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Abstract. Recent research on the behavior of commodity prices demon-
strates that storage alone is insufficient to induce price autocorrelations of
the magnitude observed in empirical data. Researchers have posited a high
autocorrelation in commodity demand to remedy this deficiency. However, a
traditional storage model with a high demand autocorrelation cannot explain
salient features of commodity futures prices for seasonally produced goods,
specifically the high correlation between old crop and new crop futures prices
and the responsiveness of old crop prices to news about the expected harvest.
Incorporating intertemporal substitution in consumption can explain these
features of commodity futures prices. Intertemporal substitution provides an
additional linkage between old crop and new crop prices that overcomes the
deficiencies in the standard storage model which assumes no such substitu-
tion effect.
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1 Introduction

What links commodity prices over time? The optimal storage of commodi-
ties and the consequent behavior of commodity prices represents one of the
most basic problems in the economics of intertemporal resource allocation.
Unfortunately, this “Ur problem” of finance is as yet unresolved. Commodity
prices are highly autocorrelated, but no one has been able to explain why.

Recent contributions to the theory of commodity price behavior examine
the sources of the high autocorrelation in commodity prices using non-linear
rational expectations models.! Early models posit i.i.d. net demand shocks.
These models imply that storage induces some autocorrelation in the data,
but less than observed in actual prices.? Later models attempt to address the
failure of models with i.i.d. demand shocks to fit the data by assuming au-
tocorrelated net demand disturbances. High autocorrelations in net demand
are required to explain the high autocorrelations in prices.®> Since there is
little evidence of autocorrelation in output for agricultural commodities, one
implication of these results is that high autocorrelation in demand shocks is
required to explain high autocorrelation in prices.

This article examines whether demand autocorrelation is indeed the cru-
cial intertemporal link between commodity prices. To do so, I depart from
the received approach that (1) generally examines price behavior at low fre-
quencies (e.g., annually) and (2) does not (with a few exceptions) distin-
guish between commodities that are produced continuously (e.g., copper)
from those that are produced periodically (e.g., corn).? In contrast, I ana-
lyze the dynamics of seasonally produced commodities at a higher frequency.
This approach exploits new sources of information and provides new insights
on the forces linking prices over time.

Specifically, the focus on seasonally produced commodities permits the
untangling of the effects of supply shocks and demand shocks on price move-
ments. Moreover, modeling price dynamics at a frequency that exceeds the
frequency of production generates implications about how spot and futures

Deaton and Laroque (1992, 1995, 1996), Williams and Wright (1991), Chambers and
Bailey (1996).

2Deaton and Laroque (1992), Williams and Wright (1991).

3Deaton and Laroque (1995, 1996), Chambers and Bailey (1996).

4Chambers and Bailey (1996) demonstrate the importance of explicit modeling of pe-
riodicity in net demand shocks. Routledge, Seppi and Spatt (1997) model forward curves
for seasonal commodities using a dynamic programming model.



prices respond to supply and demand shocks at different times of the year.
These include implications regarding the correlation between futures prices
with different expiration dates, and the responses of futures prices with dif-
ferent expiration dates to supply shocks. These implications can be tested
using futures price data that are available at high (e.g., daily) frequencies.
For example, the daily correlation (during the months of March and April)
between the price of corn for delivery in May (prior to the harvest) and the
price for delivery in the following December (after the harvest) provides in-
formation on the correlations of prices across crop years. The May future is
referred to as an “old crop” contract because it matures prior to the new har-
vest, whereas the December future is called a “new crop” contract because
it expires soon after the harvest is completed.

To achieve these results, this article analyzes an infinite horizon model in
which production occurs during a single period during the year (the “Fall”)
and consumption occurs in all four periods (“Winter,” “Spring,” and “Sum-
mer” as well as “Fall.”) Agents decide how much to consume after the harvest
and in each subsequent period by solving a stochastic dynamic program.> Un-
like received models in the storage-price dynamics literature, the specification
herein posits two distinct shocks, a demand shock and a supply shock. De-
mand shocks occur each period/season and may be autocorrelated. Agents
receive information about the distribution of output at the next harvest in
each period; all uncertainty about this year’s output is resolved in the “Fall”
when the harvest occurs. This separation of supply and demand shocks
permits a more precise determination of the source of intertemporal price
linkages for storable, seasonally produced commodities. Moreover, unlike re-
ceived models in the literature, the theory permits intertemporal substitution
in consumption of the seasonally produced good.

The model is solved numerically for a wide variety of parameter values.
These solutions generate several testable hypotheses regarding the behavior
of commodity prices:

e [f there is no intertemporal substitution, the correlation between old
crop and new crop futures prices prior to the harvest are low if supply
shocks are important.

e If there is no intertemporal substitution, old crop futures prices typ-

°A consumption decision implies a storage decision since carry-in is given at each point
in time.



ically do not respond appreciably to shocks to the expected havest.
That is, old crop futures prices will change far less in response to the
arrival of new information about the next harvest than will new crop
futures prices.

e If there is significant intertemporal substitution in consumption then
old crop-new crop futures price correlations will be high, and the arrival
of information about the size of the impending harvest will cause old
crop and new crop futures prices to move in the same direction by
similar amounts.

These hypotheses are tested using data on futures prices for seasonal com-
modities. The behavior of these prices is inconsistent with the implications
of the high demand autocorrelation-no substitution model. Old crop-new
crop futures correlations are high, old crop and new crop futures prices ex-
hibit approximately equal sensitivity to news about the size of the impending
harvest, and old crop prices are more variable on days when the most reli-
able forecasts regarding crop size are released. Put differently, if there is no
intertemporal substitution, even highly autocorrelated demand and supply
disturbances explain neither the high correlation between old crop and new
crop futures prices observed prior to the harvest, nor the sensitivity of old
crop futures prices to information about future harvests. However, extensive
intertemporal substitutibility can generate old crop-new crop futures price
correlations and old crop price sensitivity to expected supply shocks that are
far closer in magnitude to those observed empirically for major commodities.
Thus, demand considerations may be important in explaining high frequency
price correlations, but the persistence of demand shocks cannot be the cru-
cial feature of demand that influences commodity price dynamics. Instead,
intertemporal substitutability is a plausible candidate for the “missing link”
between commodity prices over time. In any event, the results show that
some intertemporal linkage other than storage and autocorrelated demand
is required to explain the high frequency dynamics of seasonally produced
commodity prices.

Explicit consideration of the implications of the seasonality of production
explains these findings. Solution of the dynamic program describing the
storage/consumption decision quite sensibly implies that it is seldom optimal
to carry inventory from the period immediately preceding the harvest to the
harvest period. As a result, storage and arbitrage do not link old crop and
new crop prices. Shocks to the expected harvest therefore have little impact



on old crop prices. If shocks to the harvest are large in magnitude, this
lack of connection of prices via storage implies that new crop and old crop
prices will exhibit little correlation even if demand is highly autocorrelated.
In contrast, intertemporal substitution provides an alternative channel by
which shocks to the anticipated harvest influence prices prior to the harvest.
Thus, anticipation during the spring of a large harvest in the fall causes both
spot prices and new crop futures prices to fall in the spring. This can create
correlations of the magnitude observed in the data.

