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1 Introduction

Market power manipulation–commonly known as a “corner” or “squeeze”–is

one of the main regulatory and legal challenges facing derivatives markets.

There are many famous examples of squeezes dating back to the very origins

of derivatives trading, and extending to the present day.1

These manipulations are inefficient. The exercise of market power re-

sults in distortions in the production, consumption, and transportation of

the commodity underlying the derivatives contract. Moreover, manipulation

1The soybean market was rocked by a major manipulation in 1989, copper was mas-
sively manipulated in the mid-1990s, Brent crude squeezed at various times in the 1990s
and 2000, and recently there have been allegations of corners in aluminum and propane.
Nor are corners limited to physical commodity markets. There is evidence of squeezes
in US Treasury Bond futures in 1986 (Cornell and Shapiro, 1989); Salomon Brothers
squeezed the Two-year Treasury Note market in 1991 (Jegadeesh, 1993); the UK Long
Gilt contract was squeezed in the 1990s (Merrick, Naik, and Yadev, 2005); there are alle-
gations that a corner of the Ten-Year Treasury Note futures contract (one of the world’s
largest) occurred in 2005; and the US Treasury and Federal Reserve have expressed serious
concerns about chronic squeezes in the Treasury repo and futures markets (Clouse, 2006).
There are also indications that credit derivatives have been squeezed in the aftermath of
credit events. Allen, Litov, and Mei (2006) document a number of stock corners.
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causes prices to move unpredictably in response to factors other than supply

and demand fundamentals; that is, manipulation injects noise into deriva-

tives prices that reduces price informativeness and thereby undermines the

utility of derivatives markets as loci of price discovery. Furthermore, market

power manipulation injects noise into price relations (e.g., basis relations)

that reduces the hedging effectiveness of derivatives contracts. For all these

reasons, manipulation is proscribed by statute in the United States, and

reducing the frequency of manipulation is the primary focus of regulatory

efforts in derivatives markets.

Despite the importance of manipulation to the efficiency of derivatives

markets, many aspects of the economics of corners and squeezes are not

well understood. In particular, the dynamics of trading as a contract nears

expiration have not been modeled extensively, and as a result the existing

literature cannot capture many of the interesting actions and interactions

observed during actual squeezes. This article fills that void by examining

the effects of asymmetric information on the trading strategies of large longs

and shorts as a contract approaches expiration.

A traditional market power manipulation has a well defined end game:

the holder of a dominant long futures (or forward) position can demand

excessive deliveries–or equivalently, agree to sell contracts only at a super-

competitive price. Pirrong (1993) presents a formal model of this end game

based on implicit assumptions regarding the bargaining process that the

dominant long employs; specifically, Pirrong assumes that there is no pri-

vate information, and the large long makes a single price take-it-or-leave

offer. Shorts then decide how many contracts to liquidate by buying from

the long at that price, and how many to close by making delivery.

Although the end game model accurately describes many phenomenon
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observed in historical corners, and makes predictions regarding the factors

that make a market susceptible to the exercise of market power by a large

long, the bare-bones nature of the model means that it cannot capture some

of the rich and varied phenomena observed in real-world corners. Specifi-

cally, it cannot capture some of the complex interplay between longs and

shorts in the period leading up to the end of trading of a cornered contract;

the fact that some large longs liquidate all or part of their positions prior to

the very end of trading; the spectacular failures of corners, where the large

long was inundated with unexpectedly large deliveries, leaving him with a

highly unprofitable “corpse to bury”; and the long’s use of “step up” orders

to liquidate positions.

The end game in the Pirrong model also poses a puzzle. In that model,

there are substantial deadweight costs and transfers of wealth from the shorts

to parties other than the large long–specifically, to small, non-manipulating

longs and the owners of the commodity that the shorts buy in order to

deliver. The deadweight cost and wealth transfers create potential gains

from trade that the large long and the shorts can split. This raises the

question of whether a richer bargaining and trading mechanism that permits

opportunities for traders to make mutually beneficial transactions leads to

different conclusions regarding the playing of the end game and the welfare

effects of manipulation.

