  One 
party of the swap ("A") makes a fixed payment periodically to the 
other party company B.  Company B makes payments periodically.  
These payments vary with interest rates.  If interest rates rise, B 
pays more to A; if interest rates fall, B pays A less. 
 
In order to economize on payments, cash flows are netted.  That is, 
if A owes B 10, and B owes A 7, A simply pays B 3.   
 
The "floating" side of most swaps is linked to the LIBOR rate.   
For example, party B (who pays floating) may be obligated to pay 
A the LIBOR rate x some notional principal value every six 
months.   
 
For purposes of illustration, make the following assumptions: 
 
1. The nominal principal value of the swap is Q.  Note: this 
principal never changes hands in an interest rate swap; it is merely 
used to determine the interest payments made by A and B.   
 
2. A agrees to pay B k every six months for 5 years. 
 
3. Every six months, B agrees to pay A the 6 month LIBOR rate at 
t-.5 times Q.   Thus, if the LIBOR rate (annualized) at time t-.5 is 
10 percent, and Q is $10 mm, then B pays A (.5)(.1)($10 
mm)=$50,000 at t.  Call Rt−.5 the annualized 6 month LIBOR rate 
at t-.5.   



 
Thus, every 6 months the payoff to B (who pays floating) is: 
 
     k R Qt− −. .5 5  
 
Note that this is like the payoff to a long interest rate forward 

contract.   If interest rates fall below 
2k
Q

  at t-.5 then B receives a 

cash inflow at t; if interest rates rise above this level, B pays cash 
out to A.   
 
Since A and B swap cash flows in this fashion every six months 
for 5 years, the total swap contract is equivalent to a bundle of 10 
forward contracts.   
 
Given the yield curve at the time the swap is initiated (say, time 0), 
the fixed payment k is set in order to make the value of the bundle 

of forward contracts equal to 0.  Formally, if Rt t−. ,5
0

 is the forward 

semi-annually compounded rate of interest, as of time 0, over the 

period t-.5 to t, and rt  is the continually compounded interest rate 
used to discount cash flows received at t as of time 0, then the 
present value of the swap to B (the floating payer) is: 
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When initiating the swap, the parties to the swap then choose k to 
set this expression to equal 0.  (The value of the swap to A is -V.)



 
You can use the following logic to determine the fixed rate k at the 
initiation of a swap.  Consider a swap with N payment dates.  
These payments occur M times per year--if pays occur semi-
annually, for instance, M=2.  First, use the forward yield curve to 
calculate the discount factors corresponding to each of the payment 
dates.  Call D j the discount factor corresponding to payment date 

j.  Then the “fair” or “market” k is such that the present value of 
the cash flows on one DM (or dollar) of notional principal of the 
swap equals one DM.  Formally: 
 
   1 11 2= + + + +k D D D DN N( ... ) ( )( )  

 
(The last term reflects payment of the 1 DM of notional principal.) 
 
Thus,  
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To convert this to an annual rate, multiply k by M.  That is, 
i Mk= .  This is the same as the par yield on a bond/note with the 
same maturity as the swap.   
 
Swap rates are often quoted as a spread over some other interest 
rate.  For example, USD interest rate swaps are usually quoted 
LIBOR vs. the US Treasury rate plus a spread.  Thus, the fixed rate 
in a 5 year swap may equal the 5 year US T-note rate plus 75 bp.  
The “credit spread” is usually pretty stable within the day, so this 
quoting convention allows the quoted swap rate to respond 
continuously to interest rate movements.   



Marking Swaps to Market 
 

The valuation of outstanding swaps is straightforward.  Break the 
swap up into 2 parts--the fixed rate part and the floating rate part.   
 
You can value the fixed part like a bond.  Consider a swap with N 
remaining fixed payments of k. The price of a zero coupon bond 
maturing at the date of payment i equals Di .  Then the value of the 

fixed side of the swap is: 
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The floating side is similarly easy to value.  Note that on a 
payment date, the party receiving floating is indifferent between 
receiving the pre-determined payment on that date plus either a) 
receiving the floating payment over the remaining life of the swap, 
or b) receiving the notional principal today, and paying out the 
notional principal at the terminal date of the swap.  Part b) is true 
because the party can invest the notional amount at the floating 
rate until maturity.  Thus, on the payment date the value of the 
floating side must equal the value of alternative b): 
 
   V R Q DFloat N= + −( )1  

 
where R is the floating payment due on that payment date.  Thus, 
prior to the payment date, the floating side of the swap with N 
payments remaining is: 
 
  V D R Q D QFloat N= + −1( )  

 
The value of a short swap is simply V VFix Float− . 



LONG TERM INTEREST RATE FUTURES 
The Forward Price of a Coupon Paying Bond 

 
Call St the spot price (the full price including accrued interest) of a 
bond at time t.  Moreover, Ft T,  is the futures price at t for delivery 

of this bond at time T, and r is the riskless interest rate between 
time t and.  The bond pays a coupon equal to D at tD . Also assume 
that interest rates are constant over time.  (This ensures you can 
reinvest coupons at a known rate.)  Consider a “cash and carry 
arbitrage” strategy: 
 
 
TRANSACTION  Date t Date  tD  Date T 
 
Buy spot    −S

t
  0   S

T
 

 

Borrow    St  0   − −e Sr T t
t

( )  
 
Sell Futures   0  0   F S

t T T,
−  

 
Dividend Payment  0  D   0 
 
Invest Dividend   0  -D   e Dr T t

D
( )−

 
 
This analysis implies that net cash flows at the initial date are equal 
to 0, and at date T they equal: 
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Arbitrage then implies 
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A similar expression is relevant for a futures/forward on any asset 
that pays a cash flow.  For example, for a dividend paying stock D 
can be interpreted as the dividend and S as the current price of the 
stock. 
 

This analysis implies that the futures price equals the future value 
of the underlying price net of the future value of the cash flows the 
asset pays prior to contract expiration.  This deduction of interim 
cash flows is necessary because the underlying price embeds the 
value of these cash flows, but the buyer of the forward contract 
does not receive them.  



 Note that the futures price exceeds the spot price by less than the 
interest rate factor.   
 
One can calculate an “implied repo rate” from this expression.  The 
implied repo rate is the short term interest rate that must prevail in 
the market to make arbitrage unprofitable. 
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(Note that this expression is somewhat inconsistent because one 
has to put include an interest rate within the log expression.   In 
order to solve for a single implied interest rate, one could use 
numerical techniques, but this is beyond the scope of this course.) 
 
If the actual short term interest rate differs from the implied repo 
rate, an arbitrage opportunity exists.  If the implied rate is below 
the actual rate, borrow through the futures and bond market by 
selling bonds spot, buying futures, and investing the proceeds at 
the repo rate.  If the implied rate is above the actual rate, borrow at 
the repo rate and lend through the futures market by buying bonds 
spot and selling futures. 
 