The remainder of this paper is organized as follows. Section 2 presents
a stochastic dynamic programming model describing optimal storage of a
seasonally produced commodity in a competitive market with multiple de-
cision periods per year and describes the numerical methods used to solve
this model. Section 3 analyzes the model and generates testable implications
regarding the correlation between new crop and old crop futures prices and
the responsiveness of old crop prices to news about the size of the coming
harvest. Section 4 presents events pertaining to these predictions. This evi-
dence shows that there is a relatively high degree of correlation between these
prices and that harvest-related news impacts old crop prices. These implica-
tions are inconsistent with the basic storage model but can be explained by
a storage model with intertemporal substitution. Section 5 summarizes the
work.

2 Optimal Competitive Storage for a Season-
ally Produced Commodity

2.1 Introduction

The literature on commodity price dynamics has relied upon a standard
storage model that assumes that consumption and production occur every
period. Moreover, the empirical tests of this storage model typically employ
spot price data only.

This received approach has several limitations. First, the existing ap-
proach posits net demand shocks that consist of a demand shock minus a
supply shock and cannot disentangle the effects of supply shocks from those
of demand disturbances. These models can describe the behavior of prices
only at relatively low frequency corresponding to the frequency of production.
Second, by utilizing only spot price data, the received empirical efforts have



ignored a potentially valuable source of information—futures prices. Third,
testing of the model is extremely difficult unless one assumes a very simple
structure for net disturbances. With i.i.d. net shocks the basic storage model
implies that prices follow a particular autoregression that can serve as the
basis for empirical testing. Such a straightforward implication does not hold
with any time dependence in the disturbances. Estimating a model with
time dependent disturbances entails acute econometric difficulties.

In this section I analyze a model that addresses these difficulties. This
expanded model explicitly incorporates seasonality in production. Due to
seasonality, production does not occur every period, even though the com-
modity is consumed every period. This seasonal structure generates new
implications about the relation between prices, supply shocks and demand
shocks. In particular, it permits me to disentangle the effects of supply and
demand shocks. This facilitates a test of the model. Moreover, I derive
testable implications regarding the behavior of futures prices. This permits
the use of a new source of information to test the implications of storage
models. These implications can be tested using simple statistical techniques.

The objective of this analysis is to develop a framework that generates
predictions regarding the correlations between old-crop and new-crop futures
prices, and the responsiveness of old-crop prices to information about the
size of the impending harvest. The methodology is in some respects similar
to that of Deaton-Laroque (1992 and 1996), Williams-Wright (1991), and
Miranda-Rui (1999), all of whom use simulations to evaluate the ability of
a numerical solution of the model to generate time series dynamics that
mimic the behavior exhibited by actual commodity prices.® T also evaluate
the ability of a numerically solved storage model to mimic salient features of
spot and futures prices under assumed parameter values, but instead of using
simulation, I approximate the correlations and price sensitivities of interest
numerically. This section shows that these approximations can be derived
using estimates of the partial derivatives of the pricing functions. These
approximations generate implications (derived in section 3) that are tested
in section 4.

6Numerous papers in the economic growth and equity premium puzzle literatures also
use numerical simulations under assumed parameter values to determine the ability of the
models to explain stylized facts about economic dynamics.



2.2 A Framework for Determining Spot-Forward Cor-
relations and Sensitivities to Harvest Shocks

Consider an infinite horizon storage model. Consumption occurs every pe-
riod, t,t + At, t +2At, ... .. A commodity is produced at times 7,27, 37, ...,
where 7 > 2At. The fact that production does not occur every period for-
malizes the seasonality in the economy. The commodity is storable. Since
the commodity is produced only periodically, to consume at any ¢ € [j7 +
At, (741)7 — At] agents must have stored positive amounts of the commodity
at all dates t' € [j7,t — At]. Call x; the amount of inventory carried-in to
time ¢t. At ¢, agents decide how much of this commodity to consume and how
much to store for future consumption.

Output is random. For each t € [j7 + At, (j + 1)7 — At], competitive,
risk neutral agents have information about the next harvest. At such ¢, the
expected value of the next harvest is H + 0.7, where H is the uncondi-
tional expectation of the harvest, o, is a parameter that describes the rate
of information flow regarding the size of the incoming harvest, and Z; is a
standardized shock to the expected harvest.

The dynamics of the standardized shock to the expected harvest at (j+1)7
for t € [j7 4+ At, (j + 1)7] are:

AZt = Oé(.T/'t, Zt, ’I’/f)ATf + 2z

where z; is a bounded i.i.d. variate with variance At. For ¢ < (5 4 1)7 the
expectation of the the harvest at (j + 2)7 is the unconditional expectation
H. The af(.) function describes the drift of the standardized harvest forecast
shock. This generalized form includes standard processes (e.g., random walk,
AR1) as special cases.

Demand is also random; 7; denotes a standardized demand shock at .
Inverse demand at any time ¢ is given by D(q, n;, Pipat), Where P a; is the
time t expectation of the price at ¢t + At. The inclusion of next period’s ex-
pected price means that current and future consumption may be substitutes.
The dynamics of the standardized demand shock n are:

A’)’]t = /L(mt, Zt; ’)’]t)Af' —I— (&

where e, is another bounded i.i.d. variate with variance At that is uncorre-

lated with z;. The p(.) function gives the drift of demand shock processes.
Determination of a competitive equilibrium requires solution of a stochas-

tic dynamic programming problem. Consider the solution of the optimal



storage problem for this commodity. Call P(x, Z;, ., t) the time ¢ spot price
as a function of the state variables (carry-in, expected harvest, and demand)
implied by the solution to this program; this price function depends on the
time index because of the seasonality in the problem. Due to seasonality,
knowledge of the state variables alone is insufficient to determine price; the
price function should change as time passes and the harvest nears. Similarly,
call F(x, Z,n,t,T) the forward price for the commodity delivered at T" > t as
of t. Because agents are risk neutral, this forward price equals the expected
spot price at T conditional on time ¢ information.
A first-order Taylor’s expansion of the spot and forward pricing functions
implies:”
AP, = 0p(x¢, Ze, e, t) At + Pyzy + Ppey (1)

and
AE = HF(mt,Zt,T]t,t,T)At‘FFzZt+Fn€t (2)

where subscripts indicate partial derivatives with respect to the subscripted
variable.® These imply that the variance of the spot price is:

o0, Zy, i, t) = E(AP?) /At = P + P: (3)
and the variance of the forward price is:

or (e, Zy,m, t) = BE(AF?) /At = F + F (4)
Moreover, the correlation between AP, and AF; is:’

FyP; + F,P,
V(P2 + P2)(F} + F?)

corr(AP, AF,) = (5)

It is also possible to estimate the slope coefficient of a regression of the
spot price against the forward price. This coefficient is:
cov(AP,AF;)  FzPz+ F,P,
var(AFy)  F%+ F?

7A first-order expansion is sufficient because this study focuses on variances and cor-
relations; second order terms are o(At) in the variance and correlation expressions.

80p and O are drift functions. They are irrelevant to the determination of correlations
and are therefore ignored hereafter.

9Note that multiple shocks are required in order to obtain correlations other than -1,
0, or +1.



The foregoing implies that the spot and forward correlations and spot-
forward regression coefficients depend on the sensitivity of prices to the ran-
dom variables Z; and 7;. Determination of the relevant partial derivatives
that measure these sensitivities requires a solution of the pricing functions for
each period. The dynamic programming problem that generates the pricing
functions cannot be solved in closed form, so the P(.) and F'(.) functions can-
not be determined analytically. Instead, it is necessary to solve the problem
numerically and approximate the price functions. The next section describes
the method for solving this seasonal storage problem numerically.

