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The basic building block for interest rate modeling is a zero coupon bond,

i.e., a security that pays $1 at maturity, with no intervening cash flows.

Denote the time-t price of a zero that matures at T as Pt,T . Further,

denote pt,T = lnPt,T . The continuously compounded “yield” on the zero is:

Yt,T =
−pt,T

T − t

That is:

Pt,T = e−Yt,T (T−t)

The “yield curve” is a locus of points plotting the relationship between

yield and time to maturity. Yield curves can assume a variety of shapes–

upward sloping, downward sloping, and humped. This is also called the

“term structure” of interest rates.

Interest rate–“fixed income”–products are the most important securities,

and the most heavily traded derivatives (e.g., interest rate swaps). Therefore,

there has been extensive work on modeling these instruments, which involves

modeling the yield curve.

The rates Yt,T are “spot” rates, which are used to discount cash flows

from T back to t. An important concept is that of the forward rate, which
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is the rate at which one discounts back between two dates in the future, say

T1 and T2 > T1:

Ft,T1,T2
= −

pt,T2
− pt,T1

T2 − T1

The instantaneous forward rate is:

ft,T = −
dpt,T

dT

Note:

Pt,T = e−
∫ T

t
ft,sds

and thus:

Yt,T =

∫ T
t ft,sds

T − t

There are two basic strands of modeling. The older strand models the

dynamics of a theoretical abstraction–the instantaneous risk free (i.e., default

free) interest rate rt–and then explores the implications of these dynamics for

the pricing of zeros. The new strand–“market models”–model the dynamics

of observable rates, including Libor rates and swap yields.

1 Spot Rate Models

Spot rate models characterize the dynamics of the instantaneous, condtinu-

ously compounded rate rt. The general form of the simplest kind of model

is:

drt = α(rt, t)dt + σ(rt, t)dWt

In this framework, the price of a zero is:

Pt,T = Ẽ(e−
∫ T

t
rsds)

Different models have different choices of α(rt, t) and σ(rt, t).
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The proto-model is that of Vasicek, which posits:

drt = φ(r̄ − rt)dt + σdWt

Here r̄ is a long-run mean interest rate to which the spot rate reverts at rate

φ > 0. That is, the rate trends down when it is above the long term mean,

and trends up when it is below the long run mean.

Note that rates can become negative in this model. Once upon a time

that was considered a bug. Now it is a feature!

This model can generate yield curves of various shapes. Traders consider

the model deficient because it cannot fit the prices of all zero coupon bonds

(i.e., it cannot match the term structure exactly). This is because there are

only four things to adjust–rt, φ, r̄ and σ–but a continuum of bonds. We will

discuss ways to address this issue later.

Another model is Cox-Ingersoll-Ross:

drt = φ(r̄ − rt)dt + σrr
.5
t dWt

Here, interest rates cannot become negative: there is a reflecting barrier at

zero, because if the rate ever hits zero the mean reversion term causes it to

rise deterministically.

2 Valuing Zeros in Spot Rate Models: The

PDE Approach

A zero is just a derivative of the spot rate. Therefore, our standard PDE

approach is applicable. Thus, in the Vasicek model, a zero solves the PDE:

rP =
∂P

∂t
+ [φ(r̄ − rt) − λσ]

∂P

∂r
+ .5σ2∂2P

∂r2

3



Through a change in the time variables:

rP = −
∂P

∂T
+ [φ(r̄ − rt) − λσ]

∂P

∂r
+ .5σ2∂2P

∂r2

where λ is a market price of risk, which is necessary because rt is not traded.

This PDE can be solved by making an inspired guess for the zero price:

Pt,T = eA(t,T )−B(t,T )rt

Plugging this into the PDE, and solving subject to the boundary conditions:

PT,T = 1

Pt,T (0) = 1;

lim
rt→∞

Pt,T (rt) = 0;

will allow us to determine A(t, T ) and B(t, T ).