There are also some complications when the term structure of 
interest rates (i.e., the relation between interest rates and maturity) 
is not "flat."  This expression must be modified if the term 
structure slopes up or down because the rate at which a trader can 
re-invest the coupons is different from the initial rate. 



T-Bond Futures: Conversion Factors and Delivery Options 
 
The Treasury Bond futures contracts traded on the CBoT allow 
shorts to deliver any bond with greater than 15 years to maturity 
(or call) against the contract.  Since bonds can have very different 
prices due to differences in coupons or maturity, the exchange has 
devised a system to make it more economical to deliver a wide 
variety of bonds.  In essence, the short receives higher proceeds if 
he delivers a high priced (high coupon, long maturity) bond than if 
he delivers a low priced one.   
 
The exact system works as follows.  Upon delivery of a given bond 
i, the short receives the following amount of money, called the 
invoice price: 
 
   P CF F AIi i i= +  

Here CF is the “conversion factor” of bond i, F is the futures 
settlement price on the day the short delivers, and AI gives the 
accrued interest on the bond.   
 
The conversion factor is equal to the value of one dollar of face 
amount of the bond as of the first day of the delivery month under 
the assumption that the bond yields 6 percent (semi-annually 
compounded) to maturity.   
 
Shorts have the option to choose which bond they will deliver.  
They will choose to deliver the bond for which the net proceeds 
(invoice price net of the full price of the bond) are largest.  That is, 
they choose the bond i for which the following expression is 
largest: 
 
   P CF F Bi i i= −  

where Bi is the flat price of the bond. 



The bond that has the largest delivery value is called the “cheapest-
to-deliver” (“CTD”) bond.  Note that if the foregoing expression 
were strictly positive for any bond, then an arbitrage opportunity 
would exist.  Therefore, at the expiration of the futures contract the 
futures price equals: 
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where i is the CTD bond and B t Ti ( , )  is the forward price of the 

bond at t for delivery at T (futures expiration).    
 
Prior to expiration, it is possible to figure out the bond for which 
B CFi i/  is smallest.  This is the bond that is currently CTD.  

However, there is some possibility that some other bond may be 
CTD at expiration.  This can occur because the relative prices of 
bonds change randomly over time.  That is, prior to expiration, the 
futures contract is actually an option because the short can choose 
which bond to deliver.  This option is an exotic--a call on the 
minimum of the N deliverable bonds, with a strike price of zero.  It 
is possible to show that due to this option, the bond futures price is: 
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where the wi < 1are weights that add up to a number less than 

one.  These weights are functions of all the bond prices and 
conversion factors, the volatilities of all the bond returns, and the 
correlations between bond returns.  Note that the futures price must 
be less than the smallest B CFi i/  because of the delivery option. 



 
This option affects the nature of the futures contract as a hedging 
vehicle.  If you want to match PVBPs, you need to know the PVBP 
of the future.  This, in turn, depends upon the PVBPs of all the 
deliverable bonds.  Specifically: 
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Note that the PVBP of the future can change over time because a) 
the PVBPs of individual bonds change, and b) the weights in the 
expression change.  This can cause some funny things to happen.  
On one day, a high duration bond may receive a large weight and a 
low duration bond a low weight; a couple of days later, the low 
duration bond may have a high weight and the high duration bond 
a low weight.  Thus, you need to monitor the PVBP of the future 
fairly closely to make sure that your hedge ratios remain correct.   
 
There are other options embedded in the T-bond contract.  The 
most important, and unusual, is the so-called “Wildcard” option.  
This option exists because the short can deliver up to 8pm at a 
settlement price set at 2pm on that day.  Thus, if bond prices fall 
between 2pm and 8pm, it can be profitable to wait to deliver until 
8pm.  This option is very complex to value, especially due to its 
interaction with the “quality” option (i.e., the option to deliver the 
CTD bond). 



 



Foreign Currency Cash and Carry Arbitrage 
In determining the relation between foreign exchange spot and futures prices, it 
is necessary to expand the arbitrage table somewhat because we have to keep 
track of borrowing and lending in two currencies.  Moreover, we have to take 
into account that we can borrow or lend in the foreign currency at rate rf .  Call 

St the spot price of Deutschmarks ("DM") in dollars.  Thus, a spot price of .6471 
means that each DM buys .6471 dollars. 
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To prevent arbitrage, the following expression must therefore hold: 
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Note that the fact that the foreign currency can be borrowed/lent at interest 
depresses the futures price relative to the spot price.  Moreover, if the foreign 
interest rate is larger than the domestic interest rate, then the futures price is 
below the spot price.   
 
Also recognize that you can use futures markets to borrow and lend foreign 
currencies.  To borrow DM, undertake the following transactions: buy DM spot, 
borrow USD, sell DM futures.   
 
You can also use intermarket spreads to borrow dollars through one FOREX 
futures market, and lend dollars through another.  For example, if you borrow 
DM and sell them for dollars, and buy DM futures, this is equivalent to 
borrowing dollars.  You can then lend dollars through, say, the JY futures market 
by using the USD you earned from the short sale of the DM by buying JY spot, 
lending JY, and selling JY futures.  This is equivalent to borrowing DM, selling 



them for JY, lending the JY, buying DM futures, and selling JY futures.  This 
can be a profitable transaction if the implied USD repo rates differ between the 
JY and DM markets. 





OPTIONS BASICS 
 
1. A call option gives the owner the right, but not the obligation, to 
buy the underlying asset (e.g., a stock, a bond, a currency, a futures 
contracts) at a fixed price.  This fixed price is called the "strike 
price."  Call options have a fixed expiration date.  Time to 
expiration can range between days and years.   
 
2. A put option gives the owner the right, but not the obligation to 
sell the underlying asset at a fixed price.   
 
3. There are two basic types of options: European and American.  
The holder of a European option can exercise it only on the 
expiration date.  That is, there is no early exercise for European 
options.  In contrast, the holder of an American option can exercise 
it any time prior to the expiration date as well as on the expiration 
date itself.   Most exchange traded options are American.  Many 
over the counter options are European. 
 
4. Options are traded on stocks at the Chicago Board Options 
Exchange ("CBOE"), the NYSE, the American Stock Exchange, 
the Pacific Stock Exchange and the Philadelphia Stock Exchange.  
CBOE is the oldest and largest of the options exchanges. 
 
5. Options on futures are traded on most futures exchanges. 
 
6. Options on currencies are traded on the Philadelphia Exchange. 
 



7. OTC options markets are also important. 
 
8. Many financial instruments have options embedded in them.  
For example, a mortgage gives the mortgagee the option to prepay 
at any time.  A convertible bond embeds a call option.   
  



 
ARBITRAGE RESTRICTIONS 

 
Options prices must obey certain arbitrage restrictions.    
 