2.3 Numerical Implementation

In theory, there is a separate price function for each time period between
harvests. Computational considerations limit the number of discrete periods
between harvests that can be analyzed. Herein I assume that there is a
harvest period followed by three non-harvest periods, each with its own price
function, making a total of four price functions. It is intuitive and convenient
refer to a set of four periods including one harvest period as a year, and to
refer to the periods as “seasons.” ! A year is normalized to be of length 1. The
seasons are numbered one through four. Therefore, each season is of length
At = 1/4. Production occurs in the fourth season of each year. Consumption
occurs in each season of each year. At season ¢ in year t, 7 =1,...,4, inverse
demand for the commodity is:

Pa—1)+i = Di(Qa(r—1)4i, Dagt—1)+i+1, Na(t—1)+3) (6)

In (6), qaz—1)4: is the amount consumed in season ¢ in year ¢ D;(.) is the
demand function for season 4, psy;_1)4; is the spot price of the commodity in
year t and season %, Pay—1)4i+1 is next period’s expected spot price (where
the expectation is conditional on information available in season ¢ of year
t), and 14 —1)1 is a demand shock. This specification permits intertemporal
substitutibility in consumption if 0D;/0pa—1y1it1 7 0.

It is assumed that the demand shock follows an AR1 process:

Nat—1)+i = PAGE—1)+i—1 T €4(t—1)+i (7)

OThis framework is similar to that of Chambers-Bailey (1997) and Routledge, Seppi,
and Spatt (1997). Williams and Wright (1991) implement a similar methodology for a
commodity with seasonal demand but no seasonality in supply. None of these models
considers separate supply and demand shocks.

10



where e4(;—1)4; is a bounded ii.d. disturbance with variance At.

In each season j < 3 agents receive a signal about the output expected in
the next harvest period (i.e., the next season 4). As before, the unconditional
expectation of the harvest is H. In period 1, the expected harvest is B4 H =
H + 0.z, where z is the signal observed in period 1. In period 2 the
expected harvest is EoH = H + 0.(21+ 22). In period 3 the expected harvest
is BsH = H + 0.(21 + 22 + 23). The actual harvest that occurs in period 4
is H=H +0.(21 + 20+ 23 + 2z;). The 2’s are bounded i.i.d. variates with
variance Af.

In this framework, the harvest forecast follows a random walk. This
set-up formalizes the notion that agents receive information about the har-
vest throughout the crop year. As an example, winter precipitation, spring
planting conditions, summer weather during plant pollination, and fall field
conditions all influence the size of the harvest. Moreover, the precision of
agents’ expectations increases as the crop year proceeds; agents have better
information about the next harvest of corn in the summer than in the winter.
Finally, forecasts are unbiased.!

Immediately after the harvest, the expected harvest in the following year
is the unconditional expectation H. That is, successive harvests are uncor-
related. Moreover, the n and the z are uncorrelated.

In period 4, competitive risk neutral agents must decide how to allocate
the available harvest between current consumption and storage. Since there
is no production in the next three succeeding seasons, all consumption prior
to the next harvest must be supplied from stocks held from this harvest.
In period 4 of year t, when the demand shock is 7, agents endowed with a
harvest H and carry-in from previous harvests of = choose carry-out s, > 0
so that

P4(Hamvn) = max[ﬁEPl(zl, 547771)’ D(H + 'TvEPI(Zla 07771)’774)]' (8)

In this expression, Py(.) is the equilibrium price in period 4 as a function of
the harvest, carry-in and the demand shock, and P;(.) is the equilibrium price
in period 1 as a function of the harvest signal received in period 1, the demand
shock in period 1, and carry-in available in period 1. § < 1 is a discount
factor. This expression states that agents choose storage in period 4 so that

HThe specification of the evolution of the expected harvest assumes that the flow of
information is constant in each period. A more general set-up would allow for variations in
the flow of information throughout the year, e.g., H = H + 0,121 + 0,920 + 0,323 + 0,424.

11



the spot price in period 4 equals the discounted expected future price in
period 1 if storage is positive, and equals the marginal value of consumption
measured at H + x if nothing is carried over. If this expression did not
hold, an arbitrage opportunity would exist. For example, if P, < SEP;,
risk neutral agents could buy the spot commodity in period 4, store it until
period 1, and expect to sell it at a higher price next period.!?

Similarly, in period 1 of year ¢, given a standardized expected harvest
shock 7y, initial carry-in x and demand shock 7y, carry-out s; > 0 is deter-
mined by:

Pl(Zla , 771) = maX[ﬁEPQ(Zm 817772>a D<m7 EP2<227 0, 772)#71)]- (9)

where Zy = 71425 and expectations are over z, and 1y. In this expression, the
price function P;(.) gives the period 1 price as a function of the standardized
shock to the expected harvest Z;, carry-in x, and demand shock ;. Given
harvest shock Zs, carry-in x and demand shock 7y, carry-out in period 2 of
year t, so > 0, solves:

Py(Zy,w,m2) = max|[BEPs(Zs, s2,m3), Da(x, EP3(Z3,0,1m3),m)] (10)

where Z3 = Z5 4+ z3 and expectations are over zz and 73. Finally, given
harvest shock Z3, carry-in x and demand shock 73, carry-out in period 3 of
year t, s3 > 0, solves:

P3<Z37 837”3) = maX[ﬂEP4(Z4, 53, 7]4)7 D3(flf, EP4<Z47 07 774)7”3)] (]‘1)

where 7, = Z3 + 24, and expectations are over z, and 7. Again, these
expressions mean that competitive storers choose carry-out to equate the
current spot price and next period’s expected price.

The basic contours of the numerical solution of a recursive dynamic eco-
nomic model of this sort are fairly well understood, so only a brief description
of the methodology is required. There are three state variables: the stan-
dardized shock to the expected harvest Z, the demand shock 7, and initial

2Deaton-Laroque (1992, 1996) and Chambers-Bailey (1996) show that if net demand
shocks are uncorrelated, storage is zero if the spot price exceeds some constant “cutoff
price” equal to the unconditional expectation of the following period’s price assuming zero
storage. This cutoff price feature implies that prices follow an autoregression that can be
estimated. This implication does not follow if either harvest shocks or demand shocks are
autocorrelated.

12



inventory x. The first step is to discretize the state variables to create a grid
in Z, n, and x for each of the four seasons.

The values of the grid in the standardized harvest shock Z are bounded
by -2.4 and +2.4 and are equally spaced with increments AZ. There are N,
points along the grid,

Z={-24,-24+4ANZ,—24+2AZ,... 24— NZ 24}

Define Z; = —2.4 4 (j — 1)AZ. In period j the expected size of the next
harvest is H —+ 0.7,

The transition probability matrix for Z during seasons 1, 2, and 3 is
constructed as follows:

7T7;(Zj, Zk) = PI"[Z4(15,1)+7;+1 = Zk|Z4(t71)+i = Zj] = N(El) — N(Eg) (12)
for i =1, 2,3, and where
€1 = .5[Zp+1 + Zi) — Z;

€y = 5[Zk + Zkfl] - Zj

and N(.) denotes the standard normal distribution function. That is, if
Z = Zj, (i.e., the initial value of Z is at the j’th point on the Z grid) the
probability that the value of Z in the next period is Z = Z; (i.e., is at the
k’th point on the grid) equals the probability that a standard normal variate
falls in an interval of length AZ centered on Z;, — Z;.13

In season 4, Z is an i.i.d. variate (because successive harvests are not
correlated). Therefore, the probability of transiting from Z = Z; in season 4
to Z = Z in season 1 is

7T4(Zj, Zk> = N[5(Zk -+ Zk+1)] — N[5(Zk + Zk—l)]-

The values of 1) are also bounded by -2.4 and +2.4 and are equally spaced
with increments An. There are N, points in the 7 dimension of the grid.
Call n; = —2.4+ (j — 1)An. In the discretization,

P15, M%) = Prinag—1y+i+1 = Me|Mag—1)+: = n;] = N(e1) — N(es) (13)

where
er = 5(Mg1 + M) — P

13See Deaton and Laroque (1995, 1996) for a similar discretization of an AR1 process.

