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Abstract. Momentum has been examined extensively in equity markets,

but little studied outside them. I document the existence of momentum and

reversals in futures markets including commodity and ¯nancial futures con-

tracts traded in the US and overseas. Futures momentum portfolios earn

positive average returns even after adjusting for risk using canonical pricing

models including the CAPM and Fama-French three factor models. If fu-

tures momentum portfolios are formed based on standardized performance,

they earn positive average returns even after a momentum factor is included

in the Fama-French model, although the momentum factor is statistically

signi¯cant. Thus, futures momentum is related to, but not subsumed by,

equity momentum. Non-parametric risk adjustment reduces momentum re-

turns, but momentum portfolios formed based on standardized historical

returns exhibit abnormal performance even allowing for time varying, non-

parametric risk adjustment.
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1 Introduction

Momentum is one of the most recalcitrant anomalies in the asset pricing

literature. The phenomenon has been studied extensively since it was ¯rst

documented by Jegadeesh and Titman (1993). For the most part, momentum

portfolios earn positive returns even after adjusting for risk using canonical

parametric asset pricing models such as the CAPM (conditional and un-

conditional) and the Fama-French three factor model. More recently, em-

pirical evidence suggests that alternative methods for risk adjustment can

eliminate momentum anomaly. Ahn et al (\ACD," 2003) ¯nd that a non-

parametric stochastic discount factor model with time varying risk premia

extinguishes most of the gains to momentum in US stock portfolios. Chordia

and Shivakumar (2002) document that time varying expected returns driven

by macroeconomic factors can explain momentum pro¯ts.

Virtually all research on momentum focuses on equities. Although some

research examines international stocks (Bhojraj and Swaminathan, 2003)

and bonds (Gebharrdt, Hvidkjaer, and Swaminathan, 2002; Naik, Trinh,

and Rennison, 2002), most momentum studies focus on US stocks. Method-

ologies and sample periods di®er, but the independence of contributions of

various momentum studies based on a core of common data is limited. More-

over, behavioral theories of momentum (e.g., Barberis et al, 1998; Daniel et

al, 1998) rely on allegedly pervasive psychological characteristics that should

a®ect trader actions outside of US equity markets. To determine whether

momentum is a °uke ¯nding in a particular asset class or a ubiquitous phe-

nomenon related to fundamental investor biases, it is therefore imperative
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to examine whether momentum is found in other, and heretofore unstudied,

markets.

For a variety of reasons, futures markets are a particularly fruitful subject

to explore for evidence of the pervasiveness of momentum.

First, since the mid-1970s futures markets have grown dramatically in size

and scope. Whereas futures markets had once been restricted to agricultural

products and some metals, by 20 years ago futures had been introduced on

US goverment securities, short term interest rates, equity indices, foreign

currencies, and energy products. In the late-1980s and early-1990s, futures

markets grew dramatically overseas as well, especially in Europe. Moreover,

in this period the volume of trading has exploded. Furthermore, due to the

possibility of arbitrage trading, futures prices are tightly linked to the prices

of their underlying instruments. Therefore, anomalies documented in futures

prices almost certainly occur in the prices of the underlyings. Since futures

markets represent directly or indirectly (via arbitrage) a much broader slice

of investment and trading opportunities than do equity markets, they make

it possible to determine whether momentum is a ubiquitous phenomenon, or

is instead limited to stocks.

Second, there are signi¯cant institutional di®erences between equity mar-

kets and futures markets. Most important, whereas there are typically short

selling restrictions in equity markets, there are no such restrictions in futures

markets. Indeed, shorting futures is just the mirror image of buying. More-

over, trading costs in futures markets are typically far smaller than in equity

markets. Thus, a detailed analysis of futures markets sheds light on whether

institutional factors, such as the di±culty of short selling or transactions
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costs, contribute to momentum anomalies.

Momentum indeed exists in futures prices. During the 1982-2003 period,

buying futures contracts with returns in the upper quntile over some period

of months and selling futures contracts with returns in the lower quintile

during this period generated a return of approximately 70 to 80 basis points

per month, depending on the portfolio formation and holding periods. This

return is statistically signi¯cant. Moreover, these momentum returns persist

even after adjusting for risk using parametric models including the CAPM

and Fama-French three factor models. Perhaps most important in light of

recent evidence, momentum returns persist even after adjusting for risk using

a stochastic discount factor estimated using a non-parametric approach a la

ACD. Although the magnitude of the momentum premium declines after the

non-parametric risk adjustment, this premium is statistically signi¯cant at a

high level of con¯dence for several choices of portfolio formation and holding

periods, if portfolios are formed on the basis of standardized performance.

Interestingly, futures momentum is related to stock momentum, but not

subsumed by it. The correlation between the momentum portfolio return

and the Fama-French momentum factor is between .26 and .30 (depend-

ing on the method of constructing the futures momentum portfolio), and

the momentum factor is statistically signi¯cant in time series regressions of

the momentum return on the three Fama-French factors and the momen-

tum factor. Nonetheless, the constants in these regressions are positive and

typically statistically signi¯cant at conventional levels, indicating a futures-

speci¯c momentum e®ect that is not completely explained by stock-based

momentum returns.
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In addition to short term momentum, there is evidence of long term re-

versals in futures prices. Speci¯cally, returns to momentum portfolios are

negative and statistically signi¯cant in the second year after portfolio forma-

tion. Indeed, the reversal typically more than o®sets the momentum return

earned in the ¯rst year after portfolio formation.

These results suggest that momentum and reversals are pervasive phe-

nomena that cannot be explained by existing asset pricing methods, includ-

ing the relatively unrestrictive non-parametric stochastic discount factor ap-

proach. The momentum puzzle cannot be put to rest just yet.

The remainder of this article is organized as follows. Section 2 outlines

the empirical approach and the data employed. Section 3 presents the basic

results on momentum and reversals, and shows that standard asset pricing

models do not explain momentum returns in futures. Section 4 analyzes the

ability of a non-parametric risk adjustment to explain momentum returns.

Section 5 examines the characteristics of momentum portfolios. Section 6

summarizes the article.

2 Methodology and Data

2.1 Methodology

Momentum studies are based on returns. The method for constructing re-

turns based on futures prices is motivated by the institutional features of

these markets, particularly marking-to-market. Consider an agent who buys

a futures contract on date t. The contract expires at date ¿ . The futures

price is Ft;¿ . On day t+1 the futures price changes to Ft+1;¿ . From t to t+1
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the agent realizes a gain of Ft+1;¿ ¡ Ft;¿ . At the end of t + 1, this amount
is paid into the agent's margin account (if positive) or deducted therefrom

if negative. The agent can then invest this margin in°ow at the prevailing

interest rate, or borrow to ¯nance a margin out°ow at this rate.

The lending (borrowing) of the t to t+1 gain (loss) can be repeated daily

to the end of the month. The end of the month in which the trader purchased

the contract is date T . The interest rate on date t0, t+1 · t0 · T ¡ 1 is Rt0 .
This is a daily rate (i.e., not annualized). At T , the agent will have

Vt;T = (Ft+1;¿ ¡ Ft;¿ )¦T¡1k=t+1(1 +Rk)

in his margin account.