1. Put-call parity.  Consider European options on a non-dividend 
paying stock with price St.  A position consisting of a call struck at 
K and a short put with strike K provides the same payoffs as a 
forward contract with a forward price equal to K.  Both options 
expire at time T.  We know that the fair (i.e., no arbitrage) forward 
price equals e Sr T t

t
( )−

.  Thus, the present value of a forward 

contract with a forward price of K equals S e Kt
r T t− − −( )

.  Since 
the long call-short put position gives the same payoff as a forward 
contract, it must be the case that the value of this position equals 
the value of the forward contract.  That is: 
 

 c S K t T p S K t T S e Kt t t
r T t( , , , ) ( , , , ) ( )− = − − −

 
 
This is called the put-call parity relation. 
 
2. Given put and call prices, the stock price, the strike price, and 
the time to expiration, it is possible to solve the put-call parity 
expression for an implied interest rate in order to determine 
whether these prices present an arbitrage opportunity. 



 
3. If the stock pays dividends prior to the expiration of the options, 
it is straightforward to modify the put-call parity expression to 
reflect this fact.  Recall that in deriving put-call parity, we simply 
equated the value of the option position to the value of a forward 
contract with forward price K.  Therefore, all that is necessary to 
adjust the formula for dividends is to use our no-arbitrage formula 
for a forward price on an asset paying a dividend.  Here, the 
present value of such a forward contract is  
 

  S e D e Kt
r t t r T tD− −− − − −( ) ( )

 
 
where tD is when the dividend is paid.  Therefore,  
 

c S K t T p S K t T S e D e Kt t t
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EARLY EXERCISE OF OPTIONS 
 
Early exercise has one clear disadvantage: by exercising an option, 
a trader gives up the value of the option over its remaining life.  
This value must be positive.  Therefore, early exercise is desirable 
if and only if there is some off-setting benefit.  There is only one 
possible source of such a benefit.  Namely, there is a potential 
value to early exercise if this allows the owner of the option to 
receive cash flows earlier. 
 
Case 1. Call on a non-dividend paying stock.   
 
 Assume the owner of a call with strike price K and time to 
expiration T exercises the option at t<T, and borrows money in 
order to pay the strike price.  Then, at T, the wealth of the trader is 
S e KT

r T t− −( )
.  If the trader had not exercised the option, his 

wealth at T would equal max[ , ]0 S KT − .  It is clear that the 
trader's wealth is greater if he does not exercise early.  This is true 
for two reasons, first, if the price of the stock falls below the strike 
price between t and T, the trader won't exercise the option at T, and 
thus isn't "stuck" with a less valuable stock.  Second, by deferring 
exercise, the call owner saves the interest on the strike price over 
the period t to T.  Conclusion: Never exercise a call on a non-
dividend paying stock early. 
 
Case 2. Call on a dividend paying stock. 



 
 Assume the firm pays a dividend equal to D at t<T.  If the 
call owner exercises at t, his wealth at T equals: 
 
    S e K DT

r T t− −−( )( ) 
 
This may (but may not) exceed max[ , ]0 S KT −  because by 
exercising the call early, the owner receives the dividend.  
Therefore, unlike the case with a call on a non-dividend paying 
stock, we can't say for certain that the payoffs to early exercise are 
always lower than the payoffs from exercise at expiration.  If this 
dividend is large enough, it may exceed the interest on the strike 
price and the option value foregone from early exercise.  Thus, you 
may exercise a call on a dividend paying stock early.  If you do 
exercise early, you will only do so immediately before the payment 
of a dividend (i.e., on the cum dividend date). 
 If the future value of the dividend is smaller than the value of 
the interest paid on the strike price from t to T, early exercise will 
not be optimal.  The value of this interest equals e K Kr T t( )− − .  If 
e K K e Dr T t r T t( ) ( )− −− >  then  
 
 S e K D S K S KT

r T t
T T− − < − < −−( )( ) max[ , ]0   

 
and therefore early exercise is not profitable. 
 Intuitively, this means that if the dividend received by 
exercising early is not large enough to compensate the option 



holder for the interest incurred on the strike price due to early 
exercise, early exercise cannot be optimal. 
 
Case 3. Put on a non-dividend paying stock. 
 Consider a trader who owns a put and a share of the 
underlying stock.  If he exercises the put at t<T and invests the 
strike proceeds, his wealth at t equals e Kr T t( )−

.  There are some 
values of the stock price such that this exceeds the trader's wealth 
at T if he does not exercise the put at t, max[ , ]0 K S ST T− + .  
By exercising early, the put owner receives cash flows (i.e., the 
proceeds from exercise) earlier; the interest earned on the strike 
price over this interval of time.  This may compensate the trader 
for the gains he would earn by holding onto the stock if the price of 
the stock were to rise above the strike price between t and T.  Early 
exercise of a put can be optimal at any time prior to expiration. 
 
Case 4. Put on a dividend paying stock. 
 All else equal, dividend payments cause the price of the stock 
to decline.  Therefore, if the put is not protected against dividend 
payments, dividends tend to induce the holder of a put to defer 
exercise in order to take advantage of this predictable price 
decline.  It still may be the case, however, that the advantages of 
receiving the proceeds from exercise early (i.e., the interest earned 
on the strike price) offsets this effect. 
 
Case 5. Puts and calls on futures contracts. 
 When the holder of an option on a futures contract exercises, 
she receives a cash payment equal to the difference between the 



strike price and the futures price at the time of exercise and a 
futures position.  For example, if the futures price at exercise 
equals Ft , the holder of a put receives a cash payment equal to 
K Ft−  and a short futures position at the market price.  The value 
of the short position equals 0.  Early exercise of either a put or a 
call therefore leads to an acceleration of cash flows.  Therefore, 
one cannot rule out early exercise of futures options. 
 
Case 6. Calls on foreign currency. 
 Foreign currencies can be invested at interest; recall that this 
is equivalent to a continuous dividend yield.  Therefore, there may 
be advantages to exercising a call on a foreign currency early in 
order to receive this cash flow over a longer period of time.  
 



 
Early exercise requires a modification in the put-call parity 
expression.  In particular, we can no longer derive an equality 
restriction, but only an inequality restriction.   
 
First consider the case of American puts and calls on non-dividend 
paying stocks.  We know that the value of an American call on a 
non-dividend paying stock equals the value of a European call on 
the same stock (with the same strike and time to expiration).  
Moreover, we know that an American put may be exercised prior 
to expiration.  This option to exercise early has value, so an 
American put must be more valuable than a European put.   
 
Therefore,  
 

 C S K t T P S K t T S e Kt t t
r T t( , , , ) ( , , , ) ( )− < − − −

 
 
Also remember that dividends reduce the value of an American 
call, and increase the value of an American put.  Thus, this 
expression must hold for options on dividend paying stocks too.   



A BINOMIAL MODEL OF STOCK PRICE MOVEMENTS 
 
In order to derive a formula for stock option prices, we must first 
specify a model that describes how stock prices move.   
 