In this article, I address these issues by incorporating incomplete infor-

mation and multiple trading rounds into the end game model. The first

set of models assumes that the large long’s position is private information.

Shorts and small longs may obtain a signal on this position, but they can-

not observe it without error. This private information impedes negotiations

between the long and the shorts; due to the private information, some gains
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from trade are not realized. Nonetheless, some gains are captured through

pre-end game liquidations.

Two main results obtain when the manipulator’s position is private in-

formation. First, if all shorts are atomistic, no trade occurs before the

expiration of the manipulated contract, and the only equilibrium is the inef-

ficient end game outcome. This occurs because (a) the atomistic shorts face

a coordination problem, and (b) there are externalities among the shorts.

If some shorts liquidate prior to expiration, the long’s market power is re-

duced, and the shorts who do not liquidate prior to expiration are able to do

so at a lower price at expiration. Under these circumstances, the dominant

strategy for each small short is to abstain from trade (or equivalently, bid

the competitive price) prior to expiration. The end game therefore occurs

at expiration, with all its associated inefficiencies.

Second, if there is a large short, some of the externality is internalized,

and the coordination problems are mitigated. Under these conditions, the

large short may find it profitable to trade with the large long prior to expi-

ration because he can internalize some of the gains from trade with the long.

Even here, however, information asymmetry and coordination problems pre-

clude the realization of all gains from trade. In order to extract rents from

middle-sized longs, when the long’s position is private information, the large

short does not bid aggressively enough to induce bigger longs to trade prior

to expiration even though the gains from trade are largest with the largest

longs.

This model makes several interesting predictions. Some trade occurs

prior to expiration, and the delivery end game may not occur at all. If

the large long trades with the large short prior to expiration, some of his

position is liquidated at a supercompetitive price, and the price falls after
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this trade; it may rise again at expiration, or continue to fall. If the large

long does not trade with the large short (and the larger longs will not trade

when information about position is private), the price rises subsequent to

the rejection of the large short’s offer, and then may fall or continue to

rise at expiration. Thus, the model predicts price movements around ex-

piration not driven by fundamentals, and which may be associated with

pre-expiration trades. Pre-expiration trade improves welfare (by reducing

deadweight losses) and transfers wealth from small longs (who otherwise free

ride on the manipulative long) to other traders.

The second model explores the implications of private information about

the cost of delivery. In this model, the shorts have private information about

the marginal cost of delivery that the large long does not possess. When

deciding the price at which he is willing to liquidate, the large long must

optimize over the distribution of possible delivery marginal costs. Sometimes

the large long overestimates the cost of delivery, and in the event, demands

too high a price to liquidate. In this case, shorts deliver large quantities,

potentially imposing a substantial loss on the large long.

The last model provides a rationale for the use of step up orders. If

shorts have different costs of delivery, and private information about these

costs, during the end game a large long may increase profit by using non-

linear pricing. Presenting shorts with a menu of price-quantity combinations

screens shorts according to their delivery costs. This menu can be imple-

mented through step up orders. The resulting equilibrium requires that the

menu exhibit monotonicity properties. I evaluate the actual step up orders

used in some alleged manipulations to determine whether these properties

hold.

In brief, the incorporation of private information allows for richer interac-
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tions and behavior in a market susceptible to manipulation. The predictions

of these models help explain events that have occurred in real world corners

and squeezes, including some historically important ones. The models also

help to explain the “technical” fluctuations in prices that can occur around

the expiration of a futures contract, i.e., price fluctuations not driven by

supply and demand fundamentals.

This paper is closest in spirit to that of Donaldson and Cooper (1997).