To simplify the notation, assume t = 0 and write A(T ) and B(T ). That

is, rather than using a maturity date, use T to denote time to maturity.

Note that the boundary condition at maturity will be satisfied if:

A(0) − B(0)r = 0

Since this must hold for all r, A(0) = 0 and B(0) = 0.

Given the guess,
1

P

∂P

∂r
= −B(T )

1

P

∂2P

∂r2
= −B2(T )

1

P

∂P

∂T
= A′(T )− B ′(T )r

Substituting into the PDE:

−B(T )φ(r̄− r) + .5B2(T )σ2 − A′(T ) + B ′(T )r − r = −B(T )λσ

4



Again, this must hold for all r, which requires:

A′(T ) = .5B2(T )σ2 − (φr̄ − λσ)B(T )

and

B ′(T ) = 1 − B(T )φ

This is a system of ordinary differential equations, which can be solved sep-

arately, solving the second one first:

dB

dT
= 1 − φB

∫ T

0

dB

1 − φB
=

∫ T

0
dT

−
1

φ
ln(1 − φB(T )) = T

which implies:

B(T ) =
1

φ
(1 − e−φT )

Now integrate the first expression:

A(T ) = .5σ2
∫ T

0
B2(T )dT − (φr̄ − λσ)

∫ T

0
B(T )dT + C

where C is an integration constant that we will choose to satsify the boundary

condition A(0) = 0. We can substitute for B(T ) based on our previous

solution:

A(T ) =
.5σ2

φ2

∫ T

0
(1 − 2e−φT + e−2φT )dT − (φr̄ −

λσ

φ
)
∫ T

0
(1 − e−φT )dT + C

Simplifying the integrals:

A(T ) =
.5σ2

φ2
(T +

2e−φT

φ
−

e−2φT

2φ
) − (r̄ −

λσ

φ
)(T +

e−φT

φ
) + C
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To solve for C :

A(0) = 0 =
.5σ2

φ2
(
2

φ
−

1

2φ
) − (r̄ −

λσ

φ
)
1

φ

Solving for C and substituting:

A(T ) =
.5σ2

φ2
(T +

2e−φT − 1

φ
−

e−2φT − 1

2φ
) − (r̄ −

λσ

φ
)(T +

e−φT − 1

φ
)

Now, we could stop there, but let’s continue in a sadomasochistic fashion, by

noting:

B2(T ) =
1

φ2
(1 − 2e−φT + e−2φT )

φB2(T ) = 2
1 − e−φT

φ
+

e−2φT − 1

φ

φB2(T ) − 2B(T ) =
e−2φT − 1

φ

Which, based on substituting back into our expression for A(T ):

A(T ) =
σ2

2φ2
(T − 2B(T )− .5φB2(T ) + B(T ))− (r̄ −

λσ

φ
)(T − B(T )

Simplifying further gives:

A(T ) = −
σ2

4φ2
B2(T )− (r̄ −

λσ

φ
−

σ2

2φ2
)(T − B(T ))

Of course, remembering the connection between PDE and martingale

methods, we should be able to derive the same expression by evaluating:

Pt,T = Ẽe−
∫ T

t
(r̄−rs)ds−

∫ T

t
σdWs

This will be left as a future exercise, which should be straightforward after

we implement this method for a more complicated model: the Hull-White

model.
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3 The Hull-White Model

As noted earlier, traders don’t like the fact that the Vasicek model (or the

CIR model, for that matter) can’t fit the prices of every zero exactly. So

what to do? What to do?

No problem!: Add an infinite number of degrees of freedom to fit an

infinite number of bond prices!

That’s what Hull-White do. They posit:

drt = (Θt − art)dt + σdWt

where Θt is an arbitrary function. As we will see, we can choose Θt to fit all

bond prices exactly.