If the law of one price holds,

Et(mTVt;T ) = Et[mT (Ft+1;¿ ¡ Ft;¿ )¦T¡1k=t+1(1 +Rk)] = 0

where mT is a stochastic discount factor. Therefore,

Et[mT rt+1¦
T¡1
k=t+1(1 +Rk)] = 0

where rt+1 = Ft+1;¿=Ft;¿ ¡ 1. Summing across all T0 · t · T ¡ 1, where T0
is the ¯rst day of the month, and applying the law of iterated expectations

implies:

E[mT

T¡1X
t=T0

rt+1¦
T¡1
k=t+1(1 +Rk)] = 0 (1)

where the expectations operator without a subscript represents the uncondi-

tional expectation.

Motivated by (1), I calculate the monthly return on a given futures con-

tract by

rmT =
T¡1X
t=T0

[rt+1¦
T¡1
k=t+1(1 +Rk)] (2)
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This quantity represents a monthly return that adjusts for the e®ects of

marking to market. This return calculation captures any convexity bias ef-

fects that arise from marking-to-market and correlations between the interest

rate and futures returns. It is equivalent to the amount of money in an agent's

margin account at the end of a month for each dollar of notional contract

value traded at day t in that month.

Futures contracts with notional values and prices denominated in a cur-

rency other than dollars require a slightly di®erent treatment. Denote ft as

the date t FX spot price (dollars per unit of foreign currency). An individual

who buys a single unit of a futures contract at t can convert the mark-to-

market gain or loss into dollars at t+ 1, and then invest the gain or ¯nance

the loss until T at the dollar interest rate. At T , the agent will have:

Vt;T = ft+1(Ft+1;¿ ¡ Ft;¿ )¦T¡1k=t+1(1 +Rk)

in his margin account. By the law of one price,

Et(mTVt;T ) = Et[mTft+1(Ft+1;¿ ¡ Ft;¿ )¦T¡1k=t+1(1 +Rk)] = 0:

Moreover,

Et(
mTVt;T
ft

) = Et[mT
ft+1
ft
(Ft+1;¿ ¡ Ft;¿ )¦T¡1k=t+1(1 +Rk)] = 0:

Therefore, by the law of iterated expectations

E[mT
ft+1
ft
rt+1¦

T¡1
k=t+1(1 +Rk)] = 0:

As before, these terms can be summed for all t in a given month to calculate

a mark-to-market adjusted return on the foreign futures contract.1

1The term ft+1
ft
rt+1 can also be interpreted as the dollar gain realized on a position in

$1 of notional value of the foreign currency-denominated futures contract.
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Returns are calculated using settlement prices for the next-to-expire con-

tract. Note that futures contracts expire on a given date, which may (and

typically does) occur in the middle of the month. For instance, grain and

Treasury futures contracts expire 7 business prior to the last business day

of the contract month. Therefore, when calculating the returns in a given

month, I use the returns on the contract that is next to expire at the be-

ginning of that month. If that contract expires during that month, I then

\roll" to the new next-to-expire contract upon the last day of trading of the

expiring contract. I use the one-month LIBOR rate (adjusted for the rele-

vant holding period using the actual-over-360 day counting convention) to

measure the interest rate Rk. For ft I use the relevant spot exchange rate

obtained from the Commodity Research Bureau data set.

Given a calculation of returns for each month for each available futures

contract, at the beginning of each month I then sum returns over the previous

J months, where J = f3; 6; 9; 12g. Denoting the return on futures contract
i in the month ending at T by rmi;T , the cumulative return over the J month

horizon ending in at T is ¹ri;T;J =
PT
j=T¡J r

m
i;j. The cumulative returns are

then ordered from lowest (\losers") to highest (\winners"). Given the number

of available futures contracts (discussed in more detail in the next section),

it is not feasible to form decile portfolios of futures, as is conventional for

stocks. Instead, I form quintile portfolios, with the 20 percent of the available

contracts with lowest returns in the loser portfolio and the 20 percent of the

available contracts with the highest returns in the winner portfolio.

As will be seen, although there is evidence of momentum in portfolios

formed in this way, the disparity in volatility across futures contracts masks
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the momentum e®ect in some ways. In particular, very high variance futures

are more likely to be in winner and loser portfolios, whereas low variance fu-

tures are seldom represented in either. As a consequence, the variances of the

winner and loser portfolios are substantially higher than those of the interme-

diate portfolios. Moreover, even absent any momentum e®ect, more volatile

futures are more likely to be included in momentum portfolios. Therefore, I

implement another method for identifying winners and losers that attempts

to mitigate this e®ect. Speci¯cally, during the performance measurement

period, I calculate the daily standard deviation of returns for each futures

for each month. Call the daily standard deviation of return for futures i in

month j ¾i;j. I then create standardized returns:

r̂i;T;J =
¹ri;T;JqPT

j=T¡J Ni;j¾
2
i;j

where Ni;j is the number of daily returns on futures contract i in month j.

These standardized returns are also ordered, and quintile portfolios based on

standardized returns during the portfolio creation period are formed.

I then measure the performance of the quintile portfolios in the four quar-

ters following formation, and in the second and third years following forma-

tion. Inasmuch as portfolios are formed each month, and their performance is

measured over periods longer than a month, performance measurement peri-

ods overlap. Consequently, the statistical signi¯cance of returns is measured

using Newey-West standard errors that adjust for the amount of overlap (2

months for quarterly returns and 11 months for annual returns).

The quarterly return analysis implies that the largest average monthly

returns for momentum portfolios are for J = 6 with a 6 month holding pe-
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riod (i.e., K = 6) and J = 9 with a 3 (K = 3) month holding period. This is

true for portfolios formed using standardized returns and non-standardized

returns. Following Jegadeesh and Titman, I then determine the monthly

return on portfolios with J = 6 and K = 6, and J = 9 and K = 3. The

monthly return on the quintile portfolios in a given month is given by the

equally weighted average of the portfolios formed over the last K months

based on performance over the J months prior to portfolio formation. This

permits the use of ordinary standard errors. Even when portfolios are formed

based on standardized returns, post-formation portfolio performance is mea-

sured using the raw returns ri;T .

The detailed analysis focuses on the performance of the momentum port-

folio consisting of the return on a long position in the winner portfolio, and

a short position in the loser portfolio. Note that there are no short sale con-

straints in futures markets that impede the shorting of the loser portfolio.

Indeed, the nature and cost of buying and shorting are equivalent in futures

markets.

Once the returns to the momentum portfolios are determined, I calcu-

late the average return to these portfolios across the sample. In addition, to

determine whether momentum returns represent a reward for risk bearing,

I estimate time series regressions of the monthly returns on the momentum

portfolios fJ = 6;K = 6g and fJ = 9; K = 3g against monthly risk factors.
Risk factors include the market return, the three Fama-French factors (mar-

ket return, market-to-book, and size), and the three Fama-French factors

plus a momentum factor. Finally, I use a non-parametric stochastic discount

factor approach as another way to ascertain whether risk adjustment elim-
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inates momentum returns for these portfolios. The methodology for this

analysis is discussed in Section 4.

2.2 Data

I utilize data from futures contracts traded in North America, Europe, Asia,

and Australia. The data was provided by the Commodity Research Bureau.

For brevity, I present detailed results for two sets of futures contracts: dol-

lar denominated contracts traded in the US and Europe, and all available

contracts.

The analysis used futures returns beginning in January, 1982. I choose

this year because a large number of futures contracts were introduced in that

year, or slightly thereafter. For instance, in 1982 and 1983 futures contracts

were introduced on stock indices, short term interest rates, and crude oil.

Numerous other futures were launched in the mid-1980s. Prior to 1982, the

available futures were limited primarily to grains and oilseeds, softs, precious

metals, currencies, and two Treasury securities.