They analyze the strategic interactions between longs and shorts as a fu-

tures contract approaches expiration where one large trader may have built

up a cornering interest. Donaldson-Cooper assume all information about

positions is public, however, and their results are driven primarily by the

externalities among shorts and longs and their influence on bidding behavior,

and the assumptions about the trading process, most notably the assump-

tion that only one unit is transacted in each round of trade. As is the case

with the present model, Donaldson and Cooper predict that technical factors

can lead to price fluctuations (including bubble-like behavior) as a futures

contract approaches expiration. Their model does not predict partial liqui-

dations by the large long, after which the large long still exercises market

power during the end game. Their model also does not predict that the

existence of large shorts can exert a decisive impact on the pre-expiration

trading process.

The remainder of this article is organized as follows. Section 2 reviews

the delivery end game and discusses how the inefficiencies and wealth trans-

fers that occur during the end game create potential gains from trade prior

to expiration. Section 3 shows that despite the existence of these gains from

trade, there is no pre-expiration trading when all shorts are atomistic; in

this case, the only equilibrium is that the long liquidates his entire position
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in the end game. Section 4 adds a large short to the analysis, and demon-

strates that in the presence of private information the large short makes

an offer to trade that some large longs accept. The short’s price is above

the competitive price, and trades off rent extraction against efficiency gains

of avoiding the end game. Section 5 shows how private information about

delivery costs can result in the large long rationally choosing a price at ex-

piration that results in an avalanche of deliveries that makes the squeeze

highly unprofitable ex post. Section 6 extends the analysis to show how pri-

vate information about delivery costs can induce the large long to use step

up orders at expiration. Section 7 summarizes.

2 The Delivery End Game

Consider a futures contract traded on the commodity. The contract is settled

by delivery in market 1.2 Demand in this market is P = θD − φDq, where

θD and φD > 0 are constants, P is the spot price in the market, and q is the

quantity consumed. Supply in the market is P = θS + φSq, where φS > 0

is a constant and q is the quantity supplied to the market.3 Iniitially, I

assume that all supply and demand parameters are common knowledge; I

allow private information on these parameters in section 5. If the delivery

market is competitive, the competitive quantity in the market is determined

by the intersection of the supply and demand curves, and equals:

2Pirrong (2001) shows that the same results would obtain in a market where the futures
are cash settled against the spot price in market 1.

3The delivery demand and supply conditions differ from those in Donaldson-Cooper.
They assume a stair-step delivery cost function. This discontinuity leads to different
end game pricing and efficiency implications from those derived when delivery costs are
continuous, as is the case here.
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Qc = (θD − θS)/(φD + φS)

There is a large long in the market, and a competitive fringe of atomistic

longs.4 The large long has a position of x contracts, and the price taking

atomistic longs have an aggregate position of I−x, where I is the total open

interest in the contract. At expiration, the large long makes a take-it-or-

leave-it offer of Pm to the outstanding shorts; this is the price at which he

is willing to sell contracts to the shorts, thereby liquidating their positions.

Shorts then decide whether to accept this offer and liquidate by buying

futures, or instead to satisfy their contractual obligations by delivering the

commodity.

If the large long chooses a price Pm, shorts choose to delivery a quantity

Q such that the marginal cost of delivery equals Pm. That is, to minimize

their costs of closing their positions, shorts choose to deliver to the point

that θS + φSQ = Pm. Since there is a one-to-one relationship between the

price that the large long chooses, and the quantity of deliveries, the large

long’s price decision is equivalent to choosing the number of deliveries to

maximize his delivery period-revenues. For a given choice of Q, the long

sells futures x−Q futures contracts at a price equal to the marginal cost of

delivery of Q units.

Π(x) is the large long’s revenue at futures contract expiration. This

revenue consists of two components: the revenue from sales of the commodity

4The trading process by which traders accumulate positions is not modeled here. Pir-
rong (1994) shows that large traders can utilize randomized trading strategies to accu-
mulate positions sufficiently large to permit them to squeeze the market during the end
game. The prices at which the long can acquire positions depends on the nature of the
end game. As a consequence, the introduction of pre-end game trading affects trading at
the position-accumulation stage.
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that is delivered to him, and revenue from the sales of futures contracts.