13



and
ey = 5Nk + Mk—1) — PN

That is, the probability that the demand shock will equal 7, given that its
previous value was 7); is equal to the probability that an i.i.d. standard normal
variate will fall in an interval of length An centered on 7, — pn;.

For each value of Z and 7 in each of the four grids, values of carry-in
x are spread equally along an interval [0, .]. There is a different value
of %, .. for each season i to reflect the fact that carry-in should be larger in
early seasons (e.g., season 1) than later seasons (e.g., season 4). The x!,  are
determined in a trial and error process that ensures that equilibrium storage
in season ¢ never exceeds z!,  in long simulation runs.

In the numerical analysis, demand functions are linear in consumption,
demand shock, and expected future price. For i = 1,2, 3,

Di(x —s,Z,n) =a; — bj(x — s) +0,777+c7;]57;+1 (14)

where s is the amount stored, z is carry-in, P,,; is next period’s expected
price, and a; > 0, b; > 0, ¢; and o,, > 0 are parameters; ¢; > 0 indicates that
current and future consumption are substitutes. Note that P, is a function
of s and the state variables Z and 7:

N, Nn

Py =Y mi(Z, Zi)p(n.nj) Piya (s, Zi,m;)-

k=1 j=1
For ¢ = 4:
Dy(x —8,Z,n) = as — by[H + 0.7 + 1 — 8] + oyn + ca Py (15)

and
Nz NTI

Py =3 w2, Zi)p(n,nj) Pi(s, Zi,my).
k=1 j=1
Given the grids and demand functions, an initial guess for the functions
P, i=1,...,41s formed in three steps. (There is one such function for each
pair {Z,n} on each season’s grid.) First, for each value of x it is assumed
that si(z, Z,n) = 2x/3; that sy(x, Z,n) = .bx; that ssz(x,Z,n) = x; and
sy(w, Z,m) = 25[x + H + 0.Z]. That is, it is initially assumed that agents
consume one-third of their carry-in in season 1, half their carry-in in season
2, all their carry-in in season 3, and one-quarter of carry-in plus production

14



in season 4. Second, given this guess, the relevant equation from (13)-(14) is
solved for s;. This determines price for each of the points along the x; axis
of the grid. A fourth order polynomial in z; is fit to these prices using OLS,
and the resulting polynomial function P;(x, Z,n) is used as the initial guess
for the pricing function for this {Z,n} pair.

Given initial guesses for the price functions, for each Z, n, and x in each
grid, in season ¢ = 1,2, 3 the following equation is solved (using Newton-
Raphson) for s:

N, Ny _
D1<T -5, 27 7]) - ﬁ Z Zﬂ—i(zﬂ Zk)F(ﬁWj)RﬁH(& Zkanj) = ﬁPiJrL (16)

k=1j=1

For:=14

N, Ny _
D4(‘T — S Z777> = 62 274(27 Zk)p(nanj>P1(Sﬂ Zlﬂ”j) = 6P1 (17)

k=1j=1

These equations equate the spot price to the discounted expected future price.
If the s that solves the relevant equation is positive, the spot price at this grid
point is set equal to D;(x — s, Z,n). If the s that solves the relevant equation
is negative, then price at this grid point is set equal to D;(z, Z,n) because
storage must be non-negative and thus consumption equals carry-in in this
case. After determining prices on each node of the grid, for each {Z,n}
for each season a fourth order polynomial in x is fit to these prices using
OLS. These new polynomials are used as the P;(z, Z,n) in the next iteration
and the process is repeated. The process stops when the average absolute
percentage price change between iterations is small (e.g., .001 percent).

Upon convergence to a fixed point, this process defines four spot price
functions P’ (z, Z,n). Using these functions it is possible to study commodity
price dynamics and correlations between spot and forward prices by using
them to approximate the partial derivatives that determine the correlation
in (5). For example, in season 1, 0P} /0Z is used to estimate Pz during the
first season. Similarly, in season 2 one can use:

Nz N’U

Fyz =Y ms(Z, Zx)p(n,n;) Ps(s, Zy,n;) (18)

k=1j=1

to approximate the forward price for delivery in season 3 as of season 2.
Again, 0F»3/0Z can be used as the estimate of F in (4) or (5).

15



Consistent with the discretization, I use finite difference approximations
to calculate the necessary partial derivatives. For Ny > j > 1,

oP; (z, Zj,nk) P (x, Zj+1a77k) — P (x, ijl,ﬂk)

~ Py ~

oz 207
For j =1,
apz*(T’ Zjvnk) ~ P, ~ R*(T, ZQank) — PY*(T7 Z1,77k:)
07 D AZ
and for j = Ny
8]37*(7:, Zjvnk> ~ P, ~ R*(Ta Zszlr]k‘,) - R*(Ta ZNz—lvlr]k)
ek At R EAILYAPNYY S SUP

0z AZ

The partial derivatives with respect to n and for the F; and F;, are similarly
calculated.

3 Results and Testable Implications

The foregoing model is solved for a variety of different parameters. The
solutions tell a consistent story regardless of the parameters, so hereafter
I present results for some representative cases. In the first case, a; = 60,
b = .5, fori=1,...,4, 0. = 40, 0, = 2.25, and p = .9. The high value
of p indicates that demand is highly autocorrelated; Deaton and Laroque
(1996) require values of net demand autocorrelation of approximately this
magnitude to fit the observed autocorrelations in annual commodity prices.
In the first case, ¢; = 0. That is, there is no intertemporal substitution.
For this case, only storage and demand autocorrelation can induce relations
between old crop and new crop prices. In the second case, ¢; = .9 and p = 0;
all other parameters are identical to those used in the first case. Thus, in the
second case demand autocorrelation cannot explain any correlation between
new crop and old crop prices; only storage and intertemporal substitution
can connect these prices.

For ¢; = 0, correlation between the spot price in season three and the
forward price for delivery in season four (the harvest period) implied by the
solution to the programming problem and (5) ranges from between .3 and .5
for values of carry-in observed with some frequency in long simulations; the
correlation depends on n and Z, with the highest correlation observed when
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these shocks are both equal to their unconditional expected values of zero.
Correlations are near 1 when the amount carried into season 3 is immense.
Simulation runs of 5000 periods indicate that the carry-in required to gener-
ate these large correlations occur less than .3 percent of the time. Therefore,
the carry-in required to generate spot-forward correlations that exceed .5
by a sizable margin is so large that it would almost never be observed in
practice in this model economy. This implies that although high positive
correlations are possible in a model with high demand autocorrelation but
no intertemporal substitution, they are extremely rare.