Panel A of Table 1 lists all of the dollar denominated contracts. Panel

B lists the additional contracts included in the second set. Table I groups

contracts into nine categories such as agricultural, stock index, and interest

rates. The Table also indicates the number of observations included for each

contract.

It should be noted that trading volume in these contracts is immense.

In November, 2003 (the last month in the data set), daily dollar volume for

dollar denominated futures contracts in the data set averaged $7.5 billion

per contract. Across all 50 contracts available in this month, average daily
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turnover totaled $376 billion. Inasmuch as this represents the volume for the

front month contracts only, total trading volume for the futures covered was

even larger. The largest contract, Eurodollars, had an average daily dollar

volume of $187 billion in the front month alone{average dollar volume for all

months of this contract was approximately $1 trillion. The median average

daily turnover of futures included in the data set during this month was $815

million. In November, 2003, there were 21 contracts (out of 50 in the data

set) that averaged more than $1 billion in volume per day, and 5 contracts

with turnover in excess of $20 billion per day. In contrast, total daily NYSE

turnover was approximately $40 billion in this period. The smallest volume

contract in the data set in November, 2003 had an average daily dollar volume

of $6.84 million.

3 Results

3.1 Quarterly Performance of Momentum Portfolios

Table 2 reports mean quarterly and annual returns for momentum portfolios

formed using dollar denominated futures with J = f3; 6; 9; 12g based on non-
standardized returns (in Panel A) and standardized returns (in Panel B) on

dollar denominated futures contracts. Newey-West standard errors are used

to calculate the t-statistics, which are reported in parentheses.

Several ¯ndings stand out. First, the unconditional mean returns on

momentum portfolios are generally positive in the ¯rst two quarters after

formation. For J = 3, returns are positive for each of the ¯rst four quarters

after formation. For J = 6, returns are positive for the ¯rst 3 quarters. For
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J = 9, returns are positive for the ¯rst two quarters whereas for J = 12,

returns are positive for the ¯rst quarter only. These unconditional mean

returns are signi¯cant at the one percent level for three quarters when J = 3,

for two quarters when J = 6 and J = 9, and for one quarter when J = 12.

These ¯ndings are similar to those documented for equity markets.

Second, there are strong reversals in the returns on the momentum port-

folios. The reversals begin in the fourth quarter after portfolio formation

when J = 3 and J = 6 (with stronger reversals for the latter in that quar-

ter), in the third quarter after portfolio formation when J = 9, and in the

second quarter when J = 12. Moreover, the reversals persist in the second

year after portfolio formation. Indeed, the returns in the second year are

negative, and larger in absolute value, than the returns in the ¯rst year for

all except J = 3. The combination of momentum at short horizons and rever-

sals at longer horizons is also consistent with evidence from equity markets.

Returns in the third year after portfolio formation are indistinguishable from

zero for all J .

Table 3 extends the analysis to include other, non-dollar denominated

futures. The results are similar to those for dollar denominated futures.

Table 4 reports the results of cross-sectional regressions like those pre-

sented in Heston and Sadka (2002) and Bhojraj and Swaminathan (2003).

Speci¯cally, for each month i in the data, I regress all available returns in

that month against the corresponding returns for month i¡k, k = 1; : : : ; 36.
The slope coe±cients in these cross sectional regressions for a given lag are

then averaged across all months in the data set, and reported in Table 4 along

with their associated t-statistics. Table 4 reports the averaged results from
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the dollar denominated data set. As noted in Heston and Sadka, the slope

coe±cients are proportional to the returns of winner minus loser portfolios

as formed by Lehmann (1990) and Lo and MacKinlay (1990). Thus, they

represent another way of measuring the momentum e®ect.

Note that coe±cient at the ¯rst lag is positive and signi¯cant. This

contrasts to equity markets, where the coe±cient on the ¯rst lag is often

negative. This is typically attributed to a microstructure e®ect in equity

markets, which is obviously absent in the futures markets studied, likely

indicating their greater liquidity. Coe±cients are mainly positive for the ¯rst

12 lags, and are signi¯cant and economically large at lags 1, 3, 5, 10, and 11.

Coe±cients are strongly negative, and statistically signi¯cant, at lags 13-15.

Thereafter, with the exception of lag 25, the coe±cients are economically

small and statistically insigni¯cant.

In brief, futures returns exhibit patterns similar to those documented for

equity markets. Speci¯cally, they exhibit short term momentum followed by

long term reversals.

3.2 Monthly Returns and Risk Adjustment

In the interest of brevity, I calculate monthly returns for two J;K combi-

nations rather than all 16 possible combinations. I choose J = 6, K = 6,

and J = 9, K = 3 because these exhibit the most pro¯table unconditional

momentum returns. For J = 6, K = 6 the unconditional monthly momen-

tum return, calculated a la Jegadeesh-Titman, is 71 basis points per month

(t = 2:65) for dollar denominated portfolios formed using non-standardized

performance, and 79 basis points per month (t = 3:70) for dollar denom-

15



inated portfolios formed based on standardized performance. For J = 9

and K = 3, the unconditional mean momentum return is 82 basis points

(t = 2:66) for the non-standardized-based portfolios, and 86 basis points

(t = 3:32) for the dollar denominated portfolios formed using standardized

returns. Note that although the magnitude of momentum portfolio returns is

similar regardless of whether portfolios are formed on the basis of standard-

ized or non-standardized returns, the mean returns for the portfolios formed

using standardized returns are estimated more precisely. This re°ects that

fact that when returns are not standardized, high variance futures are more

likely to be in the variance portfolios. This elevates the variances of the loser

and winner portfolios relative to the variances of returns for quintiles two

through four.

For instance, when J = 6, when portfolios are formed without standard-

izing returns, the standard deviation of returns of the loser portfolio is .0372

and that for the winner portfolio is .0364. In contrast, the volatilities of port-

folios based on performance quintiles two, three, and four are .0192, .0166,

and .0194, respectively. In contrast, when standardized returns are used to

form portfolios, the loser portfolio volatility is .0281 and that of the winner

portfolio .0287. For the intermediate portfolios, the volatilities are .0238,

.0234, and .0242.

To determine whether these mean returns merely re°ect a reward for

risk, I regress the monthly returns on the four portfolios against various risk

factors. I ¯rst use the CAPM, with the return on the CRSP value weighted

portfolio as the measure of the market return. I then use the three Fama-

French factors, and the three Fama-French factors and a stock momentum
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factor as independent variables.2

Table 5 reports the results for dollar denominated futures. For each of

the four momentum portfolios studied, the regression constants in each of

the three regressions are positive and signi¯cantly di®erent from zero (at p-

values well below .01) except when the momentum factor is included in the

regressions for the portfolios formed using non-standardized returns. Indeed,

when a momentum factor is excluded, the constant is often larger than the

unconditional mean return on the relevant momentum portfolio. Thus, as

is the case with equity momentum portfolios, canonical asset pricing models

cannot explain momentum returns.

Interestingly, the Fama-French momentum factor is positive and signi¯-

cant in each regression in which it is included. This re°ects the fact that the

correlation between this factor and the return on the futures momentum port-

folio ranges between .26 and .28, depending on fJ , Kg and whether portfolios
are formed using standardized or non-standardized returns. Nonetheless, for

the standardized return-based portfolios, the constant term in the regression

including the momentum factor is signi¯cant with a p-value of 1.5 percent

for J = 9, K = 3, and .4 percent for J = K = 6. This result suggests that

futures momentum is related to, but not subsumed by, stock momentum.