As it turns out, working directly with this equation is somewhat cumber-

some, so we will transform variables to make the problem isomorphic to one

that is easy to solve–an Orenstein-Uhlenbeck (“OU”) process:

dXt = −µdt + σdWt

To solve this SDE, posit:

Xt = a(t)[X0 +
∫ t

0
b(s)dWs]

Then, applying Ito’s Lemma:

dXt = a′(t)[X0 +
∫ t

0
b(s)dWs]dt + a(t)b(t)dWt

dXt =
a′(t)Xt

a(t)
dt + a(t)b(t)dWt

Now we match coefficients. First, we get an ordinary differential equation:

−µ =
a′(t)

a(t)
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a(t)b(t) = σ

The boundary conditions for the ODE is a(0) = 1. Solving the ODE subject

to this condition gives: a(t) = e−µt. Thus:

e−µtb(t) = σ

so

b(t) = eµtσ

Thus, the solution to the SDE is:

Xt = e−µtX0 +
∫ t

0
e−µ(t−s)dWs

Now that we know how to solve for OU processes, we can implement the

following transformation:

ys = rs − α(s)

where:

α(s) = e−as(r0 +
∫ s

0
eauΘudu)

which implies:

dys = drs − dα(s) = drs + ae−as(r0 +
∫ s

0
eauΘudu)ds − e−aseasΘsds

Thus:

dys = drs + aα(s)ds − Θsds

Substituting from our original equation for drs, we get:

dyt = (Θt − art)dt + σdWt − Θtdt + aα(t)

dyt = −a(rt − α(t))dt + σdWt

dyt = −ayt + σdWt
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which is an OU process. Solving for this process, given that y0 = 0:

yT = e−aT y0 + σe−aT
∫ T

0
easdWs

yT = σe−aT
∫ T

0
easdWs

Recall:

P (0, T ) = Ẽ0e
−

∫ T

0
rtdt = Ẽ0e

−

∫ T

0
ytdt−

∫ T

0
α(t)dt

P (0, T ) = Ẽ0e
−

∫ T

0
rtdt = e−

∫ T

0
α(t)dtẼ0e

−

∫ T

0
ytdt

Since

yt = σe−at
∫ t

0
eaudWu

∫ T

0
ytdt = σ

∫ T

0

∫ t

0
e−ateaudWudt

We now change the order of integration. Note 0 ≤ u ≤ t, and 0 ≤ t ≤ T .

This implies 0 ≤ u ≤ T , and u ≤ t ≤ T . Thus:

∫ T

0
ytdt = σ

∫ T

0

∫ T

u
ea(u−t)dtdWu

First evaluate the inner integral:

∫ T

0

∫ T

u
ea(u−t)dt = eaue−au − e−at

a
=

1 − e−a(T−u)

a

∫ T

0
ytdt = σ

∫ T

0

1 − e−a(T−u)

a
dWu

Note this is an Ito Integral, and we can use the Ito Isometry to evaluate it

given that we know the expectation of the exponential of a normal variate is

the exponential of one-half its variance.

Specifically:

var(
∫ T

0
ytdt) = σ2

∫ T

0

(1 − e−a(T−u))2

a2
du
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Note:
σ2(1 − e−a(T−u))2

a2
=

σ2

a2
(1 − 2ea(u−T ) + e2a(u−T ))

The integral of the first term is easy:

σ2T

a2

The integral of the second term is:

−
2

a2
(1 − e−aT )

The integral of the third term is:

σ2

2a3
(1 − e−2aT )

Putting it all together, we get that the variance of
∫ T
0 ytdt is:

σ̂2
T = σ22aT − 4(1 − e−aT ) + 1 − 2−2aT

2a3

Thus:

P0,T = e−
∫ T

0
α(t)dtEeσ̂T Z̃

where Z is a standard normal variate. This implies:

P0,T = e−
∫ T

0
α(t)dt+.5σ̂2

T

Take logs of both sides:

p0,T = −
∫ T

0
α(t)dt + .5σ̂2

T

To recover α(T ) take the derivative with respect to T (using Leibniz’s Rule):

∂p0,T

∂T
= −α(T ) +

σ2

2a2
(1 − e−aT )2

which implies:

α(T ) = −
∂p0,T

∂T
+

σ2

2a2
(1 − e−aT )2
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Recalling the definition of the instantaneous forward yield:

α(T ) = fT +
σ2

2a2
(1 − e−aT )2

Thus, if we know forward rates for all maturities, we know α(T ) for all

maturities.