This result is readily explained. It is almost always uneconomic to carry
inventory from season 3, the summer, to season 4, the harvest period; only
when period 3 carry-in is huge (which occurs only if the previous harvest was
huge), the new harvest is expected to be very small, and demand is low will
it prove optimal to carry inventory into the harvest period. In simulations,
inventory is carried from season 3 to season 4 only about .3 percent of the
time. Since inventory is not typically carried across crop years, arbitrage and
storage do not link old crop and new crop prices. That is, P; > SFE P, almost
always. This implies that old crop prices should be little affected by news
about the harvest, i.e., Z shocks, but that new crop prices will respond to
these shocks. This tends to reduce the correlation between old crop and new
crop prices. Indeed, an increase in o, increases the sensitivity of new crop
prices to harvest shocks. Thus, if shocks to output are an important source
of uncertainty in the market (as is plausible for agricultural commodities)
correlations between new crop and old crop prices will be low. Only if demand
shocks predominate and supply shocks are unimportant does high demand
autocorrelation suffice to create high correlations between old crop and new
crop prices. This is implausible for agricultural commodities and inconsistent
with the fact that announcements about the expected future harvest have
significant effects on both new crop and old crop prices, as will be documented
in section 4.

In terms of expression (5), P, ~ 0 implies:

I

corr(AP,, AF,) ~ m
zZ n

(19)

where P is an old crop futures price and F' is a new crop futures price.'* If

MHereafter, P will refer exclusively to an old crop spot price and F will refer to a new
crop futures price.
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supply shocks have larger effects on season 4 prices than demand shocks then
Fz > F,, implying that this correlation is less than .5.

It is possible to generate correlations above .5 by increasing the impor-
tance of demand shocks relative to the importance of supply shocks, i.e., by
increasing o, and decreasing 0.1 Even though this adjustment does affect
correlations, it does not change a crucial implication of the model. Specif-
ically, without interemporal substitution, old crop futures prices do not re-
spond appreciably to changes in the size of the expected harvest regardless
of the relative values of o, and o,,. That is, P, the partial derivative of the
old crop spot price with respect to a shock to expected harvest, is nearly
zero unless carry-in is far above its normal observed range regardless of the
relative magnitudes of o and ,.1% This is true because the absence of stor-
age over the harvest implies that storage cannot transmit output shocks to
old crop prices. Thus, the storage model with autocorrelated demand but
no intertemporal substitution implies that old crop futures prices will not
respond to shocks to the size of the expected harvest.

The values of the slope coefficient in a regression of the spot price change
against the futures price change generated by this model lie in the .3 to .5
range for this version of the model. The coefficients for values of carry-in
observed with some frequency in long simulations are closer to the lower end
of this range.

Allowing for intertemporal substitution leads to substantially different
price behavior. In this case, correlations between spot and forward prices
are far above zero even for small values of carry-in. Given the assumed
parameters, the observed correlation between the spot price and new crop
futures price during season 3 ranges between .70 to .95 for a range of values
of carry-in within 2 standard deviations of mean carry-in calculated from a
simulation of the behavior of this economy over 5000 periods. As will be
seen in section 4, these correlations are of the magnitude typically observed
in the data.

The intertemporal substitution model also implies that spot prices re-

13The appendix shows that a large variance of the demand shock relative to the variance
of the supply shock is also required to rationalize the findings of Deaton and Laroque. This
large ratio is implausible for seasonally produced agricultural commodities.

1When ¢; = 0 estimated partial derivatives Py for different values of carry-in, Z,
and n vary tightly around zero regardless of the values for o, and o,. It is likely that
any deviation from zero is due to the fact that price surfaces and partial derivatives are
approximated numerically.
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spond to shocks to expected harvest (i.e., Z shocks), although the magnitude
implied by the model with ¢; = .9 is somewhat smaller than that found in
empirical data reported in section 4. The values of P,/F range between .75
and .85. At carry-in equal to its median value in long simulations, a harvest
shock that causes a one unit change in the forward price leads to a change
of about .8 units (in the same direction) in the spot price.

These values for P;/Fy far larger than those implied by the model with-
out intertemporal substitution, but are still less than 1.00. It is possible to
generate Py/F, = 1 only if ¢; = 1, that is, if this quarter’s consumption and
next quarter’s consumption are perfect substitutes. In this case, consumption
in any quarter does not change when expected futures prices change.

The values of the slope coefficient in a regression of the spot price change
against the futures price change generated by this model lie in the .65 to .85
range for the model with intertemporal substitution. The coefficient at the
median carry-in is .75.

The values for correlations and slope coefficients for the intertemporal
substitution model are similar to those found in empirical data that will be
examined in section 4. This is in contrast to the correlation and Py /Fy values
generated by the high demand autocorrelation-no intertemporal substitution
model.

Repeated experimentation indicates that three conditions are required to
produce (1) correlations in the .7-.9 range, (2) large relative price sensitivities
to harvest shocks and (3) slope coefficients that are close to 1.00. First, ¢;
must be close 1.00. Second, p must be relatively small but positive. Third,
the variability of demand shocks must be sufficiently high. As an example,
¢ =.9 p=.3 0, =9 and 0, = 40 generate spot-futures price relations
that are similar to those documented in section 4 below. With these param-
eter values, the spot price-new crop futures price correlation during season
3 ranges between .75 and .85 for values of carry-in observed with some fre-
quency in long simulations. The Py/F; ratio is approximately .85, and the
slope coefficient ranges between .95 and 1.05.

The reasons these conditions must hold are straightforward. Large values
of ¢; are required to generate values of Pz/Fj; of the magnitude implied
by regressions of old crop price changes on new crop price changes when
information about the harvest is released.

If the ¢; are close to 1.00 and demand autocorrelation p is also large,
however, new crop and old crop futures prices are almost perfectly correlated.
In this case, since a demand shock that occurs in period 3 is expected to
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persist to period 4, the magnitude of the response of both old crop and new
crop prices to this demand shock is similar. The high degree of intertemporal
substitution causes both new crop and old crop prices to respond similarly
to supply shocks. In terms of expression (5), £}, ~ P, when p is close to 1.00.
Since Iy, &~ P, when there is a high degree of intertemporal substitution,

Pi+b .
(P2 + P2)2

This implies that to produce correlations clustering falling in the range
7-.9 there must exist some shock that influences old crop prices but not
new crop prices. A relatively transient demand disturbance can have this
effect; since there is typically no carryover across crop years, a demand shock
that exhibits relatively little persistence which occurs in the old crop year
has a smaller effect on the futures price than the spot price. With such a
demand shock, F,, < P,, which by (5) allows a correlation less than 1.00
when Fy ~ Py.

Moreover, this demand shock must have a variance that is sufficiently
high to cause divergences between movements in new crop prices and old
crop prices that are large enough and frequent enough to overcome the fact
that harvest shocks cause new crop and old prices to covary closely when
current and future consumption are almost perfect substitutes. For a given
value of 0, if 0, is too small, P, and F}, are very small relative to P, and FJ,.
Again, by (5) this implies that the spot-futures correlation is close to 1.00 in
this case. The variance of the demand shock also affects the slope coefficient.
Given a spot-forward correlation of around .8, to generate a slope coefficient
of approximately 1.00 the variance of the spot price must exceed the variance
of the new crop futures price during season 3. A high variance demand shock
that exhibits little persistence can induce this disparity in variances.