Moreover, the signi¯cance of the equity momentum variable in the futures

momentum regressions bolsters the interpretation of momentum as a true

risk factor.

Table 6 reports similar results for the entire set of contracts. Again, the

2In each regression, I also include a January dummy, the coe±cients for which are not
reported as they are typically insigni¯cant.
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constant terms remain positive and signi¯cant even after adjusting for risk as

measured by the CAPM and the Fama-French factors. Indeed, the constant

terms actually exceed the unconditional mean momentum returns when the

CAPM and the three Fama-French factors are used to measure risk. When

a momentum factor is included in the Fama-French time series regression

using the standardized returns, the constant term is still signi¯cant although

somewhat diminished in magnitude, and the coe±cient on the momentum

factor is positive and signi¯cant; the constants for the portfolios based on

non-standardized returns are marginally signi¯cant. The correlation between

the Fama-French momentum factor and the futures momentum returns based

on the broad data set is .30.

Thus, as the case with stock momentum, futures momentum returns are

not compensation for risks as measured by standard asset pricing models.

There is a relationship between futures momentum returns and stock mo-

mentum returns, but including the latter as a \factor" does not eliminate

futures momentum pro¯ts.

4 Risk Adjusted Momentum Returns Based

on a SDF

ACD propose using a stochastic discount factor (\SDF") model to adjust for

risk in place of parametric pricing models such as CAPM and Fama-French.

ACD ¯nd that such an approach leads to sharp reductions in the estimates

of momentum returns, particularly when the stochastic discount factor is

time-varying.

I implement the ACD approach using the futures momentum portfolios
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J = K = 6, and J = 9, K = 3, for both non-standardized and standardized

return-based portfolio formation. I ¯rst estimate the SDF mT assuming that

it is not time varying. I then estimate a model that permits mT to vary with

variables that are plausibly related to time-varying expected returns.

Estimation of an SDF in this way requires a choice of basis assets. ACD

use industry portfolios. I have done so as well, but ¯nd that industry portfo-

lios augmented by futures portfolios perform better. Most important, when

applied to momentum returns the Wald and likelihood ratio statistics used

to test for spanning described in Kan-Zhou (2002) are larger using the 20

industry portfolios than is the case when one uses 5 industry portfolios, the

riskless bond and 9 futures portfolios as the basis assets.3 Thus, the proba-

bility that 20 industry portfokios do not span momentum returns is higher

than the probability that the 5 industry and 9 futures portfolios do.

As discussed in section 2, the expected discounted returns on the futures

portfolios and the futures momentum portfolio should equal zero. The ex-

pected discounted (gross) returns on the industry portfolios and the riskless

bond should equal 1.

The SDF is posited to be a linear combination of the returns on the basis

assets. As is conventional, I use GMM to estimate mT . When the momen-

tum portfolio is included in the estimation, the model is overidenti¯ed, with

one overidentifying restriction. I use a J-test to determine whether the av-

erage pricing error on the momentum portfolio{denoted by ®{is signi¯cantly

3The portfolios are grain and oilseeds, soft commodities, energy, industrials, interest
rates, currencies, indices, livestock, and precious metals. The returns on the nine futures
portfolios are given by the equally weighted monthly returns on futures contracts assigned
to them. The portfolio assignments are set out in Table 1.
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di®erent from zero. If momentum returns represent compensation for risk,

which is properly measured by the estimated SDF, the ® equals zero.

Table 7 reports the mean pricing error ® for the momentum portfolios

and the p-values for testing the hypothesis ® = 0 when the SDF is not time

varying. The estimates in Table 7 impose the constraint that mT ¸ 0. In

this case, the SDF for month T is estimated as mT = maxfx0T±; 0g, where
xT is the vector of gross returns on the basis assets (one plus the return

on the equity industry portfolios, and the return on the futures portfolios),

and ± is a vector of coe±cients estimated using GMM. The fact that mT is

constrained to be non-negative imposes a no-arbitrage restriction.4

For the dollar denominated futures momentum portfolios, the momentum

portfolio mean pricing errors are positive, and somewhat smaller than the

associated unconditional mean momentum portfolio returns. Thus, the risk

adjustment reduces the momentum return somewhat, but does not eliminate

it. Moreover, one can reject the null of zero mean pricing error at the 1

percent level for portfolios formed using standardized returns. One can reject

the null of zero mean pricing error for the non-standardized portfolios at the

5 percent level.

For the broader collection of futures that includes non-dollar denominated

contracts, for portfolios based on standardized returns, one can reject the null

of zero pricing error at a p-value of .0021 for the J = K = 6 portfolio, and

4In general, when the model is estimated only under the weaker law of one price as-
sumption with a non-time varying mT function, estimated momentum portfolio pricing
errors are slightly smaller than the unconditional mean momentum returns. However, for
the non-time varying SDF, one can still reject the null hypothesis of zero pricing error at
the ¯ve percent level for most portfolios studied.
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at p = :0051 for the J = 9, K = 3 portfolio. Here, these pricing errors

are slightly larger than the unconditional mean momentum returns. Pricing

errors for the portfolios formed using non-standardized returns are modestly

smaller than the mean returns on the momentum portfolios. The ® for both

the J = 6;K = 6 and J = 9; K = 3 portfolios are signi¯cant.

Table 8 reports mean pricing errors for the momentum portfolios and the

associated p-values, when the SDF is time varying. In this case, the SDF for

month T is estimated as mT = maxf(xT − ZT)0±; 0g where ZT is an vector
of instruments.5 I utilize instruments that have been documented to have

predictive power for returns. Speci¯cally, I utilize the term spread (i.e., the

di®erence between the 10 year and 3 month Treasury yields), the default

spread (the di®erence in yields between Baa and Aaa corporate bonds), the

three month riskless interest rate, and the dividend yield on the CRSP value

weighted index.6

For returns based on standardized performance-based portfolios, the pric-

ing errors are approximately 40 percent smaller than the unconditional mean

momentum portfolio return for dollar denominated futures. Thus, some of

the mean momentum return is compensation for risk. However, for USD de-

nominated contracts, the pricing errors are signi¯cantly di®erent from zero

at the 5 percent level for the portfolios formed using standardized returns.

5Without the no arbitrage restriction, one can reject the hypothesis of zero mean pricing
error at the 5 percent level for dollar denominated futures. Risk adjustment reduces pricing
errors by between 6 and 11 basis points.

6When only three instruments are used (regardless of the combination) the mean pricing
errors are signi¯cant at the 2 percent level regardless of whether standardized or non-
standardized returns are used.
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The probability that the J = K = 6 mean pricing error is zero for portfolios

constructed using standardized returns is .0007. For J = 9 and K = 3, the

probability is somewhat larger, .0215. However, for the portfolios constructed

using non-standardized performance, the p-value is .3454 for J = K = 6 and

.2687 for J = 9, K = 3. Thus, one cannot reject the null of zero mean

pricing error for a time varying SDF when one forms winner and loser port-

folios based on non-standardized performance. This is similar to what is

documented for equities by ACD, although (a) the di®erences between un-

conditional mean momentum returns and risk adjusted momentum returns

and (b) the p-values found here are both substantially smaller than those

they report.

For the broader momentum portfolios, time varying risk adjustment also

results in pricing errors that are about 40 percent smaller than the uncondi-

tional mean momentum return when momentum portfolios are formed using

standardized performance. For J = K = 6 one can reject the null of zero

pricing error with a p = :0117. With J = 9, K = 3 one rejects the null

with p = :0167. For portfolios based on non-standardized returns, the mean

pricing error is not signi¯cant at the 10 percent level for for all portfolios

studied.