Thus,

Π(x) = max
Q

{Q(θD − φDQ) + (x− Q)(θS + φSQ)} (1)

In this expression, Q is the number of deliveries that the large long takes.

Due to the existence of an upward sloping supply curve to the delivery

market, a long with a sufficiently large position can squeeze the futures

contract. To squeeze, the speculator demands deliveries that exceed the

competitive quantity in the delivery market (Pirrong, 1993). Therefore, the

price in the delivery market at expiration (and hence the futures price at

expiration) is higher than the competitive price if and only if Q ≥ Qc.

By demanding excessive deliveries, the manipulator forces excessive pro-

duction of the commodity, driving up the marginal cost of production; shorts

must pay this inflated marginal cost of production in order to acquire the

good for delivery, and hence they are willing to pay this inflated price to

purchase contracts to extinguish their obligation to make delivery. Imme-

diately following expiration, the price in the delivery market falls below the

competitive equilibrium price because the manipulator dumps the excessive

supplies of the commodity in market 1. This post-delivery fall in price is

referred to as the effect of “burying the corpse,” the corpse being the large

quantities of deliveries the long must take to inflate prices. The cost of

burying the corpse (i.e., disposing the excessive deliveries at a depressed

price) affects the profitability of manipulation, and the squeezer takes this

effect into account when deciding how many contracts to liquidate and how

many to close via delivery. This cost also affects the large long’s incentive

to bargain prior to the end game.
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Solution of the first order conditions for (1) implies:

Q =
θD − θS + φSx

2(φD + φS)

Q ≥ Qc when:

x ≥ x̂ =
θD − θS

φs

That is, x̂ is the smallest long position such that a squeeze occurs. If

x < x̂, the large long does not squeeze, and the contract liquidates at the

competitive price Pc = θS + φSQc.

It is readily shown that if x ≥ x̂:

Pm(x) = θS(1 − .5A) + .5θDA + .5φSAx

where A = φS/(φD + φS). This can be rewritten as:

Pm(x) = A + βx.

Recall that open interest is I contracts, meaning that there are I short

positions outstanding. Shorts pay either Pm(Q) to obtain the deliverable

commodity, or the same price to buy back their futures positions. Thus,

shorts in aggregate incur a cost of Pm(Q)I at delivery. Absent a squeeze,

they would pay PcI . Thus, the total cost of a squeeze to the shorts is

I(Pm(Q)− Pc).

The large long pockets Π(x). Note that because θD − φDQ < Pc <

Pm(Q) when Q > Qc (due to the necessity of “burying the corpse”), Π(x) <

xPm(Q). Moreover, since x ≤ I ,

Π(x)− Pcx < I(Pm(Q)− Pc)

That is, the squeezer’s profit (squeeze revenue minus the revenue he would

have earned by liquidating his entire position at the competitive price) is

smaller than the cost that the squeeze imposes on the shorts.
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The difference between the shorts’ losses and the squeezer’s gain can be

broken into four parts:

• Deadweight loss. By demanding excessive deliveries, the large long

induces a distortion in flows of the commodity to the delivery market,

and consumption in that market. The marginal cost of the additional

units delivered exceeds their marginal value to consumers.

• Transfers to the atomistic longs. Atomistic longs can liquidate their

positions at the manipulated price (or slightly below, to ensure that

they take no deliveries.) Thus, the atomistic longs liquidate their

positions at a supercompetitive price, and thereby earn a rent at the

shorts’ expense.

• Transfers to owners of the commodity. Owners (or producers) of the

commodity can sell it to shorts at the manipulated price. Since the

marginal cost curve slopes up, the commodity owners/producers earn

a surplus on the units of the commodity delivered. This surplus equals

the windfall gain realized by selling the competitive quantity at a su-

percompetitive price, and difference between the revenue realized by

selling more than the competitive quantity at the supercompetitive

price, minus the cost of producing these additional units.

• Transfers to consumers of the commodity. The post-delivery price for

the commodity is less than the competitive price due to the attrac-

tion of excessive supplies to the delivery market. Consumers of the

commodity reap the benefit of the lower price, but this lower price is

imposes a cost on the manipulating long.