Recalling the definition of α(T ):

α(T ) = e−aT (r0 +
∫ T

0
eauΘudu) = fT +

σ2

2a2
(1 − e−aT )2

We can no recover Θt by taking the derivative with respect to T and applying

Leibniz’s Rule:

−ae−aT(r0 +
∫ T

0
eauΘudu) + e−aTeatΘt =

∂fT

∂T
−

aσ2

2a2
(1 − e−aT )e−aT

Recognizing that

e−aT (r0 +
∫ T

0
eauΘudu) = −

∂p0,T

∂T
= fT

and substituting, we get:

−afT + ΘT =
∂fT

∂T
−

aσ2

2a2
(1 − e−aT )e−aT

Which (finally!) implies:

ΘT = afT +
∂fT

∂T
−

aσ2

2a2
(1 − e−aT )e−aT

That is, ΘT is the sum of the speed of mean reversion multiplied by the

instantaneous forward rate at T , fT , plus the slope of the forward curve at T ,

and an adjustment term that depends on T and the speed of mean reversion.

The good news here is that if we have the yield curve, we can choose Θt

to fit it exactly. The bad news is that if we have the yield curve, we can

choose Θt to fit it exactly. Exact fitting means misfitting. But traders like

neatness, so here we are.

11



4 Multifactor Affine Models

The Vasicek, CIR, and Hull-White are single factor “affine” models in which

the instantaneous spot rate is the only state variable, and (log) bond prices

are an affine function of that rate. Multifactor models specify multiple (usu-

ally latent) factors, yt:

yt = φ(ȳ − yt)dt + ΣdWt

where yt is an n×1 vector. The spot rate is a linear function of these factors:

r = δ0 + δ′yt

Furthermore:

dWit =
√

αi + βiytdZit

where dZit, i = 1, . . . , n are uncorrelated Brownian motions.

Though obviously more complicated, these models can be solved in the

same ways as the single factor models, by solvng a PDE or by expectation.

Note that it is first necessary to change measures:

dW̃it =
√

αi + βiyt(dZit − λidt)

Note that the value of a zero is Pt,T (yt), and thus, there are first partial

derivatives and second partial derivatives for each factor, and cross partials.

This makes things messier, but the basic mechanics can be used. First, posit:

PT = eA(T )−B′(T )y

Note that A(T ) and B(T ) are n× 1 vectors. Then, plug this expression into

the PDE. Simplifying implies systems of ordinary differential equations:

∂B(T )

∂T
= −φ′B(T )−

n
∑

i=1

[B(T )λi + .5(Σ′B(T ))2
i ]βi + δ
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∂A(T )

∂T
=

n
∑

i=1

[B(T )λi + .5(Σ′B(T ))2
i ]αi − B′(T )φȳ− δ0

Such systems of ODEs are readily solved numerically.

5 Market Models

Practitioners came to dislike affine models because the state variables do not

correspond to anything actually quoted or traded in the market: Go to your

bank and ask them what the current continuously compounded spot rate is!

Historically, in the market the two most important traded rates were

LIBOR–the London Interbank Offered Rate–and swap rates. LIBOR is on

its way to being phased out, but there no “term” rate replacement on offer.

To address practitioners’ complaints, quants developed “market models”

which specify observable, traded rates as the state variables. Thus, we have

LIBOR Market Models and Swap Market Models. Let’s consider each in

turn.

5.1 LIBOR Market Models

LIBOR is intended to represent the cost of unsecured interbank borrowing,

and hence reflect the marginal cost of funds to large financial institutions.