These results provide an interesting contrast to those of ACD, who ¯nd

that risk adjustment using an SDF, especially including conditioning infor-

mation, eliminates virtually all of the superior performance of US equity mo-

mentum portfolios. In contrast, when momentum portfolios are formed using

standardized performance, SDF-based risk adjustment reduces but does not

eliminate the momentum portfolio pricing errors, regardless of whether the
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SDF is time varying or not. In this case, momentum returns are reliably

di®erent from zero even after a time varying risk adjustment. Results are

weaker for portfolios formed using non-standardized relative performance.

Therefore, even non-parametric risk adjustment does not necessarily elimi-

nate momentum returns in futures portfolios, especially if one constructs mo-

mentum portfolios so as to reduce the likelihood that high variance futures

are included in the extreme performance portfolios. Absent standardization,

more volatile futures are more likely to be included in the momentum port-

folios. This adds noise to the momentum portfolios. Given the sensitivity

of results to the method of determining winners and losers, results docu-

mented in equity markets may change if momentum portfolios are formed on

the basis of standardized relative performance rather than absolute relative

performance.

5 Characteristics of Momentum Portfolios

Momentum strategies are trading-intensive. Therefore, the ability of market

participants to realize momentum returns depends crucially on the trans-

actions costs of buying and selling momentum portfolios. These costs, in

turn, may depend on the characteristics of the instruments in the momen-

tum portfolios. For instance, transactions costs are likely to be high if low

volume contracts are disproportionately represented in momentum portfolios.

Each month, I examine three characteristics of the contracts included

in momentum portfolios: average daily volume, average open interest, and

variance. Volume is measured as the number of contracts traded (in the

front month) multiplied by the notional value of each contract (in dollars).
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Notional value for a given day is the size of the contract (e.g., 5000 bushels

for corn) multiplied by the settlement price on that day. Open interest is

similarly de¯ned as the dollar notional value of open positions at the end

of each day. Dollar values are used to re°ect the large variation in the

value of di®erent futures contracts; whereas the value of the commodity that

is deliverable against a single grain contract might be worth $10000, the

securities underlying a single T-bond contract are worth ten times as much.

Variance in a month is the variance of the daily returns on the front month

futures contract.

Volume and open interest grew dramatically over the sample period, par-

ticularly for ¯nancial futures contracts. Moreover, the composition of the

contracts included in the data set changed somewhat, with more ¯nancial

futures represented in the later period. Finally, there is considerable skew-

ness in the volume and open interest ¯gures. In particular, the dollar vol-

umes and open interest for the Eurodollar contract are far larger than for

any other contract included in the data set. The notional value of an indi-

vidual Eurodollar futures contract is approximately $1 million, and towards

the end of the sample, volume in this contract totaled several hundred thou-

sand contracts. Thus, notional turnover on the Eurodollars was routinely in

the hundreds of billions of dollars. In contrast, notional turnover on a large

commodity contract such as corn or crude oil is typically on the order of $1

billion.

The changes in the composition of the futures contract included in the

data set, and the skewness in volumes and open interest make sample average

values of volume and open interest for the quintile portfolios di±cult to
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interpret. Table 9 therefore reports the mean percentile volume and open

interest of the futures contracts in the quintile portfolios, along with the

mean variances of these futures. Results reported pertain to the J = 6,

K = 6 momentum portfolios, but similar ¯ndings obtain for other portfolios.

To calculate the mean volume percentile, for each month in which port-

folios were formed, I calculate the average dollar trading volume for each

futures contract in the prior 6 months, which I use to determine the volume

percentile of each of these contracts. Finally, in each month, I calculate the

average of the volume percentiles of the contracts in the ¯rst quintile port-

folio, the second quartile portfolio, and so on. Table 9 reports the average of

the average percentiles for each portfolio across all 257 months in the sample.

The open interest average percentiles are calculated similarly.

Panel A of Table 9 reports the results for portfolios formed on the basis

of standardized returns, and Panel B depicts the results for portfolios formed

using non-standardized returns. Note that for the standardized portfolios,

the volume rank of loser portfolios is very slightly below the median, whereas

that of the winner portfolios is very slightly above the median. However, the

disparity in volume ranks is small. Similar results hold for the hold for the

open interest ranks. Thus, implementation of the momentum strategy based

on standardized returns does not require an investor to trade in relatively

low volume or open interest contracts. Nor are the variances of the futures

in the winner and loser portfolios substantially di®erent from the variances

of the futures in the intermediate performance quintiles.

Results are somewhat di®erent for the portfolios formed using raw monthly

returns. Winner and loser portfolios consist of relatively low volume con-
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tracts; the average future in each of these portfolios is falls approximately

the 45th percentile for volume and open interest. Moreover, note that the

average variances of the futures included in the winner and loser portfolios

are almost 60 percent greater those of the variances of the futures in the

intermediate performance portfolios. These results re°ect almost exclusively

the impact of Eurodollar futures. Eurodollar futures prices exhibit very low

variance as compared to other contracts included in the data set. When

portfolios are formed using non-standardized returns, Eurodollar futures are

almost never included; they only appear in three loser portfolios and one

winner portfolio, out of a possible 257 portfolios. However, as noted earlier,

Eurodollars almost always have the largest volume and open interest. In

contrast, when portfolios are formed on the basis of standardized returns,

Eurodollars are in the winner or loser portfolio in about 25 percent of the

portfolio formation months; this is actually larger than the 20 percent that

would be expected if all contracts were equally likely to be represented in

these portfolios.

In sum, implementation of a momentum trading strategy in futures does

not require an investor to trade disproportionately in low volume, low open

interest, or high variance contracts, especially if he forms portfolios based

on standardized past performance. This undercuts any contention that the

momentum results are attributable to di®erences in transactions costs across

quintile portfolios.
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6 Summary and Conclusions

There have been numerous studies of momentum in equity markets. This

raises the question of whether momentum is a broader phenomenon, as be-

havioral models predicated on the assumption of widespread investor biases

would predict. This article examines futures prices for evidence of momen-

tum. Several results stand out. First, like equities, futures returns exhibit

momentum at short horizons and reversals at long horizons. Second, stan-

dard parametric asset pricing models cannot explain the returns on momen-

tum portfolios. Thus, if these models capture the relevant priced risks, mo-

mentum in futures markets presents another pricing anomaly. Third, futures

momentum returns are correlated with stock momentum returns, but fu-

tures momentum portfolios earn positive risk-adjusted returns even if stock

momentum returns are included as a risk factor. Fourth, although using a

non-parametric stochastic discount factor to control for risk reduces momen-

tum returns, it does not eliminate them, especially if momentum portfolios

are formed based on standardized performance rather than raw performance.

Finally, the futures contracts included in momentum portfolios do not have

unusually low or high volumes or open interests.

In brief, the momentum phenomenon is not restricted to stocks. Indeed,

inasmuch as the futures contracts included in this analysis represent directly

or indirectly a far broader slice of available investment opportunities than do

equities alone, the results of this article suggest that momentum is pervasive.

These results therefore present a further challenge to asset pricing models.