Due to the difference between the shorts’ losses and the manipulator’s
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gain, these parties can realize gains by negotiating a settlement that elimi-

nates the need to play the end game. The end game outcomes define the bar-

gaining range, but there are transactions that would make both the shorts

and the large long better off. Some of these transactions would transfer

wealth from the atomistic longs and the owners and consumers of the com-

modity, but they also have the potential to improve welfare by reducing the

distortions in production and consumption that occur if the end game is

played.

This raises the questions: Will the large long and the shorts come to a

mutually beneficial bargain? If not, why not?

The following sections explore these questions, and show that the answer

depends on the structure of the short side of the market, and the existence of

private information. In the presence of private information, when shorts are

small, no bargain is possible due to externalities and coordination failures;

thus, with atomistic shorts, the end game is always played if x > x̂. If there

is a large short, however, under some circumstances a mutually beneficial

trade occurs prior to the end game.

3 Pre-Expiration Trading With Atomistic Shorts

and Private Information on the Large Long’s
Position

It is well known that private information can prevent the negotiation of

mutually beneficial transactions. In this section, I assume that the large long

knows his position with certainty, but that shorts only know the distribution

of his position.

This assumption is realistic. A trader certainly knows his own position.

Moreover, traders are not obligated to disclose their positions to the mar-
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ketplace at large; indeed, they often take extraordinary efforts to conceal

their positions from others.5 For instance, one reason traders use brokers

is to conceal their identities from counterparties. Although exchanges and

regulators collect position information, they are typically precluded from dis-

closing this information to other market participants. Moreover, by trading

with multiple counterparties, an individual trader prevents any individual

counterparty from knowing his entire position.

That said, given salience of position information, market participants

invest real resources in an attempt to learn about the positions accumulated

by other traders. Most large trading firms have commercial intelligence

networks. Brokers provide information on trading activity, including infor-

mation relating to what types of firms are trading and in what volumes. In

the Treasury market, for instance, this is referred to as “market color” and

represents a major service that brokers provide their customers.

Although market participants value this service (as indicated by their

willingness to pay for it), it provides only a noisy signal on the position held

by any one trader because (a) an individual broker does not see all market

activity, (b) brokers’ fiduciary obligations preclude them from disclosing the

names of actual transactors, and (c) traders take active measures to conceal

their activities from brokers’ prying eyes.

In some markets, the government produces data that provides some in-

formation on positions. For instance, in the United States, the Commod-

ity Futures Trading Commission provides Commitment of Trader Reports.

These reports disclose the aggregate position held by the four and eight

5Easterbrook (1986) emphasizes the role of secrecy in manipulations. Indeed, he iden-
tifies manipulation as a species of fraud because the manipulator relies on concealment
of his position and intentions from his counterparties in order to lure them unsuspecting
into a corner.
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largest longs, and the four and eight largest shorts. However, these reports

(a) reflect positions held some time prior to their release, (b) aggregate posi-

tions across at least four longs, and (c) aggregate positions across all delivery

months for a particular commodity. Therefore, they provide an imprecise

measure of the current largest long position in a particular contract.

Thus, market participants have some information regarding the positions

held by others in the marketplace, but they cannot know any individual

trader’s position with certainty. To formalize this reality, I assume that all

traders but the large long receive a signal on the large long’s position. To

simplify matters, I assume that all traders receive the same signal, and the

large long knows the signal that they receive. Moreover, all traders agree

that the signal implies that the distribution of the large long’s position is

given by the continuous density function f(x), where x has support [xo, I ].

In this section, I assume that all shorts are atomistic price takers. That

is, the shorts live on a continuum of length 1. These shorts, the atomistic

longs, and the large long have an opportunity to trade prior to the expiration

end game. The end game occurs at t2, and at t1 < t2, shorts can submit bids

indicating the price at which they are willing to purchase contracts. The

atomistic longs can also submit offers to sell. I assume that the atomistic

traders’ limit orders are crossed, and that the large long can trade by market

order with the remaining, uncrossed bids. All positions remaining open at

t1 are closed in the delivery end game at t2.