In brief, examination of an augmented storage model that allows for sea-
sonality in production and intertemporal substitution generates testable im-
plications about co-movements in old crop and new crop futures prices for
seasonally produced commodities such as grains. Specifically, in the absence
of intertemporal substitution, (1) the correlation between old crop and new
crop futures prices should be low (.5 or lower) if supply shocks are an im-
portant source of uncertainty, and (2) old crop futures prices should exhibit
virtually no reaction to changes in the size of the expected harvest regardless
of the relative importance of supply and demand shocks. That is, new crop

corr(AP;, AF}) ~
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futures prices should respond far more to shocks to the size of the expected
harvest than old crop prices. In contrast, with strong intertemporal substi-
tution the model predicts high correlations between old crop and new crop
futures prices and nearly equal responses of old crop and new crop futures
prices to supply shocks. Moreover, it is possible to find parameter values
such that on average new crop and old crop futures prices change by the
same amount.

The following section examines futures price data for seasonally produced
commodities to test these predictions.

4 Tests of the Storage Model Using Old Crop
and New Crop Futures Prices

The foregoing theoretical analysis demonstrates that explicit analysis of the
implications of seasonality on the co-movements of new crop and old crop
futures prices generates new insights and empirical implications from the
standard storage model. Moreover, this approach makes it possible to draw
upon a new source of data—futures prices—to test storage models. This section
exploits this new data to test the implications of storage theory.

A few words about this data are in order. At any given time of year,
futures contracts for multiple delivery dates are traded on a wide variety
of seasonally produced commodities. These include wheat (CBOT, MGE,
KCBOT), corn (CBOT), oats (CBOT), soybeans (CBOT), canola (WCE),
and cotton (NYCE).!" Of particular importance is the fact that there is
simultaneous trading of futures contracts that expire prior to and after the
harvest of each commodity. For example, during April of each year the CBOT
trades corn futures contracts for both May delivery and December delivery.

Viewing futures prices as expected spot prices, the new crop futures prices
represent the market’s expectation of what the spot price for the commodity
will be at harvest time.'® Therefore, correlations between old crop futures

7CBOT is the Chicago Board of Trade; KCBOT is the Kansas City Board of Trade;
MGE is the Minneapolis Grain Exchange; NYCE is the New York Cotton Exchange; WCE
is the Winnipeg Commodity Exchange.

BFutures prices may embed a risk premium in addition to an expected spot price.
Heretofore, much effort has been expended to identify risk premia in commodity futures
prices with little success. I will therefore treat futures prices as expected spot prices. Even
if futures prices do embed a risk premium, as long as this risk premium is relatively stable
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prices and new crop futures prices measure the intertemporal linkage between
prices across crop years. For example, the correlation measured during April
between the daily change in the May corn futures price and the December
corn futures price should be high (low) when prices are highly (not highly)
correlated across crop years.

Table 1 presents correlations between old crop and new crop futures price
changes from the 1981-1996 period for eight seasonally produced commodi-
ties: canola, corn, cotton, oats, soybeans, hard red winter (HRW) wheat,
hard spring (HS) wheat, and soft red winter (SRW) wheat. The correlations
are calculated as follows. For each commodity, a two-month period ending
approximately 5 months prior to the harvest is selected. As an example, the
period for corn is April and May. For each day ¢ in the sample period, the
daily (market close-to-market close) change in the old crop (May) futures
price is calculated. This is AF,; = Iy — F,4—1. The daily change in the
new crop (December) futures price, AF,; = F,+ — F, ;1 is similarly calcu-
lated. The correlation between these price changes is then estimated. For
each commodity, a correlation is estimated from a sample that pools daily
price changes from the two month period within that single year.

For each commodity, panel 1 of the table reports the portion from each
year in which the correlation is measured, the old crop expiration month used,
and the new crop expiration month used. Panel 2 reports the correlations by
commodity and by year.

The correlations for individual years reported in Table 1 are generally
around .7 or .8, and for every commodity studied there is a year in which the
correlation exceeds .9. Correlations almost always exceed .3. Only for cotton
does one observe a correlation below .25 (in a single year).?’ Similar results
obtain for different choices of the old crop contract month and the time period
in which the correlation is estimated. For example, similar correlations are
obtained when using the changes in the September futures price during June

the price changes used to calculate correlations below will primarily depend on changes in
expected spot prices. In this case all implications of the analysis in the text follow.

9These results are not sensitive to the choice of period in which the correlation is
estimated or the old crop contract month. For example, the correlation between the
September and December corn futures contracts during July-August is similar to the
May-December correlation reported in Table 1.

20The low correlation for canola in 1994 is likely due to a squeeze of the June contract.
A squeeze reduces the correlation between nearby and deferred futures prices. In essence,
a squeeze is an extreme, highly transient, demand shock.
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through August as the old crop contract for corn or soybeans.

The new crop-old crop futures correlation results parallel those reported
for annual data in Deaton and Laroque (1992, 1995, 1996). They find what
they consider to be high price autocorrelations in annual data; the magnitude
of their correlation estimates are similar to the magnitude of the correlations
reported here for daily futures prices. Deaton and Laroque suggest that such
high correlations can be explained only if there is considerable autocorrelation
in the underlying demand and supply processes. Since the past harvest is
fixed in the futures data, however, autocorrelations in output cannot explain
high correlations between new crop and old crop futures prices.

These futures price correlations are inconsistent with the implications of
the storage model without intertemporal substitution analyzed earlier. That
model implies low correlations for seasonally produced goods if supply shocks
are important sources of uncertainty, as they clearly are for the commodities
studied. These results imply that high autocorrelation in demand is not
sufficient to explain high old crop-new crop futures price correlations even
in the presence of storage. Instead, some other intertemporal linkage—such
as intertemporal substitution—is required to explain the persistence in price
shocks for seasonally produced commodities.

Evidence on the relative responses of old crop and new crop futures prices
to shocks to the expected harvest provides even stronger evidence that is in-
consistent with the basic storage model with autocorrelated demand. To
quantify this relation, I examine futures price movements on days when the
government discloses expected and actual acreage planted for each crop or
issues Crop Production Reports that forecast expected harvests for corn,
soybeans, and spring wheat. The acreage and production reports for these
crops are released in June, July, August, and September. USDA forecasts
are widely considered to be the most reliable available predictors of the com-
ing harvest. Examining new crop-old crop price relations for these days is
intended to isolate the effect of supply information from the effect of demand
information. If supply information influences old crop prices, one would ex-
pect a positive, significant relation between new crop and old crop price
changes on these dates. Moreover, one would expect that old crop futures
prices are more volatile on crop announcement days than on days lacking any
release if crop report information affects old crop futures prices. However,
if information related to harvest size does not affect old crop prices (as the
no-substitution model implies), the old crop futurs prices should be no more
volatile on these days than other days.
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Table 2 presents slope coefficients from regressions of the change in old
crop futures prices on the change in the new crop price for corn, soybeans,
and hard spring wheat for days on which the United States Department of
Agriculture releases reports that disclose the forecasts for the next harvest.
For each commodity, the September price is used as the old crop price; choice
of the September contract allows use of announcements from all four report-
ing months. For corn and spring wheat, the December price is the new crop
price. For soybeans, the November price is the new crop price. For purposes
of comparison, the table also reports slope coefficients from regressions es-
timated from samples including all days in June-September that the USDA
issued neither an acreage nor a crop production report.?!

Since prior to 1995 the USDA released reports immediately following
the close of futures trading on the release date, for 1981-1995 the difference
between the futures price at the opening of trading on the day following
the release date and the futures price at the close of trading on the release
date measures the post-report price change. In 1996, the USDA began to
release reports prior to the opening of trading. As a consequence I use the
close-to-close price change to measure the post-release price responses for
this year.