Our first model is a so-called binomial model because at any point 
in time, it is assumed that the percentage change in the stock price-
-the stock "return"--can take only two values, u>1 (an "up" move) 
or d<1 (a "down" move).  The probability of an up move equals q, 
and the probability of a down move equals 1-q.  We will see that 
these actual probabilities are irrelevant to the pricing of options.   
 
The binomial model divides time between the present and the 
expiration date of an option into discrete intervals of equal length.  
Each interval is ∆t in length.  By allowing more intervals between 
now and expiration, this interval becomes shorter.  In the limit, 
with an infinite number of intervals, the length of an interval 
becomes vanishingly small, and equal to dt. 
 
That is, if the stock price equals S today, it may equal either 
uS S>  or dS S<  at the end of the next interval of time.   
 
It is possible to show that as the length of a time interval becomes 
vanishingly small, the distribution of stock prices is lognormal.  
We will utilize this fact in deriving the Black-Scholes formula for 
pricing options. 
 



USING THE BINOMIAL MODEL TO PRICE AN OPTION 
 
Consider a portfolio of a short position in a single call on a stock, 
and ∆ shares of the stock underlying the call.  Assume the value of 
the call in ∆t units of time equals cu if the stock price rises over 

this interval, and equals cd  if the stock price falls.  Thus, at t+∆t 
the value of the portfolio equals ∆uS cu−  if the stock price rises, 

and equals ∆dS cd−  if the stock price falls.   
 
Note that we can choose ∆ to make the value of the portfolio the 
same regardless of whether the stock price rises or falls. 
 
Formally, choose ∆ such that 
 
   ∆ ∆uS c dS cu d− = −  
or 
 

   ∆ = −
−

c c
S u d

u d

( )
 

 
Since the value of the portfolio doesn't depend upon the stock price 
change, the portfolio is riskless.  Therefore, the return on the 
portfolio must equal the risk free rate.  That is, if the value of the 
call today equals c, then: 
 

  e S c u S c d S cr t
u d

∆ ∆ ∆ ∆( )− = − = −  



 
Solving for c implies: 
 

   c e pc p cr t
u d= + −− ∆ [ ( ) ]1  

 
where 
 

    p
e d
u d

r t

= −
−

∆

 

 
Note that the value of the call at t is equal to the expected present 
value of the call at t+∆t, using p to measure the probability of an 
up move and (1-p) to measure the probability of the down move. 
 
It is essential to recognize that p is not equal to q, the true 
probability of a stock price increase.  Instead, p is the probability 
of an up move such that the stock's expected rate of return equals 
the risk free rate of return.  This would occur in a market where 
traders are risk neutral.   
 
This analysis implies that we can price options as if we are in a 
risk neutral world!   Put differently, we don't need to know the 
expected return on a stock to price options on that stock.  This is 
true because we can form a portfolio consisting of the stock and 
the option to eliminate all risk.   



In order to determine the price of the call, we work backwards 
from the end of the binomial tree because at the end of the tree we 
know the values of the option.   
 
This is best illustrated by an example.  The following pages present 
a two stage binomial tree which assumes that the initial value of 
the stock price is 20, u=1.1, d=.9, and r=.12 (annualized, 
continuously compounded rate).  Each time interval is a quarter of 
a year.  The first page outlines what the values of the stock can 
take after 2 periods.   
 
Given these values, we know that p=.6523. 
 
Consider a call expiring in two periods with a strike price of 21.  
The value of the call in two periods after two up moves equals 
24.2-21=3.2.  The value of the call after one up move and one 
down move equals 0 because 19.8<21.  Similarly, the value of the 
call after two down moves equals 0.   
 
Consider the value of the call after one period if a single up move 
has taken place.  Here cu = 3 2.  and cd = 0 .  Thus, after one up 
move, the value of the call equals: 
 

 c e= × + × =−. (. )[. . . ] .12 25 6523 3 2 3477 0 2 0257 
 
It is straightfoward to recognize that the value of the call after one 
period equals zero if the stock has moved down during that 
interval.   



 
Now move back to the initial time, when the value of the stock 
equals 20.  Here cu = 2 0257.  and cd = 0 .  Thus, the value of 
the call at this time equals: 
 
 c e= × + × =−. (. )[. . . ] .12 25 6523 2 0257 3477 0 1 2823 



 
In sum, we use backward induction repeatedly to value an option 
on an underlying stock.  We go backwards because we know the 
payoffs to the option at the expiration date, and can therefore apply 
our formula repeatedly by proceeding from the end of time to the 
beginning.  
 
The main choice you must make in establishing a binomial tree is 
for u and d.  We choose these parameters such that the theoretical 
value of the variance of the stock given by the binomial model 
equals the actual value of the variance of the stock we are 
interested in.   
 
Remember that the variance of a stock's return equals the expected 
value of the squared deviation between the realized return and the 
expected return.  The expected return in our risk neutral model 
equals r.  The return in an upmove equals u and the return in a 
down move equals d.  Therefore, the variance equals: 
 

  
p u e p d e

p p u d t

r t r t( ) ( )( )

( )( )

− + − − =

− − =

∆ ∆

∆

2 2

2 2

1

1 σ
 

 
where σ is the actual standard deviation of the stock's return. 
 
The first equality follows from the fact that  
 
   Se puS p dSr t∆ = + −( )1  



 
We have already found the relation between p and u and d.  Thus, 
we have one equation in two unknowns.  We eliminate one 
unknown by choosing d=1/u.  
 

If we solve all of this for u, we get:  u e t= σ ∆  if ∆t is small. 



DERIVATION OF THE FORMULA FOR p. 
 
First, define a er t= ∆

.   
 
Then: 
 

  
a S u S c acu∆ ∆− + =

 

Substituting for ∆ implies: 
 

  
a c c

u d
u c c

u d
c acu d u d

u

( ) ( )−
−

− −
−

+ =  

 
Gathering terms with cu and cd: 
 

  
c

u d
a u u d

c
u d

u a acu d

−
− + − +

−
− =( ) ( )  

 

   
a d
u d

c
u a
u d

c acu d

−
−

+ −
−

=  

 
Define p a d u d= − −( ) / ( ) then note that  
 

    
u a
u d

a d
u d

p
−
−

= − −
−

= −1 1  



 
Thus,  
 
   ac pc p cu d= + −( )1  
 
Dividing both sides by a produces the expression presented earlier. 
It is important to note that if the probability of an upmove in the 
stock price equals p, then the expected return on the stock equals 
the risk free rate of return. 
 
To see why, note that if the probability of an upmove equals p, the 
expected value of the stock next period equals: 
 

    

S pu p d

S p u d d

S
a d
u d

u d d

aS

[ ( ) ]

[ ( ) ]

[ ( ) ]

+ − =
− + =

−
−

− + =

1

 

 
This implies that the stock earns an expected return equal to the 
risk free rate of interest.  



Use of the Binomial Model 
 
A major advantage of the binomial model is that it can be used to 
value American options for which early exercise is possible, and 
hence valuable.  An example illustrates this. 
 