LIBOR is (for now!) quoted for 1-3 weeks, and 1-12 months. Moreover,

there are LIBOR forward rates: for example, there is the rate for borrowing

lending between 3 and 6 months from now. These forward rates extend for

periods years into the future. (The CME Eurodollar Futures contract prices

basically give three month forward rates for periods extending out ten years.)

Now for some notation. Consider dates T1, T2, . . . , Ti, . . . TN . Call Li(t)

the forward rate quoted at t (“today”) that involves borrowing at Ti and

repaying at Ti+1. Li(t) is an annualized rate, and [Ti, Ti+1] is not necessarily a
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year. The convention in LIBOR is that interest is calculated on an actual/360

basis, meaning that fractions of a year are calculated by counting the actual

number of days between Ti and Ti+1 and dividing by 360. Call this year

fraction αi. Then, borrowing $1 at Ti requires repayment of 1 + αiLi(t) at

Ti+1.

This is a forward agreement: the parties agree to Li(t) at t, but no money

changes hands then. This is an agreement to borrow or lend in the future.

Call Di(t) the time t price of a zero maturing at Ti and Di+1(t) as the

time t price of the zero maturing at Ti+1. Thus:

0 = Di(t)− (1 + αiLi(t))Di+1(t)

That is, the present value of the cash flows on the forward borrowing must

equal zero, because no money changes hands at t.

This implies:

Li(t) =
Di(t) −Di+1(t)

αiDi+1(t)

Note that this is a ratio of traded asset prices. Now we can utilize our

understanding of numeraires to make Li(t) into a martingale. Specifically,

we know that Li(t) is a martingale if we choose the zero maturing at the

maturity of the forward loan the numeraire. Moreover, if we assume that

Li(t) follows a geometric Brownian motion, we can therefore write:

dLi(t)

Li(t)
= σidW i+1

it

Here, W i+1
it is a Brownian motion. The superscript denotes the measure

under which it is a Brownian motion, which is the measure corresponding to

Di+1 as the numeraire.

We can now price some contingent claims. One common LIBOR-related

contingent claim is a caplet, i.e., an option that provides a cap on the interest
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rate. Consider a caplet maturing at Ti, that has a payoff based on Li(t). To

match the payoffs of the option to the payoff to the underlying forward loan,

the payoff to this claim occurs at Ti+1, and is:

max αi[Li(Ti) − K, 0]

where K is the strike price, and Li(Ti) is the spot [Ti, Ti+1] LIBOR rate at

Ti.

We can price this using our martingale technique:

c(Li(t), t) = Di+1(t)E
i+1 max αi[Li(Ti) − K, 0]

1

There is a 1 in the denominator, because this is the value of the numeraire at

Ti+1. The superscript on the expectation operator again denotes that this is

an expectation taken with respect to the “terminal measure” corresponding

to the Di+1 numeraire.

This problem is isomorphic to the Black-Scholes model, and we can there-

fore show:

c(Li(t), t) = αiDi+1(t)[Li(t)N(d1) − KN(d2)]

where

d1 =
Li(t)

K
+

∫ T
t σ2

i (s)ds
√

∫ T
t σ2

i (s)ds

and

d2 = d2 −

√

∫ T

t
σ2

i (s)ds

If σi is a constant,
∫ T

t
σ2

i (s)ds = σ2
i (Ti − t)

Note that we can only choose to make a single forward rate a martingale,

because we only can choose one maturity zero as numeraire. However, many
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continent claims are dependent on multiple LIBOR rates. For example, vari-

able rate mortgages may have payoffs that depend on 15 one-year LIBOR

rates over the life of the loan. We can’t make all these rates martingales: we

can make one such. Once we choose which one, we have to adjust the drifts

of the other rates.

One way to do this is to make the last-maturing rate of interest a martin-

gale by choosing as numeraire the zero maturing on the maturity date of the

loan corresponding to that rate. We then work backwards to progressively

earlier rates.

For example, if we choose Li(t) to be a martingale, what about Li−1(t)?