Note that the coefficients in all regressions are positive and significant,
with p-values very close to 0. Indeed, for all three commodities, these coef-
ficients are almost exactly one, indicating that old crop prices and new crop
prices respond almost identically to news about the harvest contained in the
USDA reports. One cannot reject the hypothesis that the slope coefficients
for the announcement and non-announcement days are the same at the one-
percent confidence level. Moreover, the R?’s imply new crop and old crop
prices for corn and soybeans are very highly correlated on these days. It
is interesting to note that for all three commodities, old crop and new crop
prices are more highly correlated on USDA announcement days than on other
days, as indicated by the higher R?’s on announcement days.

If one interprets the slope coefficient in the announcement day regression
as a measure of Py/Fy, these relative price responses are actually somewhat
larger than those simulated in section 3 even with a very high coefficient
of intertemporal substitution (i.e., a high ¢;). Thus, although the storage

2ISince information relating to expected harvest is revealed on these other days dur-
ing the growing period (through weather reports, for instance) the regression using the
no-announcement sample should also reveal some information about the relative respon-
siveness of old and new crop prices to output-related shocks.
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model with intertemporal substitution comes far closer to mimicking the
behavior of actual old crop and new crop futures prices than the model
without substitution, one could interpret the results in Table 2 to mean that
actual old crop prices respond more to shocks about the size of the expected
harvest than the model prices.??

The size of the slope coefficients on the non-announcement days in Ta-
ble 2 are two-to-three times larger than the slope coefficients generated by
the no-intertemporal substitution model with large demand autocorrelation.
The slope coefficients in the regressions are approximately equal to those pre-
sented in section 3 when ¢; = .9, p = .3, 0, = 9 and o = 40 were assumed.
Thus, the intertemporal substitution model can mimic the real data for these
three commodities whereas I have been unable to find parameters such that
no-substitution model does so.

The variances of old crop and new crop price changes on USDA report
release dates also indicate that information about the size of the harvest has
a significant effect on old crop prices. Table 3 reports the variances of corn,
soybean, and spring wheat futures price changes for both old crop and new
crop futures for days on which the USDA announces acreage or crop forecasts
and on all other days in June through September in the 1981-1996 period.
Note that the variances are uniformly higher on crop forecast release dates.
F-tests indicate that the variances are different at the .995 confidence level.
This implies that the flow of information relevant to price determination
is higher on these dates than on other dates for both new crop and old
crop prices. Indeed, the variance ratios are very similar for new crop and
old crop futures prices. This suggests that harvest-related information is of
similar importance in determining both old crop and new crop prices. This
provides further evidence that information about the size of the new crop
is an important determinant of old crop futures prices. This is inconsistent
with the implications of the high demand autocorrelation-no intertemporal
substitution version of the storage model.

The foregoing evidence demonstrates clearly that (1) information about
the harvest tends to cause old crop and new crop prices to move in the same

22This finding could result from the fact that demand shocks also occur on harvest
announcement days. The slope coefficient in the announcement day regression provides
an uncontaminated measure of Pz/Fz only if there is no demand related information
released on the announcement day. Therefore, the near unity of the slope coefficient is not
necessarily inconsistent with the finding of section 3 that Pz/Fz < 1 in the numerically
solved storage model.
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direction and by about the same amount, and (2) information about the
coming harvest influences old crop futures prices. These results are incon-
sistent with the implications of the basic storage model even when there is
substantial demand autocorrelation. In contrast, they are consistent with the
patterns simulated in the model with intertemporal substitution. Thus, these
findings strongly reject the hypothesis that autocorrelated demand explains
the close co-movements in commodity spot prices and old crop and new crop
futures prices. They therefore imply that some other linkage between prices
among seasons is required to generate the observed price behavior. These
preliminary results suggest that intertemporal substitution is a plausible can-
didate for this linkage.

5 Summary and Conclusions

The high degree of autocorrelation in commodity price time series has defied
explanation by the standard storage model. Storage alone induces some
autocorrelation into commodity prices, but not nearly as much as observed in
actual data. One proposed solution to this problem has been to posit highly
autocorrelated demand shocks. FExisting empirical evidence (Deaton and
Laroque, 1992, 1995, 1996) shows that a very high demand autocorrelation
is required to generate the autocorrelations observed in actual commodity
prices.

Although high demand autocorrelation can reconcile the standard model’s
predictions with the behavior of low frequency (e.g., annual) commodity price
data, this article demonstrates that high demand autocorrelation cannot ad-
dress the fundamental failings of the standard storage model in high fre-
quency futures price data. Specifically, high demand autocorrelation in the
standard model explains neither the high correlations between old crop and
new crop futures prices for seasonally produced commodities nor the respon-
siveness of old crop futures prices to information about the expected size of
the harvest.

In contrast, a modified storage model can explain these salient features
of futures prices. Specifically, introducing intertemporal substitution in con-
sumption to the standard model rectifies its failure to explain the behavior
of futures prices at daily frequencies. A storage model with intertemporal
substitution can produce old crop-new crop correlations and old crop price
responses to harvest shocks of the magnitude observed in actual data for a

26



variety of seasonally produced commodities. Thus, intertemporal substitu-
tion, rather than demand autocorrelation, may be the missing link between
commodity prices over time.

The intuition behind these various results is straightforward. It is typi-
cally inefficient to carry inventories of a seasonally produced commodity from
before the harvest to the harvest period. Thus, in normal circumstances stor-
age cannot link old crop and new crop futures prices. This implies that news
about the expected harvest should have little effect on old crop futures prices
in the absence of intertemporal substitution. Intertemporal substitution pro-
vides a channel by which shocks to the expected harvest influence old crop
prices. Intertemporal substitution therefore induces additional correlation
between old crop and new crop prices. It also causes news about the ex-
pected harvest to influence old crop prices. Thus, storage plus intertemporal
substitution can explain salient features of commodity prices at both high
and low frequencies. Storage likely plays a secondary role in linking new crop
and old crop futures prices and linking prices over time. This article suggests
that intertemporal substitution plays the primary role in forging these links.

The approach taken in this paper to resolve the empirical deficiencies of
commodity storage models of price dynamics differs from the efforts of Mi-
randa and Rui (1999) to achieve the same objective. Miranda-Rui rely on the
concept of the convenience yield in their attempt to reconcile the predictions
of the storage model with the data. Although they find that the convenience
yield model can generate price autocorrelations similar to those found in
practice for a wide variety of commodities, their work examines prices at low
(annual) frequencies. Moreover, they do not examine the implications of the
convenience yield for the behavior of futures prices for seasonal commodities.
Indeed, given the nature of convenience yield hypothesis it is difficult to see
how it can generate such implications. That hypothesis lacks any rigorous
microfoundations. In contrast, the explanation advanced herein advances
a credible microeconomics-based explanation of the behavior of commodity
spot and futures prices.

Future research should concentrate on estimating econometric models of
commodity prices that incorporate intertemporal substitution as well as stor-
age, although it must be recognized that such an endeavor faces a variety of
serious challenges. First, the implication from the simple storage model that
there is some “cutoff” price above which storage is zero and below which stor-
age is positive does not hold in this seasonal model with autocorrelated de-
mand and supply shocks. Thus, limited information methods such as GMM
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(along the lines of Chambers-Bailey (1996) and Deaton-Laroque (1992)) can-
not be used to test the implications of the seasonal model with supply shocks.
Second, whereas the simple storage model with autocorrelated net demand
shocks requires estimation of a model that involves only a single pricing func-
tional and two latent state variables, the seasonal model requires estimation
of several pricing functionals with three latent state variables. The technical
difficulties involved with the simpler model are trying enough (see Deaton-
Laroque, 1995); those confronting the estimation of the structural parameters
in the seasonal model are substantially greater.