First consider the example contained on the following page: an 
American put on  a stock.  (This is example 14.1 from Hull.) 
 
In this example, σ=.40, T-t=.4167, r=.1, S=50, K=50.  If we divide 
the time until expiration into 5 segments, we get        
∆t=.4167/5=.0833. 
 
Given these values, we can determine p=.5076, and 1-p=.4924.  

Also, a=1.0084, and e r t− = =∆ 1 1 0084 9917/ . . . 
 
The important thing to do when "folding back" the binomial tree is 
to determine at each node whether early exercise is optimal.  First 
consider node E.  The stock price at this node equals 50, so the 
proceeds from early exercise equal 0.  The value of the option if 
we don't exercise equals     
 [(.5076)(0)+(.4924)(5.45)]/1.0084=2.66.   
If we do exercise at node E, we get less than if we wait.  So we 
don't exercise early.   
 
Things are different at node A, when the stock price equals 39.69.  
Here the proceeds from early exercise are 50-39.69=10.31.  If we 
don't exercise, the option is worth: 



  [(.5076)(5.45)+(.4924)(14.64)]/1.0084=9.89. 
At this node, we get more if we exercise early than if we don't.  
Early exercise is therefore optimal in this case.  The important 
thing to remember is that we now use 10.31 as the value of the 
option at node A when we are calculating the option price at earlier 
points in the tree.   
 
This demonstrates how we can use the binomial option to calculate 
American option prices.   
 
Analytically, the binomial model is straightforward.  In order to 
increase the accuracy of this approach, however, it is necessary to 
make ∆t fairly small by increasing the number of time intervals.  
This can increase the cost of computing options prices using the 
binomial method.   
 
Thus, when pricing an option, we face a trade off: the binomial 
method can handle early exercise easily, but is computationally 
cumbersome.   
 
This raises the question, is there a more computationally tractable 
model? 
 
The answer is yes:  If we are willing to consider only European 
options, it is possible to produce an option pricing model that is 
very easy to use--the Black-Scholes model. 
 



THE BLACK-SCHOLES MODEL FOR A NON-DIVIDEND 
PAYING STOCK 

 
The Black-Scholes model is essentially the same as the binomial 
pricing model when the number of time intervals approaches 
infinity, i.e., as ∆t becomes arbitrarily close to zero.  This is 
sometimes called a "continuous time" model in contrast to the 
"discrete time" binomial model because we no longer divide the 
time line into several discrete periods, but instead consider time as 
a continuum. 
 
It is possible to show that as the number of time steps approaches 
infinity, the return on the underlying stock obeys a normal 
distribution.  The normal distribution is simply the well known bell 
shaped curve.   
 
Recall that the return on a stock equals the percentage change in 
price on the stock.  Also note that over a very small time interval dt 
the return on a stock equals: 
 
    ln lnS St dt t+ −  
 
Thus, if the return on the stock in the continuous time world is 
normally distributed, then the stock price in the future is 
lognormally distributed. 
 
It is also essential to remember that in valuing options we can 
assume that  the expected return on the stock equals the risk free 



rate of interest.  Again, this is because we can construct a portfolio 
including the stock and the option that is riskless.   
 
This can be represented formally.  If the stock price at T (which 
may be the expiration date of an option) is lognormally distributed, 
then we can write: 
 

  S S eT t
r T t T tZ= − − + −( . )( )5 2σ σ

 
where Z is a normally distributed variable with expected value 
(i.e., mean) equal to 0.  
 
(You can check that this expression is correct by taking the natural 
logs of both sides.  You will find that the difference in the logs is 
normally distributed because Z is normally distributed.) 
 
We can now value a European option that expires at T.  Recall that 
the value of the option at t is the expected present value of the 
payoffs of the option at T, where we use the riskless interest rate to 
discount these payoffs.  Also remember that any expected value is 
the sum of the possible payoffs multiplied by the probability of 
receiving a given payoff.  In our analysis, the size of the payoff 
depends upon the realization of Z because Z determines the stock 
price at T.  Moreover, because Z is normally distributed, the 
probability of observing any given Z is 
 

    n Z
e Z

( )
.

=
− 5 2

2Π
  



Note that the Π  in this expression is the mathematical constant 
Pi=3.14159 . . . 



We can use this information to value an option.  Consider a call 
option with strike price K.  We know that the option's payoff is 
positive if and only if: 
 

  S S e KT t
r T t T tZ= ≥− − + −( . )( )5 2σ σ

 
 
There is a value of Z, call it Z*, such that this expression holds 
with equality.  This is the "critical value" of Z: For larger Z, the 
call is in the money at expiration, for smaller Z, the option is out of 
the money.  Therefore: 
 

  ln ( . )( ) * lnS r T t T tZ Kt + − − + − =5 2σ σ  
 
Solving for Z* implies: 
 

  Z
K S r T t

T t
t*

ln( / ) ( . )( )= − − −
−
5 2σ

σ
 

 
Given this result, the expected present value of this option's 
payoffs (and hence its price) is: 
 

 })(0)(])([{
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*

)( dZZndZZnKZSec
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tTr ∫∫
∞−

∞
−− +−=  

 
This expression holds because the payoff to the option is 0 when 
Z<Z*.   



 
Doing a little substitution, we get 
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KeSec
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tTr
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Consider the exponentials.  We can add the exponential terms to 
get the following exponent: 

  
( . )( ) .

( ) . [ ( ) ]

r T t Z T t Z

r T t T t Z Z T t

− − + − − =

− − − + − −

5 5

5 2

2 2
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Define a new variable 
 
    y Z T t= − −σ  
 
Note that y is normally distributed (because Z is).  Moreover,  
 

   y T t Z Z T t2 2 2 2= − + − −σ σ( )  
 
In addition, the call option is in the money if 
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Then we can rewrite the first term in our integral as  
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This is just equal to N(-y*), where N(x) gives the area under a 
normal distribution curve to the left of x.  Thus, the first term in 
our integral is: 
 

  S N
S K r T t

T tt
t[

ln( / ) ( . )( )
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+ + −
−
5 2σ

σ
 

 
Now consider the second term in our integral: 
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Putting the two terms together produces the Black-Scholes formula 
for the call: 
 

   c S N d e KN dt
r T t= − − −( ) ( )( )

1 2  
 
where 
 

  d
S K r T t

T t
t

1

25= + + −
−

ln( / ) ( . )( )σ
σ

 

 
and  
 
    d d T t2 1= − −σ  
 
We can then use put-call parity to get the value of a put.  Recall: 
 
   c S e K pt

r T t− + =− −( )
 

 
Then 
 

  p S N d e K N dt
r T t= − + −− −( ( ) ) ( ( ))( )

1 21 1  
 
Note that N x N x( ) ( )= − −1 .  Therefore,  
 
  p e KN d S N dr T t

t= − − −− −( ) ( ) ( )2 1  



OPTIONS ON OTHER ASSETS 
 
One can rewrite the Black-Scholes formula for a call as follows: 
 
 c e e S N d KN dr T t r T t

t= −− − −( ) ( )[ ( ) ( )]1 2  
 
Note that the term multiplying N d( )1  is the forward price of a 
non-dividend paying stock. 
 