Li−1 =
Di−1 −Di

αi−1Di

Now multiply both sides by Di/Di+1:

DiLi−1

Di+1
=

Di−1 − Di

αi−1Di+1

Note that if we choose Di as the numeraire, we can make Li−1 a martingale:

dLi−1 = σi−1Li−1dW i
i−1

where the subscript on the Brownian motion refers to the starting date corre-

sponding to the rate, and the superscript refers to the numeraire. To change

measure to the i + 1 numeraire:

dW i+1
i−1 = dW i

i−1 + λdt

Further:
DiLi−1

Di+1
= Li−1(1 + αiLi)

Moreover,

dLi−1(1 + αiLi) = (1 + αiLi)dLi−1 + Li−1αidLi + αidLidLi−1
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Making our Girsanov substitution:

(1 + αiLi)σi−1Li−1(dW i+1
i−1 − λdt) + Li−1αiσiLidW i+1

i + αiσi−1σiLi−1Liρdt

where ρdt = dW i+1
i−1 dW i+1

i

Note that Li−1(1 + αiLi) is a ratio of asset prices, with the numeraire in

the denominator. Thus, it is a martingale under the i + 1 measure. To be a

martingale, the drift must equal zero:

−(1 + αiLi)σi−1Li−1λ + αiσi−1σiLi−1Liρ = 0

which implies:

λ =
αiσiρLi

1 + αiLi

Which produces:

dLi−1 = −
αiσiσi−1ρLiLi−1dt

1 + αiLi

+ σi−1Li−1dW i+1
i−1

Now consider Li−2. Repeating the foregoing implies:

dLi−2 = −
αi−1σi−1σi−2ρLi−1Li−2dt

1 + αi−1Li−1
+ σi−2Li−2dW i

i−2

where for simplicity I have assumed that the correlation all rates is the same

for each pair. Substituting

dW i
i−2 = dWi−2 −

αiσiLi

1 + αiLi

produces:

dLi−2 = −
αi−1σiσi−2ρLi−1Li−2dt

1 + αi−1Li−1
−

αiσiLiσi−2Li−2ρdt

1 + αiLi

+ σi−2Li−2dW i+1
i−2

We can continue recursively in this fashion to derive dLi−2, dLi−3, and so on,

adding a new term to the drift each time.

The only practical way to implement this is via simulation. That is, to

value say the 15 variable rate mortgage, we have to simulate paths for each

of the rates, using these drift-adjusted equations.
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5.2 Swap Market Models

As the name suggests, interest rate swaps are contracts for exchanging–

“swapping”–cash flows based on interest rates. A “vanilla” swap has two

“legs”–a floating leg and a fixed leg–and two payers–a floating payer and a

fixed payer. The fixed payer agrees to pay a set (fixed) amount on a sequence

of payment dates. The floating payer pays on these same payment dates a

variable amount which depends on some short-term interest rate. Histor-

ically, this rate has been LIBOR. Note that the fixed price payer receives

floating, and the floating price payer receives fixed. It is common to refer to

positions as pay fixed/receive floating or pay floating/receive fixed.

A vanilla swap specifies a notional principal amount, e.g., $100 million.

This amount never changes hands, but is merely used to determine the size

of the fixed and floating payments. The swap also specifies the payment

frequency, e.g., semi-annual or quarterly. This payment frequency determines

the maturity of the rate used to determine the floating payment. For example,

a semi-annual swap floating payment is based on a six-month interest rate.

Consider a swap entered at Tn, with payment dates {Tn+1, . . . TN}. If

n > 0, this is a “forward starting” swap. Further, αi is the fraction of a year

between Ti and Ti+1. (Most swaps use the actual/360 day count convention.)