Assume initially that all shorts adopt a symmetric trading strategy, bid-

ding b(x̃) > Pc after receiving signal x̃ on the large long’s position. It is

straightforward to see that this cannot be an equilibrium strategy. The ar-

gument proceeds in several steps. First, given this bidding strategy, the large

long either hits all or none of the bids. This is true because the marginal rev-
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enue of hitting an additional bid is b(x̃), and his marginal cost after hitting

q bids is:

−dΠ(x − q)
dq

= Pm(x − q)

where this result obtains by applying the envelope condition to (1). Since

Pm(x − q) is decreasing in q (the end game price is lower, the lower is the

large long’s position), if Pm(0) = Pc > b(x̃), the long trades zero contracts

at t1. If Pm(0) < b(x̃), since marginal cost is decreasing the long’s optimum

is a corner solution; he either sells x contracts or none. That is, the marginal

cost curve crosses the marginal revenue curve from above, meaning that the

intersection is a local minimum, and the maximum is a corner solution.6

Consider an individual short. All other shorts choose b(x̃); does this

short have a better strategy? Yes: he can bid Pc − ε. The large long never

hits this bid.

If the long hits the other shorts’ bids, he sells so many contracts that

his position falls below x̂, the minimum required for a corner, and during

the end game the price equals Pc. The defecting short can then liquidate

his position at this price. Conversely, if the large long doesn’t hit the bid,

the short liquidates at Pm(x) > Pc. If this short also bids b(x̃), the short

pays b(x̃) when the large long hits the bids. If the large long does not hit

the bids, the short must cover during the end game at a price Pm(x) > Pc.

Thus, bidding Pc dominates bidding b(x̃) > Pc. This produces:

Result 1. There is no symmetric equilibrium in which atomistic shorts

all bid at a single price in excess of the competitive price.

6In fact, the large long is willing to hit all I bids as the shorts’ bids exceed the compet-
itive price that prevails at expiration once the large long liquidates. The large trader can
therefore sell I contracts at b(x̃), and cover the resulting short position of I − x contracts
at a price of Pc.

15



Moreover, it is an equilibrium for all shorts to bid Pc. Assume that

all atomistic shorts but one follow this strategy. Should this one short bid

b̂ > Pc? No: the large long hits the bid if b̂ > Pm(x) because Pm(x) is the

marginal cost of hitting this bid. In the event, this short pays b̂ > Pm(x)

to buy back his short position. Conversely, if he bids Pc, the long does not

hit any offers, the end game is played, and the short covers his position at

a price Pm(x). Thus:

Result 2. It is a Nash equilibrium for all atomistic shorts to bid Pc.

Indeed, this is the only equilibrium. Assume that short i ∈ [0, 1] bids

bi(x̃) > Pc. Due to price priority, these bids are ordered from lowest to high-

est, and the market clearing price is determined by the bid of the marginal

short. Due to the ordering of bids, the large long faces a downward sloping

demand curve for his position at t1, and hence the large long’s marginal rev-

enue curve is below the demand curve. If the large long maximizes his profit

by choosing to liquidate q ≤ x contracts, at this point the long’s marginal

revenue equals his marginal cost, which is Pm(x− q). All shorts whose bids

are hit pay a price that exceeds this marginal cost. All shorts whose bids

are not hit pay a price of Pm(x − q) in the delivery end game. Therefore,

not trading at t1 strictly dominates trading at t1. As a result, a short is

better off by cutting his bid to Pc. Thus:

Result 3. The unique equilibrium is for all shorts to bid Pc. As a result,

there is no trade at t1, and the delivery end game is played at t2, with all

shorts paying Pm(x) to cover their positions.

Therefore, despite the gains from trade between the shorts and the long,

no pre-expiration trade occurs. This is because atomistic shorts face an

extreme winner’s curse. The curse arises from an externality across shorts.