One can also rewrite the term inside the normal function in the 
model as: 
 

 d
Se K T t

T t

r T t

1

25= + −
−

−ln( / ) . ( )( ) σ
σ

 

 
Note that the numerator in the logarithm term is also the forward 
price of a non-dividend paying stock.  In general, it is possible to 
show that to find the value of a call on some other type of asset, 
one simply uses the forward price of the asset wherever one finds 
the forward price of the stock in the Black-Scholes equation.  For 
example, for a European call on a dividend paying stock, we use 
 

d
Se FVD K T t

T t
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where FVD is the future value of the dividend on the stock.  As a 
result, we can write the price of a European call on a dividend 
paying stock as: 
 
 c e e S FVD N d KN dr T t r T t

t= − −− − −( ) ( ){[ ] ( *) ( *)}1 2  



We can use similar reasoning to price options on other assets.  For 
example, consider an option on a futures or forward contract.  The 
forward price of the futures (or forward) price is just the futures 
(forward) price itself.  Therefore, if the futures price equals  
Ft T,  then the price of a call option on this future is: 

 
  c e F N d KN dr T t

t T= −− −( )
,[ ( ' ) ( ' )]1 2  

 
where 
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This formula is called the “Black Model.”  
 
Finally, consider the value of an option on a foreign currency.  If 
the foreign interest rate is rF  and the spot price of the currency is 
St then  
 

  c e e S N d KN dr T t r r T t
t

F= −− − − −( ) ( )( )[ ( ' ' ) ( ' ' )]1 2  
 
where 
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DYNAMIC HEDGING: DELTA, GAMMA, AND VEGA 
 

The Black-Scholes model also describes how the price of the 
option changes when certain underlying variables change.  For 
example: 
 

    
∂
∂

c
S

N d
t

= ≡( )1 ∆ 

 
The interpretation for this "Delta" is exactly the same as the 
interpretaion of the ∆ in the binomial model: It gives the number of 
shares of stock to hold with a short call position in order to form a 
riskless position.  To see why, note that if one holds ∆ shares of 
stock and one short call, the change in the value of the portfolio is  
 

  
∂

∂
( )

( ) ( )
− + = − + =c S

S
N d N dt

t

∆
1 1 0 

 
Note that the value of this position doesn't change even if the stock 
price changes.  Thus, it is riskless. 
 
Put differently, if one wants to hedge a single long call, one sells ∆ 
shares of the stock. 
 
It is possible to show that if one changes ∆ continuously in 
response to changes in the stock price, one's position will be 



riskless.  This is called "dynamic hedging."  It is necessary to 
change ∆ every instant for this strategy to work perfectly. 
 
Of course, in the real world, it is impossible to make such 
adjustments.  Moreover, transactions costs make this strategy 
prohibitive.  Therefore, it is necessary to make adjustments less 
frequently.   
 
It is desirable to know, however, when it is necessary to make 
changes most frequently.  The "Gamma" of an option provides this 
information. 
 
Formally,  
 

   Γ ∆= =∂
∂

∂
∂

2

2

c
S St t

 

 
That is, Γ tells you how rapidly ∆ changes when the stock price 
changes.  It quantifies the curvature of the option price function.   
 
This is important information for a trader managing the risk of an 
option position.  Left untended, a position with substantial Γ>0 
may become overhedged (i.e., the trader's actual stock position 
becomes substantially larger than the optimal ∆) or may become 
unerhedged (i.e., the traders actual stock position becomes 
substantially smaller than the optimal ∆) in response to even small 
changes in the stock price.  Put differently, you are likely to need 



to change a hedge position quickly if there is a lot of Gamma.  
Gamma neutral hedgers (i.e., hedgers with positions with Γ=0) can 
sleep better than hedgers with substantial Gamma (either positive 
or negative). 
 
The other important variable a hedger needs to track is Vega.  This 
gives the sensitivity of the option price to changes in σ.   That is,  
 

    Υ = ∂
∂σ

c
 

 
Remember that Black-Scholes assumes that volatility is constant 
over time.  In reality, however, volatility can change rapidly.  If so, 
a trader with substantial Vega is subject to large gains or losses.  
Just as a hedger wants to know his vulnerability to stock price 
moves, he should also track his risk to volatility changes.  
 
These "Greeks" are important for another reason.  Consider a 
trader who wants to purchase or sell an option that is not traded on 
an organized exchange, or on the OTC market.  (For example, an 
individual might want to buy a 5 year call on the S&P 500).  Even 
though the trader cannot trade the option, he can replicate the 
payoffs of the option synthetically by dynamically buying or 
selling the asset underlying the option. 
 
That is, at every instant of time, the trader holds ∆ units of the asset 
underlying the option, where ∆ gives the delta of the option he 



wants to replicate.  If the trader can adjust the position 
continuously and costlessly, such a strategy will produce cash 
flows at option expiration that are exactly identical to those of the 
option. 
 
You may also want to replicate an option that is traded.  For 
example, if you want to buy a put, but you think puts are 
overpriced in the market (e.g., the implied volatility of traded puts 
is greater than your forecast of volatility), you may wish to 
replicate the put through a dynamic trading strategy.  Similarly, 
you can arbitrage the market by buying (selling) underpriced 
(overpriced) options, and dynamically replicating off-setting 
positions. 
 
In reality, it is impossible (and very costly!) to adjust the portfolio 
continuously in this fashion.  This is particularly true if the option 
is near the money, so has a lot of Gamma.  Moreover, the dynamic 
hedger is vulnerable to changes in volatility.  The problems faced 
by "portfolio insurers" (traders who attempted to replicate calls on 
the stock market through dynamic hedging techniques) on 
10/19/87 provides a graphic illustration of the potential problems. 
 
In order to address these problems, the trader can add traded 
options to his portfolio.  The trader's objective is to match the 
Delta, Gamma, and Vega of his portfolio to the Delta, Gamma, and 
Vega of the option the trader desires to replicate.  This reduces the 
amount of adjustment needed, and provides some insurance against 
volatility shocks. 



 
For example, consider replicating an option with ∆=∆* and Γ=Γ*.  
You can use the underlying stock and an option with ∆=∆** and 
Γ=Γ** to construct your replicating portfolio.  To get a delta and 
gamma match, you have two equations and two unknowns.  The 
unknowns are NS , the number of shares of stock to trade, and No , 

the number of options to buy or sell as part of your hedge portfolio.  
Formally, solve: 
    
   ∆ ∆* **= +N NS o  

and  
 
    Γ Γ* **= No  

 
You could also construct a delta, gamma, and vega matched 
position.  To do so require two options and the stock.  You have to 
solve three equations in three unknowns here.     