Assume the fixed rate is K (annualized)

The mechanics of the swap work as follows. On payment date i + 1,

the fixed payer pays αiK. If the floating payment is based on LIBOR, the

floating payer pays αiLi(Ti). Note that the floating payment is based on the

reference floating rate quoted on the previous payment date. This matches

up swap cash flows with cash flows on LIBOR-based loans. (There is a type

of swap called the LIBOR in Arrears swap where the payment on a date is

based on the rate quoted on the payment date.)
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The value of the fixed payments in the swap is:

Vfix(t) = K
N−1
∑

i=n

αiDi+1(t)

What about the value of the floating payments? How do we estimate the

uncertain cash flows? Well, we can use a hedging strategy. If I lend $1 at

LIBOR at Tn (the starting date of the swap), keep the interest payments,

and reinvest the principal at LIBOR when the loan matures, and do that for

each payment date, the interest payments match the floating payments on

the swap. The value of the floating payments is therefore equal to the cost

of implementing this strategy, which involves a cash flow of -1 at Tn and +1

at TN . The value of this is:

Vfloat = Dn(t) − DN (t)

The swap involves no cash flows at t (when it is negotiated), so the present

value of the floating and fixed payments must be equal:

Vfix(t) = K
N−1
∑

i=n

αiDi+1(t) = Vfloat = Dn(t)− DN (t)

This implies:

K =
Dn(t)− DN (t)
∑N−1

i=n αiDi+1(t)

Note that is a ratio of traded asset prices. Therefore, if we choose
∑N−1

i=n αiDi+1(t) to be the numeraire, K is a martingale under the equiva-

lent measure.

Pn+1,N :=
∑N−1

i=n αiDi+1(t) is referred to as the dollar value of a basis

point (DVBP) or price value of a basis point (PVBP). It is the amount by

which the value of the swap changes for a one basis point change in interest

rates.
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Let’s modify the notation a little. Denote yn,N (t) as the fixed rate in a

swap quoted at time t, where the swap starts at Tn ≥ t, and ends at TN .

Further, let’s add some structure, and assume that yn,N (t) follows a geometric

Brownian motion. Choosing Pn+1,N as the numeraire:

dyn,N (t) = σn,N(t)yn,N(t)dW n+1,N
t

where the superscript on the Brownian motion denotes the measure.

We now can price “swaptions,” which are options to enter into a swap

at a future date. A “payer” swaption with strike price K allows the option

owner to enter into a swap where she pays a fixed rate K. A “receiver”

swaption allows the option owner to enter into a swap where she receives the

fixed rate K.

Note that two swaps with identical payment dates (and same floating

reference rate) have identical floating cash flows. Assume the option expires

at T . The holder of the payer swaption can therefore obtain the following

payoff:

Pn+1,N (T )max[0, yn,N(T )− K]

This is because he can exercise the option, agree to pay K every payment

date, and simultaneously enter into a receiver swaption at the rate yn,N (T ),

thereby locking in a cash flow of yn,N (T )− K every payment period.

Similarly, the owner of the receiver swaption obtains:

Pn+1,N (T )max[0, K − yn,N (T )]

Note that given the assumed dynamics of yn,N , the problem is isomorphic

to the Black-Scholes-Merton problem. For a payer swaption,

PSn,N,T (t) = Pn+1,N (t)En+1,N max{
Pn+1,N (T )[yn,N(T ) − K]

Pn+1,N (T )
, 0}
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PSn,N,T = Pn+1,N (t)En+1,N max{yn,N (T )− K, 0}

Using the same type of analysis used in the derivation of the BSM model,

we get:

PSn,N,T (t) = Pn+1,N (t)[yn,N(t)N(d1) − KN(d2)

with:

d1 =
ln(

yn,N (t)

K
) + .5Σ2

n,N

Σ2
n,N

and

d2 = d1 − Σ2
n,N

where

Σ2
n,N =

∫ T

t
σ2n, N(s)ds

This is called the Black swaption formula.

Just like with the LMM, there are are multiple swap rates, corresponding

to different maturities, starting dates, etc., but we can only make a single

rate a martingale. However, there are products that have payoffs that may

depend on multiple swap rates. Just as with the LMM, once we choose a

measure that turns one particular rate into a martingale, we have to formulate

a drift for other swap rates under this measure. This is an even more tedious

exercise than for the LMM, so I will leave it to your imagination.

21