Nonetheless, the evidence presented in this article does suffice to show
that (1) the basic storage model augmented with autocorrelated demand
shocks cannot explain key features of the behavior of old crop and new crop
futures prices, and (2) intertemporal substitution can explain these same
features. Thus, the theory and evidence presented herein advance our un-
derstanding of the forces driving commodity prices and provide a foundation
for further research on this subject. In particular, the theory and evidence
demonstrate that researchers can use high frequency futures price data to
formulate and test sharper hypotheses that can discriminate between models
in ways that are impossible when relying on low frequency spot price data
alone.
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Table 1
Panel 1

New Crop-0ld Crop Futures Contract Information

COMMODITY | SYMBOL | OLD CROP MONTH | NEW CROP MONTH PERIOD
CANOLA CA JUNE NOVEMBER MAY-JUNE
CORN CN MAY DECEMBER APRIL-MAY
COTTON cT MAY OCTOBER APRIL-MAY
OATS OA MAY DECEMBER APRIL-MAY
SOYBEANS SY MAY NOVEMBER APRIL-MAY
HRW WHEAT | HRWW MARCH JULY FEBRUARY-MARCH
SRW WHEAT SRWW MARCH JULY FEBRUARY-MARCH
HS WHEAT HSW MAY DECEMBER APRIL-MAY
Table 1
Panel 2
New Crop-0ld Crop Correlations
YEAR CA CN cT OA SY | SRWW | HRWW | HSW
1981 8756 | .6481 | .6580 | .6310 [ .9297 5847 9455 | 7835
1982 9428 | .8586 | .6867 | .8242 | .9055 .8999 7374 | .8594
1983 7324 1 .7099 | .8839 | .8517 | .9787 .9444 .6950 | .6519
1984 5023 | .7603 | .7755 | .6257 | .6542 .8221 7568 | .7842
1985 6799 | .3736 | .5816 | .5985 | .8142 .7059 .6200 | .7219
1986 9755 | .5920 | .2281 | .9311 | .8340 .5510 4192 | 8074
1987 9476 | .8281 | .8253 | .5546 | 9175 7334 7321 | .8565
1988 9810 | .8600 | .5722 | .8419 | .9174 .8843 .8543 | .8302
1989 9815 | L7526 | .7267 | .9402 | .8213 .6844 .6484 | .8659
1990 9042 | 7482 | .7203 | .9713 | .9625 5517 .6933 | .6451
1991 7739 | .8600 | .7089 | .9380 | .9540 9370 9531 | 9191
1992 9712 | .8770 | .9102 | .9583 | .9182 .8007 8270 | .8399
1993 6233 | .9085 | .9211 | .9139 | .9281 .6565 7053 | 4875
1994 2888 | .8273 | .7215 | .9450 | .9438 .5896 7131 | .5747
1995 .8318 | .8880 | .5838 | .9272 | 9715 7605 .6638 | .5302
1996 9005 | .4638 | .6913 | .8364 | .9146 4356 6886 | .6973
1997 6301 | .6773 | .6297 | .9054 | .6831 .4589 .6456 | .9020
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Table 2
Slope Coefficients in Regression of
Old Crop Futures Price Change on New Crop Futures Price Change
Commodity | Announcement Day | Slope Coefficient R?
Corn Yes 1.00 .863
Corn No 922 .832
Soybeans Yes .998 979
Soybeans No 1.007 935
Wheat Yes 974 .855
Wheat No 938 .895
Table 3

Old Crop and New Crop Futures Price Change Variances

On USDA Announcement Days and All Other Days

in June-September
Commodity Announcement Day | Other Day | F'—statistic
Variance Variance

Old Crop CN 17.71 8.32 2.13
New Crop CN 15.28 8.12 1.88
Old Crop SY 111.52 62.32 1.79
New Crop SY 103.57 57.64 1.80
Old Crop HSW 9.10 7.76 1.19
New Crop HSW 10.18 7.32 1.39

Note: Variances in cents squared. All F'—statistics significant at the .995 level for 73 and
1165 degrees of freedom.
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A Supply and Demand Variances in the Net
Demand Setup

Deaton and Laroque invoke a high net demand autocorrelation to explain
the high autocorrelation in commodity prices. This appendix demonstrates
that this explanation requires demand shock variances to be far larger than
supply shock variances. This is not plausible for the commodities I study.
Virtually all articles in the storage literature specify a “net demand shock”
that is the difference between a demand shock and a supply shock. Consider
the net demand X; = n; — Z; where 1 is demand at ¢ and Z; is production at
t. Scale the variables such that F(n;) = 0 and E(Z;) = 0. For non-tree crops
(e.g., soybeans or corn) it is plausible that Z; exhibits low serial correlation.
For purposes of exposition, assume that harvest autocorrelation is zero, that
is E(Z:Z;—1) = 0. It is also plausible that F(Z;_17m;) ~ 0. Under these

assumptions, the autocorrelation of X is:

E (1)
E(ni) + E(Z7)

Px =

If the autocorrelation in the demand shock is p,, this implies:

_ an(ﬂf)
PXZER) + E(ZD)

Even if the demand shock follows a random walk (i.e., p, = 1), this
implies that the variance of the demand shock—E(n?)-must be 9 times as
large as the variance of the supply shock-E(Z?)-to generate a px = .9 (the
magnitude required to explain price autocorrelations in the Deaton-Laroque
(1995, 1996) framework). Thus, if supply shocks are serially uncorrelated
(or only weakly serially correlated), the Deaton-Laroque explanation of high
price autocorrelations requires supply shocks to be unimportant. This is
implausible for the field crops studied here; the attention of traders to weather
information and supply forecasts clearly indicate that supply shocks are of
crucial importance in determining crop futures prices. This further highlights
the necessity of identifying some other source of intertemporal linkage.

31



References

1]

2]

Chambers, Marcus, and Roy Bailey. 1996. “A Theory of Commodity
Price Fluctuations.” 104 Journal of Political Economy: 924-957.

Deaton, Angus, and Guy Laroque. 1992. “On the Behavior of Commod-
ity Prices.” 59 Review of Economic Studies: 1-23.

Deaton, Angus, and Guy Laroque. 1996. “Competitive Storage and
Commodity Price dynamics.” 104 Journal of Political Economy: 896-
923.

Deaton, Angus and Guy Laroque. 1995. “Estimating a Nonlinear Ratio-
nal Expectations Model with Unobservable State Variables.” 10 Journal
of Applied Econometrics: S9-S40.

Miranda, Mario and Xiongwen Rui. 1999. “An Empirical Reassessment
of the Commodity Storage Model.” Working paper, Ohio State Univer-
sity.

Routledge, Brian, Duane Seppi, and Chester Spatt. 1997. “Equilibrium
Forward Curves for Commodities.” Working paper, Carnegie Mellon
University.

Scheinkman, Jose, and Jack Schectman. 1983. “A Simple Competitive
Model of Production with Storage.” 50 Review of FEconomic Studies:
427-441.

Williams, Jeffrey, and Brian Wright. 1991. Storage and Commodity
Prices. Cambridge: Cambridge University Press.

32