 
Note that even a gamma matched or gamma and vega matched 
position must be adjusted over time.  Recently, researchers have 
developed strategies that allow you to create “fire-and-forget” 
hedges.  That is, using these techniques, you can replicate an 
option by constructing a portfolio at the initiation of the trade, and 
never adjusting the portfolio until the expiration date of the option 
you want to replicate.  As you might guess, this requires you to 
trade in a large number of options.   
 



FORMULAE FOR GAMMA, VEGA, AND THETA 
(The ΠΠ  in the formulae is the mathematical constant 3.14159) 
 
The Gamma of a Euro call or put equals: 
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The Theta of a Euro call equals: 
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The Theta of a Euro put equals: 
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Note that Theta is unambiguously negative for a Euro call, but may 
be positive for a Euro put.   



 
For a call, Gamma, Delta, and Theta are related by this equation: 
 

   rc rS S= + +Θ ∆ Γ.5 2 2σ  
 
A similar expression holds for a put.   
 



FORMULAE FOR GAMMA, VEGA, AND THETA 
On FORWARDS 

(The ΠΠ  in the formulae is the mathematical constant 3.14159) 
 
The Delta of a Euro futures call equals: 
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Gamma of a Euro futures call or put equals: 
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The Vega of a Euro call or put equals: 
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The Theta of a Euro futures call equals: 
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The Theta of a Euro futures put equals: 
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Note that Theta is unambiguously negative for a Euro call, but may 
be positive for a Euro put.   
 
For a call, Gamma, Delta, and Theta are related by this equation: 
 

   Γ+Θ= 225. Frc σ  
 
A similar expression holds for a put.   
 



Using Black-Scholes 
 

• Most of the inputs to the Black-Scholes model are 
observable.  These include: the strike price, the underlying 
price, the interest rate, and time to expiration.  One key 
input is not observable—the volatility.   

• Good option values depend on good volatility values.   

• Where do volatility values come from?  There are two 
sources: historical data and implied values. 

• Historical volatilities are calculated using historical data 
on returns.   For instance, to calculate the volatility for 
MSFT stock, one would plug historical data on MSFT 
returns into a spreadsheet and calculate the standard 
deviation (adjusted for the data frequency).   

• If the B-S model were strictly correct, this approach would 
be the right one.  Moreover, if the B-S model were strictly 
correct—that is, if volatility was truly constant—you 
would want to get as much historical data as is available to 
get the most precise estimates of volatility possible. 

• An alternative approach is to use “implied volatility.”  In 
this approach, you find the value of σ that sets the value of 
the option given by the B-S formula equal to the value of 
the option observed in the marketplace. 



• Implied volatility can be estimated with extreme accuracy 
using the “Solver” function of Excel.  There are very good 
approximations that you can use to determine the implied 
volatility for an at-the-money option.    

• Obviously, if one uses the implied volatility, one is 
assuming that (a) the model is correct, and (b) the option is 
correctly priced.  Thus, implied volatility cannot be used 
to determine whether a particular option is mis-priced.  So 
what is it good for? 

• If the B-S model is correct, all options should have the 
same implied vol.  Therefore, comparing implied 
volatilities across options allows one to determine whether 
options on the same underlying are mis-priced relative to 
one another.  Buy the option with low volatility, sell the 
option with high volatility. 

• Also, you can use the implied volatility to get more 
accurate measures of the “Greeks.” 

• In practice, most options are quoted using an implied 
volatility (that is then plugged into the B-S formula).  
Therefore, most options traders think in vol terms rather 
than in price terms, and option trading is essentially 
volatility trading. 



How Well Does the Black-Scholes Model Work? 

 
• The Black-Scholes model is the most influential theory ever 

introduced in finance, and perhaps in all of the social 
sciences.  Despite this success, it has its weaknesses.  
Practitioners have learned how to patch the holes in Black-
Scholes. 

• We know that the B-S model is not strictly correct.  First, 
contrary to the model’s predictions, there are systematic 
differences in implied volatility by strike price and time to 
expiration.   

• Most important, deep in-the-money and deep out-of-the-
money options have consistently higher volatilities than at-
the-money options.  This is referred to as the “volatility 
smile.”  For equity index options, this is more of a “smirk” 
because options with low strike prices have far higher 
implied vols than ATM or high strike options.   

• This implies that σ cannot be constant.   

• This is confirmed by empirical evidence.  This evidence 
shows that volatility varies systematically over time.  
Moreover, volatility “clumps”—big price moves tend to 
follow big price moves, and small price moves tend to follow 
small price moves.   



Dealing With the Smile 

• There are two basic approaches to the smile. 

• The first approach posits that volatility is a function of the 
underlying price and time.  That is, ),( tSσ .  Using very 
advanced techniques, one can find such a function that fits a 
variety of options prices.  (Many practitioners use a crude 
approach that gives a very unreliable and unstable estimate of 
this function). 

• The second approach is to post that volatility is random and 
to write down a specific stochastic process for volatility. 

• The second approach is probably more realistic, but raises 
many difficulties.  Most important, volatility risk cannot be 
hedged using the underlying.  Consequently, any pricing 
formula must include a volatility risk premium.   

• Some practitioners and academics assume that this risk 
premium is zero.  This results in convenient pricing formulae, 
but is inconsistent with a great deal of evidence.  Most 
notably, options hedged against moves in the underlying 
price earn a positive risk premium—this wouldn’t happen if 
vol risk premia equal zero. 

• Thus, the smile is a knotty issue that most practitioners 
address in an ad hoc manner.   



How Exotic 

• So far we have considered “vanilla” options—basic 
puts and calls. 

• Other kinds of options—“exotics”—are traded in the 
OTC market. 

• Although the variety of exotics is limited only by the 
imagination of traders, some exotics are more common 
than others. 

• Sometimes exotics are bundled implicitly in securities. 



Digital or “Bet” Options 
 

• A digital option pays a fixed amount of money if a certain 
event occurs. 

• For instance, a digital call on Microsoft struck at $75 that 
pays $10, pays $10 if the price of MSFT at expiration 
exceeds $75, regardless of whether the price at expiration is 
$75.01 or $175.  Similarly, a digital put struck at $75 that 
pays $10, pays $10 if the price of the underlying at expiration 
is $74.99 or $0. 

• The value of a digital is easy to determine.  A digital call 

value is )( 2
)( dPNe tTr −−

 where P is the payoff and d2 is 
the same as in the B-S formula.  Similarly, a digital put value 

is )( 2
)( dPNe tTr −−−

. 

• Digitals are traded in the OTC market, but perhaps the most 
(in)famous example of digital options was embedded in 
bonds bought by Orange County CA in the early 1990s.  To 
raise yields the Orange Cty treasurer bought bonds that had 
embedded short digital options on interest rates.   

• A “one touch” option is an American digital.  It is called a 
one touch because it is optimal to exercise as soon as the 
underlying price hits (“touches”) the strike price (do you 
know why?) 