This article also suggests that futures prices represent fertile ground for
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the testing of asset pricing models more generally.7 Futures markets represent

a much broader and more diverse cross section of investment opportunities

than do equities alone. Moreover, futures prices are closely related to the

prices of a variety of other instruments (e.g., government bonds, swaps) that

are economically important, but which are not typically included in empirical

asset pricing work. Futures prices are readily available, and since most major

futures contracts were introduced no later than the mid-1980s, it is now pos-

sible to assemble a respectable time series of monthly futures returns. Thus,

including futures price data would bene¯t empirical asset pricing research.

7Dusak (1973), Breeden (1980), Reynauld and Tessier (1984), Cutler et al (1981) and
Chan and Bessembinder (1992) represent early examples of empirical testing of asset pric-
ing models on futures price data.

28



References

[1] Ahn, D-H., J. Conrad, and R. Dittmar. \Risk Adjustment and Trading

Strategies." Review of Financial Studies 16 (2003): 459-485.

[2] Barberis, N., A. Shleifer, and R. Vishny. \A Model of Investor Senti-

ment." Journal of Financial Economics 49 (1998): 307-343.

[3] Bhojraj, S., and B. Swaminathan. \Momentum: Returns Predictabil-

ity in International Equity Indices." Forthcoming, Journal of Business

(2004).

[4] Breeden, D. \Consumption Risk in Futures Markets." Journal of Fi-

nance 35 (1980): 520-530.

[5] Chan, K., and H. Bessembinder. \ Time-Varying Risk Premia and Fore-

castable Returns in Futures Markets." Journal of Financial Economics

32 (1992): 169-193.

[6] Cutler, D., J. Poterba, and L. Summers. \Speculative Dynamics." Re-

view of Economic Studies 58 (1991): 529-546.

[7] Daniel, K., D. Hirshleifer, A. Subrahmanyam. \Investor Psychology and

Security Market Under- and Over-Reactions." Journal of Finance 53

(1998): 1839-1885.

[8] Dusak, K. \Futures Trading and Investor Returns: An Investigation of

Commodity Market Risk Premiums." Journal of Political Economy 81

(1973): 1387-1406.

29



[9] Gebhardt, W., S. Hvidkjaer, and B. Swaminathan. \Stock and Bond

Market Interaction: Does Momentum Spill Over?" Working paper, Cor-

nell University (2002).

[10] Grundy, B., and S. Martin. \Understanding the Nature of Risks and

Source of Rewards to Momentum Investing." Review of Financial Stud-

ies 14 (2001): 29-78.

[11] Hong, H., and J. Stein. \A Uni¯ed Theory of Underreaction, Momentum

Trading, and Overreaction in Asset Markets." Journal of Finance 54

(1999): 2143-2184.

[12] Jegadeesh, N., and S. Titman. \Returns to Buying Winners and Selling

Losers: Implications for Stock Market E±ciency." Journal of Finance

48 (1993): 65-91.

[13] Kan, R., and G. Zhou. \Tests of Mean-Variance Spanning." Working

paper, Washington University.

[14] Lee, C., and B. Swaminathan. \Price Momentum and Trading Volume."

Journal of Finance 55 (2000): 2017-2069.

[15] Lehmann, B. \Fads, Martingales, and Market E±ciency." 105 Quarterly

Journal of Economics (1990): 1-28.

[16] Lo, A., and C. MacKinlay. \When are Contrarian Pro¯ts Due to Stock

Market Overreaction?" 3 Review of Financial Studies (1990): 157-208.

30



[17] Naik, V., M. trinh, and G. Rennison. \Introducing Lehman Brothers

ESPRI: A Credit Selection Model Unsing Equity Returns as Spread

Indicators." Quantitative Credit (2002): 26-39.

[18] Reynauld, J., and J. Tessier. \Risk Premiums in Futures Markets: An

Empirical Investigation." Journal of Futures Markets 4 (1984): 189-211.

[19] Richard, S. and M. Sundaresan. \A continuous Time Equilibrium Model

of Commodity Prices in a Multigood Economy." Journal of Financial

Economics 9 (1981): 347-371.

31



Table 1
Futures Contracts Used in Analysis
Panel A{Dollar Denominated Futures

Commodity Exchange NOBS
Grains & Oilseeds

Corn CBT 263
Wheat CBT 263
Wheat KCBT 263
Oats CBT 263
Soybeans CBT 263
Soybean Oil CBT 263
Soybean Meal CBT 263

Meats & Livestock
Feeder Cattle CME 263
Lean Hogs CME 263
Live Cattle CME 263
Pork Bellies CME 263

Softs
Co®ee CSCE (NYBOT) 263
Cocoa CSCE (NYBOT) 263
World Sugar CSCE (NYBOT) 263
US Sugar CSCE (NYBOT) 179
Cotton NYCE (NYBOT) 263
Orange Juice NYCE (NYBOT) 263

Industrials
Aluminum LME 198
Copper LME 263
Copper COMEX 263
Lead LME 215
Nickel LME 215
Plywood CME 263
Zinc LME 183

Precious Metals
Gold COMEX 263
Silver COMEX 263
Platinum NYMEX 263
Palladium NYMEX 263
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Table 1 Continued
Panel A{Dollar Denominated Futures

Commodity Exchange NOBS
Energy

Crude Oil NYMEX 248
Gasoline NYMEX 228
Heating Oil NYMEX 263
Natural Gas NYMEX 164

Foreign Currency
Australian Dollar CME 203
British Pound CME 263
Canadian Dollar CME 263
Deutsche Mark/Euro CME 263
Dollar Index NYFE 217
Japanese Yen CME 263
Swiss Franc CME 263

Interest Rate
Eurodollars CME 261
Five Year T-Notes CBT 187
Municipal Bonds CBT 222
Ten Year T-Note CBT 259
Thirty Year T-Bond CBT 263
Treasury Bill CBT 263

Indices
Dow Jones 30 CBT 71
GSCI CME 137
NASDAQ 100 CME 71
NYSE Composite NYFE 244
Nikkei 225 CME 159
Russell 5000 CME 130
S&P 500 CME 260
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Table 1
Panel B{Foreign Futures

Commodity Exchange NOBS
Grains & Oilseeds

Barley LCE 99
Rapeseed WCE 263
Wheat WCE 263
Potatoes LCE 99
Feed Wheat LCE 147

Softs
Cocoa LCE 209
Co®ee LCE 152
Sugar #5 LCE 163

Interest Rates
Australian 10 Year Bond SFE 186
Australian 3 Year Bond SFE 227
Japanese 10 Year Government TSE 217
Eurosterling LIFFE 252
Euroswiss LIFFE 153
Euroyen TIFFE 165
Long Gilt LIFFE 227
Canadian 10 Year Bond ME 163
Canadian Bankers' Acceptances ME 188
Bund EUREX 155
Notionel MATIF 203

Indices
FTSE 100 LIFFE 227
TOPIX TSE 137
Iberian Index MEFF 132
CAC 40 MATIF 179
Hang Seng HKFE 145
Nikkei 225 SGX 206

The foregoing table lists the futures contracts used in the empirical anal-

ysis, the exchanges on which they are traded, and the number of observations

for each. Exchange abbreviations are: CBT-Chicago Board of Trade; CME-

34



Chicago Mercantile Exchange; KCBT-Kansas City Board of Trade; CSCE-

Co®ee, Sugar, Cocoa Exchange; NYBOT-New York Board of Trade; NYCE-

New York Cotton Exchange; LME-London Metals Exchange; NYMEX-New

York Mercantile Exchange; COMEX-Commodity Exchange of New York;

NYFE-New York Futures Exchange; LCE-London Commodity Exchange;

WCE-Winnipeg Commodity Exchange; SFE-Sydney Futures Exchange; TSE-

Tokyo Stock Exchange; TIFFE-Tokyo International Financial Futures and

Options Exchange; LIFFE-London International Financial Futures and Op-

tions Exchange; HKFE-Hong Kong Futures Exchange; SGX-Singapore Fu-

tures Exchange; ME-Montreal Exchange; MEFF-Mercade De Opciones Y

Futuros Financieros; MATIF-Marche a Termes d'Instruments Financiers.