Knock-Options 

• Knock options come in several varieties.   

• Knock-in options.  These are options with an underlying 
option that comes into existence only if some condition is 
met.  There are up-and-in and down-and-in varieties.  For 
example, an up-and-in call with a strike price of $75 and a 
“knock barrier” of $100 has a payoff at expiration if-and-
only-if the underlying price hit or exceeded $100 some time 
prior to expiration.   

• Knock-out options.  These are options that go out of 
existence if some condition is met.  For example, a down-
and-out call struck at $75 with a knock barrier of $50 expires 
worthless if the underlying price hits or is less than $50 at 
any time during the option’s life.  Thus, even if the stock 
price is $100 at expiration, the option is worthless if the stock 
price hit $50 prior to expiration. 

• Knock-options are “path dependent” because their payoff 
depends not only on the value of the underlying at expiration, 
but the path that the underlying price follows prior to 
expiration. 

• Manipulation can be an issue with these “barrier options.” 



Asian Options 

• An Asian option has a payoff that depends on the average 
price of the underlying over some time period.  

• For instance, an Asian call on crude oil with a monthly 
averaging period has a payoff that depends on the average 
price of crude oil over a one-month-long period. 

• There are average price options where the strike price is set 
prior to expiration, and the payoff is based on the difference 
between an average price and the pre-agreed strike price. 

• There are also “average strike” options where the strike price 
is the average price on the underlying during some averaging 
period, and the payoff is based on the difference between the 
value of the underlying at expiration and this strike price. 

• There are no closed form solutions for Asian options with 
arithmetic averaging.  Various numerical techniques can be 
used to price them. 



Some Other Exotics 

• Compound options.  These are options on an option, such as 
a put on a call, or a call on a call.  There are formulae for 
valuing such options given Black-Scholes assumptions. 

• Exchange options.  These give you the right, but not the 
obligation to exchange one asset for another. There are 
formulae for valuing such options given Black-Scholes 
assumptions. 

• “COD” (cash-on-delivery) options.  Here you only pay the 
premium if they wind up in the money.  These options can 
have a negative payoff. 

• Quantos.  Cross-currency options are the most common 
example.  An example is a contract on the Nikkei Index with 
the payoff converted to USD.  This conversion can occur at 
either an exchange rate set when the option is written or the 
exchange rate prevailing at expiration.  The payoff to the 
option is Xmax[S-K,0] where X is the exchange rate, S is the 
value of the Nikkei, and K is the strike price (in JY).  Here 
there are two sources of risk—the Nikkei index (in yen), and 
the JY-USD exchange rate.   

• Compos.  These are options with payoffs max[XS-K,0] where 
the strike price is in the domestic currency. 



• Lookbacks.  Lookbacks are path dependent options because 
the payoff depends on the maximum (or minimum) price 
reached by the underlying during the option’s life.  For 
instance, a lookback call with a strike price K has a payoff 
max[max(S)-K,0] where max(S) is the maximum priced 
achieved by the underlying during the life of the option.  
Obviously this lookback is more valuable than a vanilla call. 



Issues With Exotics 

• Exotics frequently present serious hedging difficulties, 
especially when they are near the money and close to 
expiration. 

• For example, a digital option’s gamma is positive when it is 
out of the money and negative when it is the money.  Right 
before expiration, the option’s gamma is positive infinity at a 
price immediately below the strike price and negative infinity 
at a price immediately above the strike price.  This behavior 
makes it hard to hedge. 

• As another example, a knock-out option has an infinite 
gamma when the underlying price is at the knock-out 
boundary. 

• Compound options have high gammas when they are at the 
money because they are options on options—the convexity in 
the underlying option compounds the convexity in the “top” 
option. 

• Recall that convexity also has ramifications for the sensitivity 
option value to volatility.  Hence, some exotics may have 
substantial vol (vega) risk. 



Get Real 

• Heretofore we have discussed options that are financial 
claims. 

• The world is full of non-financial—“real”—options. 

• In particular, virtually all business investment and 
operational decisions involve choice—i.e., optionality. 

• Option to defer investment.  

• “Time-to-build” option—build a project in stages with the 
choice to abandon after each stage. 

• Option to increase or reduce investment scale. 

• Option to abandon. 

• Option to switch inputs or outputs (operational flexibility). 

• Growth options (R&D, leases on property or resources). 

• Combinations of the above options. 



Valuing Real Options 

• Traditional capital budgeting approaches ignore real options.  
This is unfortunate as real options may have a large affect on 
the profitability of investment. 

• Firms may underinvest, overinvest, or invest at the wrong 
time if they ignore real options. 

• Increasingly firms are using option pricing techniques to 
evaluate investment projects. 

• Given the intense informational demands, it is often not 
practical to use these techniques to get precise estimates of 
real option value.   

• Nonetheless, the use of options valuation techniques forces 
firms to analyze the characteristics of their investments more 
rigorously. 



An Example 

• Consider a firm that has the option to defer investment in 
drilling a gas well.  It can invest today, spend $104, and get a 
well worth $100 (i.e., which generates $100 in net present 
value).  From an NPV perspective, this project is a turkey. 

• However, the investment is risky.  In one year, if good news 
about the value of gas arrives, the well is worth $180.  If bad 
news arrives, it is worth $60.  The interest rate is 8 percent 
per year. 

• In terms of our binomial model, u=1.8 and d=.6.  The 
“pseudo-probability” is (1.08-.6)/(1.8-.6)=.4.   

• The option to delay the project one year is therefore [.4(180-
104)+.6(0)]/1.08=28.15 

• Exercise:  Show that the value to delay the project for up to 
two years is worth $31.82, and the value to delay the project 
for up to three years is worth $45.01. 



Intuition 

• The intuition here is pretty straightforward—the option to 
delay allows you to wait for the arrival of information, 
namely whether gas prices are going to rise or fall.  Since 
better information means better investment decisions, you the 
option to delay is valuable. 

• The simple example here implies that you will never invest if 
you always have the option to delay.  This is an American 
call option.  Under the assumptions of the analysis (with no 
intermediate cash flows) standard analysis implies that 
deferral is always the best choice. 

• In the real world, investments throw off benefits only if the 
firm invests in the asset.  These benefits are like dividends 
and can induce the firm to exercise the call option early. 

• In commodity markets, for instance, prices tend to be “mean 
reverting”—that is, if the price is higher (lower) than average 
today, it is expected to fall (rise).  This mean reversion can 
make it optimal to invest now rather than waiting.   



Implications 

• Real options have important implications. 

• Under some circumstances, the value of investment 
options is increasing in uncertainty (i.e., the volatility of 
the value of the asset). 

• An increase in uncertainty induces firms to defer 
investment. 

• Policy uncertainty (e.g., uncertainty in tax, regulatory or 
monetary policy) can affect firm investment strategies.   
One would expect to see greater levels of investment in 
“stable” jurisdictions (countries, states) than “unstable” 
ones 



 