NOBS is the number of months of available returns for each future.
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Table 2
Panel A

Returns on Momentum Portfolios
USD Momentum Portfolios Formed Using Non-Standardized Performance

J
Time After Portfolio Formation 3 6 9 12

1st Quarter .0211 .0146 .0273 .0189
(2.59) (2.40) (3.96) (2.66)

2nd Quarter .0144 .0241 .0154 -.0004
(2.49) (3.46) (2.30) (-.05)

3rd Quarter .0196 .0101 -.0104 -.0089
(3.01) (1.45) (-1.65) (-1.45)

4th Quarter -.0005 -.0248 -.0273 -.0197
(-.08) (-4.34) (-4.24) (-3.03)

1st Year .0538 .0243 .0064 -.0078
(3.68) (1.46) (.38) (-.43)

2nd Year -.0459 -.0594 -.0653 -.0660
(-2.76) (-3.12) (-3.70) (-3.90)

3rd Year .0115 .0034 -.0038 .0040
(.90) (.23) (-.25) (.021)
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Table 2
Panel B

Returns on Momentum Portfolios
USD Momentum Portfolios Formed Using Standardized Performance

J
Time After Portfolio Formation 3 6 9 12

1st Quarter .0175 .0194 .0252 .0194
(3.14) (3.37) (3.87) (2.86)

2nd Quarter .0146 .0253 .0158 .0019
(2.73) (4.03) (2.30) (.28)

3rd Quarter .0174 .0120 -.0060 -.0075
(2.87) (1.79) (-.89) (-1.16)

4th Quarter .0018 -.0203 -.0199 -.0137
(.31) (-3.57) (-3.23) (-1.92)

1st Year .0500 .0366 .017 -.0137
(3.20) (1.89) (.79) (.10)

2nd Year -.0463 -.0566 -.0567 -.0588
(-2.38) (-2.40) (-2.31) (-2.43)

3rd Year -.0040 -.0051 .0010 .0007
-.26 (-.27) (.05) (.027)

This table reports mean momentum returns for dollar denominated fu-

tures over quarterly and annual periods following portfolio formation. J

indicates the number of months used to measure performance for the pur-

pose of forming momentum portfolios. The line labelled 1st Quarter reports

performance in the ¯rst quarter after formation, that labelled 2nd Quarter

reports performance in the second quarter after formation, and so on. t-

statistics are in parentheses, and are calculated using Newey-West standard

errors that adjust for overlapping observations.
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Table 3
Panel A

Returns on Momentum Portfolios
All Momentum Portfolios Formed Using Non-Standardized Performance

J
Time After Portfolio Formation 3 6 9 12

1st Quarter .0205 .0164 .0273 .0209
(3.77) (3.10) (4.50) (3.35)

2nd Quarter .015 .0237 .0204 .0039
(2.69) (3.63) (3.38) (.61)

3rd Quarter .0169 .0132 -.0035 -.0052
(2.66) (2.07) (-.63) (-.90)

4th Quarter .0021 -.0188 -.0182 -.0166
(.37) (-3.74) (-3.33) (-2.78)

1st Year .0539 .0346 .0282 .0051
(3.70) (2.28) (2.20) (.32)

2nd Year -.0460 -.0484 -.0580 -.0775
(-2.98) (-3.17) (-3.92) (-4.45)

3rd Year -.0068 -.0120 -.0200 -.0116
(-.54) (-.81) (-1.19) (-.67)
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Table 3
Panel B

Returns on Momentum Portfolios
All Momentum Portfolios Formed Using Standardized Performance

J
Time After Portfolio Formation 3 6 9 12

1st Quarter .0161 .0175 .0211 .0191
(3.35) (3.43) (3.61) (3.10)

2nd Quarter .0118 .0196 .0152 .0039
(2.44) (3.34) (2.37) (.65)

3rd Quarter .0175 .0130 -.0050 -.0027
(3.13) (2.10) (-.08) (-.45)

4th Quarter .0012 -.0161 -.0153 -.0119
(.23) (-3.21) (-2.36) (-2.04)

1st Year .0453 .0351 .0239 .0126
(3.18) (1.73) (1.40) (.59)

2nd Year -.0373 -.0459 -.0514 -.0594
(-2.27) (-2.31) (-2.36) (-2.74)

3rd Year -.0135 -.0137 -.0130 -.0136
(-.92) (-.84) (-.70) (-.66)

This table reports mean momentum returns for the entire set of futures

contracts over quarterly and annual periods following portfolio formation. J

indicates the number of months used to measure performance for the pur-

pose of forming momentum portfolios. The line labelled 1st Quarter reports

performance in the ¯rst quarter after formation, that labelled 2nd Quarter

reports performance in the second quarter after formation, and so on. t-

statistics are in parentheses, and are calculated using Newey-West standard

errors that adjust for overlapping observations.
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Table 4
Cross Section Regressions on Lagged Returns
Lag Slope Coe±cient t-statistic
1 0.0813 3.54
2 0.0258 1.26
3 0.0366 1.88
4 -0.0068 -0.37
5 0.0338 1.89
6 0.0300 1.64
7 0.0244 1.34
8 -0.0027 -0.14
9 0.0092 0.48
10 0.0605 2.97
11 0.0491 2.71
12 0.0007 0.03
13 -0.0533 -3.02
14 -0.0303 -1.68
15 -0.0737 -4.09
16 0.0137 0.78
17 -0.0201 -1.19
18 -0.0089 -0.55
19 0.0006 0.04
20 0.0071 0.40
21 0.0215 1.20
22 -0.0067 -0.39
23 0.0068 0.45
24 -0.0095 -0.55
25 -0.0577 -3.20
26 -0.0233 -1.46
27 -0.0032 -0.20
28 -0.0115 -0.75
29 -0.0073 -0.46
30 0.0136 0.84
31 0.0009 0.05
32 -0.0077 -0.47
33 0.0082 0.47
34 0.0168 1.04
35 0.0110 0.71
36 0.0187 1.16
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This table reports the average slope coe±cients and their associated t-

statistics in monthly cross sectional regressions of futures returns against

lagged futures returns.

41



Table 5
Panel A

Risk Adjusted Performance
USD Standardized Return-based Momentum Portfolios

J=6,K=6
Variable Monthly Fama French Fama French CAPM

Mean Return 4 Factor 3 Factor
Intercept .0079 .0064 .0088 .0080

(3.70) (2.76) (3.96) (3.56)
Market .03 -.02 .04

(.60) (-.39) (.91)
MTB .04 -.00

(.62) (-.02)
SIZE -.07 -.21

(-.90) (-3.33)
MOMENTUM .17

(2.90)
R2 .0818 .051 .035

Table 5
Panel B

Risk Adjusted Performance
USD Non-Standardized Return-based Momentum Portfolios

J=6,K=6
Variable Monthly Fama French Fama French CAPM

Mean Return 4 Factor 3 Factor
Intercept .0071 .0052 .0085 .0080

(2.65) (1.88) (3.12) (3.37)
Market .03 -.04 .04

(.50) (-.62) (.85)
MTB .03 -.03

(.36) (-.36)
SIZE -.07 -.26

(-.90) (-3.32)
MOMENTUM .24

(3.28)
R2 .0884 .0572 .0323
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Table 5
Panel C

Risk Adjusted Performance
USD Standardized Return-based Momentum Portfolios

J=9,K=3
Variable Monthly Fama French Fama French CAPM

Mean Return 4 Factor 3 Factor
Intercept .0086 .0061 .0095 .0087

(3.32) (2.19) (3.56) (3.18)
Market .06 -.02 .05

(.92) (-.26) (.93)
MTB .01 -.05

(.16) (-.62)
SIZE -.05 -.26

(-.55) (-3.34)
MOMENTUM .25

(3.50)
R2 .0921 .0457 .0352

Table 5
Panel D

Risk Adjusted Performance
USD Non-Standardized Return-based Momentum Portfolios

J=9,K=3
Variable Monthly Fama French Fama French CAPM

Mean Return 4 Factor 3 Factor
Intercept .0082 .0057 .0098 .0086

(2.66) (1.75) (3.12) (3.38)
Market .03 -.06 .04

(.35) (-.87) (.81)
MTB -.02 -.01

(-.15) (-.94)
SIZE -.11 -.36

(-.99) (-3.92)
MOMENTUM .30

(3.56)
R2 .106 .0607 .0370
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This table reports coe±cients from regressions of monthly dollar denom-

inated futures momentum returns against risk factors. Market is the return

on the value-weighted CRSP index. MTB is the return on the Fama-French

Market-to-Book portfolio. SIZE is the return on the Fama-French Size port-

folio. MOMENTUM is the return on the Fama-French momentum portfolio.

t-statistics in parentheses.
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Table 6
Panel A

Risk Adjusted Performance
All Standardized Return-based Momentum Portfolios

J=6,K=6
Variable Monthly Fama French Fama French CAPM

Mean Return 4 Factor 3 Factor
Intercept .0066 .0048 .0074 .0067

(3.31) (2.36) (3.63) (3.21)
Market .05 -.01 .05

(1.09) (-.11) (1.16)
MTB .04 -.05

(.53) (-.77)
SIZE -.06 -.22

(-.75) (-3.63)
MOMENTUM .20

(3.57)
R2 .1033 .0576 .0371

Table 6
Panel B

Risk Adjusted Performance
All Non-Standardized Return-based Momentum Portfolios

J=6,K=6
Variable Monthly Fama French Fama French CAPM

Mean Return 4 Factor 3 Factor
Intercept .0078 .0051 .0082 .0073

(3.68) (1.95) (3.27) (2.88)
Market .05 -.02 .05

(.87) (-.20) (.94)
MTB .01 -.05

(.14) (-.61)
SIZE -.06 -.25

(-.67) (-3.54)
MOMENTUM .23

(3.37)
R2 .0906 .0442 .0422
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Table 6
Panel C

Risk Adjusted Performance
All Standardized Return-based Momentum Portfolios

J=9,K=3
Variable Monthly Fama French Fama French CAPM

Mean Return 4 Factor 3 Factor
Intercept .0074 .0042 .0080 .0072

(3.06) (1.69) (3.30) (2.88)
Market .05 -.03 .04

(.95) (-.51) (.72)
MTB -.01 -.09

(-.15) (-1.11)
SIZE -.04 -.25

(-.47) (-3.77)
MOMENTUM .28

(4.35)
R2 .1225 .0562 .0452

Table 6
Panel D

Risk Adjusted Performance
All Non-Standardized Return-based Momentum Portfolios

J=9,K=3
Variable Monthly Fama French Fama French CAPM

Mean Return 4 Factor 3 Factor
Intercept .0090 .0057 .0099 .0089

(2.86) (1.95) (3.52) (3.07)
Market .05 -.04 .04

(.77) (-.6) (.65)
MTB -.02 -.01

(-.17) (-1.07)
SIZE -.06 -.31

(-.61) (-3.84)
MOMENTUM .31

(4.14)
R2 .1179 .0576 .0381
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This table reports coe±cients from regressions of monthly all futures mo-

mentum returns against risk factors. Market is the return on the value-

weighted CRSP index. MTB is the return on the Fama-French Market-

to-Book portfolio. SIZE is the return on the Fama-French Size portfolio.

MOMENTUM is the return on the Fama-French momentum portfolio. t-

statistics in parentheses.
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Table 7
Panel A

Unconditional No-Arbitrage Momentum Performance
Momentum Portfolios Based on Non-Standardized Returns
Futures J K Unconditional ® p-value
USD 6 6 .0071 .0059 .0453
USD 9 3 .0082 .0069 .0481
All 6 6 .0072 .0065 .0112
All 9 3 .0090 .0083 .0039

Panel B
Unconditional No-Arbitrage Momentum Performance
Momentum Portfolios Based on Standardized Returns

Futures J K Unconditional ® p-value
USD 6 6 .0079 .0073 .0003
USD 9 3 .0086 .0078 .0106
All 6 6 .0066 .0068 .0021
All 9 3 .0072 .0073 .0051

This table reports mean pricing errors{®{for momentum portfolios. The

stochastic discount factor is non-time varying, and equals maxfxt±; 0g, where
xt is a vector of gross returns on basis assets, and ± is a vector of coe±cients.

± is estimated using GMM. p-values are based on a Hansen J-test.
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Table 8
Panel A

Conditional No-Arbitrage Momentum Performance
Momentum Portfolios Based on Non-Standardized Returns
Futures J K Unconditional ® p-value
USD 6 6 .0071 .0032 .3454
USD 9 3 .0082 .0040 .2687
All 6 6 .0072 .0037 .1367
All 9 3 .0090 .0046 .1212

Panel B
Conditional No-Arbitrage Momentum Performance
Momentum Portfolios Based on Standardized Returns

Futures J K Unconditional ® p-value
USD 6 6 .0079 .0049 .0007
USD 9 3 .0086 .0050 .0215
All 6 6 .0066 .0038 .0117
All 9 3 .0072 .0040 .0167

This table reports mean pricing errors{®{for momentum portfolios. The

stochastic discount factor is time varying, and equals maxf(xt − Zt)0±; 0g,
where xt is a vector of gross returns on basis assets, Zt is a vector of in-

struments and ± is a vector of coe±cients. The instruments are the default

spread, the time spread, and the dividend yield. ± is estimated using GMM.

p-values are based on a Hansen J-test.
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Table 9
Momentum Portfolio Characteristics

Panel A{Portfolios Based on Standardized Performance
Characteristic Q1 Q2 Q3 Q4 Q5
Volume .4920 .5099 .5081 .5096 .5350

Open Interest .4919 .5022 .5025 .5070 .5187
Variance .5089 .5191 .5181 .5132 .4995

Panel B{Portfolios Based on Non-Standardized Performance
Volume .4537 .5382 .5510 .5351 .4763

Open Interest .4456 .5318 .5536 .5300 .4604
Variance .6543 .4269 .3852 .4381 .6543

This table reports average percentiles for the volume, open interest, and

variance of the futures contracts in each of the quintile portfolios. Q1, Q2, Q3,

Q4, and Q5 represent the 5 quintile portfolios. A value of .4920 for portfolio

Q1 volume indicates that on average, the volume of futures contracts included

in the loser portfolio fell in the 49.2 volume percentile during the portfolio

formation period. All ¯gures based on J = 6 portfolio formation period.
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