Any short that buys at t1 reduces the large long’s market power; this benefits
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all other shorts who do not liquidate. So each short would prefer to free ride

on the other shorts. As a consequence, no short bids aggressively, and none

of the potential gains of trade between the shorts and the large long are

realized.

4 Pre-Expiration Trading With A Large Short and
Private Information on Positions

Atomistic shorts face severe free rider and coordination problems. This sug-

gests that the stark results of the previous section may be relaxed if there is

a large short who internalizes some of the externality. This section demon-

strates that this is indeed the case, but that the problem is not eliminated

if there is private information.

This section explores a modified and extended model. In this model,

there is a large short with a position of S ≤ I . For simplicity, I assume that

S is public information.7 The large short and a fringe of atomistic shorts

receive a signal on x. Subsequent to the receipt of the signal, at t0, the large

short can negotiate with the large long. During the negotiation the large

short bids a price P per unit for up to S contracts. The atomistic longs

are excluded from this negotiation. The results of this negotiation–the price

and the amount of contracts the long sells–are disclosed to the market. At

t1, the small shorts and small longs can trade. At t2, remaining positions

are closed in the delivery end game.

The assumption that the atomistic longs cannot hit the large short’s bid

can be justified when there is the possibility of private settlements between

the short and the long. There are numerous examples of such private settle-

7This assumption is innocuous here as the short has all the bargaining power.
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ments during corners on the Chicago Board of Trade, as described in Taylor

(1917). Similarly, private negotiations are feasible in over-the-counter mar-

kets.

If all bids must be made publicly and accessible to all subject to priority

and precedence rules, however, atomistic longs may hit bids, and be allocated

trades. However, I derive below a sufficient condition (that depends on S

and f(x)) that ensures that atomistic longs do not hit the large short’s bid

even if they have the opportunity to do so. I also provide examples in which

this sufficient condition holds.

Moreover, it should be noted that atomistic longs face an adverse selec-

tion problem that strongly limits their incentive to hit the short’s bid. I

show below that there exists a critical position size x∗ such that a long with

x ≤ x∗ hits the short’s bid, but that one with x > x∗ does not. Regardless

of the priority and precedence rules (e.g., time priority, size precedence, or

pro rata allocation), an atomistic long is more likely to have his order filled

when x > x∗ than when the opposite is true, as he faces no competition

from the large long in this case. But, this is exactly when the atomistic long

would prefer not to be filled, as this is when the price during the end game

is high. The atomistic long prefers to be filled when x ≤ x∗, as if he is not

(or if he does not bid), in this case the price falls below the short’s bid in

the next round of trading (as I also show below). But, since the large long

hits the short’s bid when x ≤ x∗, the atomistic long faces more competition

to execute at P , and is less likely to get a fill at this price. Under size pri-

ority, he will not be filled; under pro rata rationing, his probability of being

filled is essentially zero. Only under strict time priority is the probability

of being filled appreciably bigger than zero, but even under this rule it is

less than one. Thus, atomistic longs may not hit the short’s bid even when
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the sufficient condition does not hold (as this condition ensures that a small

long does not hit the bid even if his order has absolute priority and hence

he faces no adverse selection-driven rationing.)

The assumption that the large short bids a common price for all S units

is made for the purpose of tractability, but in general, the large short does

not submit a downward sloping bid schedule with no constraint on the quan-

tity that the large long sells; the long picks off the short’s high bids, and

then closes the remainder of his position at the squeeze price in the delivery

end game. Optimization requires the short equate the marginal cost of re-

purchasing a contract at t0 and the marginal cost of repurchasing a contract

in the end game, but this cannot occur if the short submits a downward

sloping bid curve. As noted in section 3, the large long equates the marginal

revenue of liquidating at t0 to the marginal value of a contract at t2. Since

the t2 marginal value is the end game price, the marginal revenue at t0

is also the end game price. If the short submits a downward sloping bid

schedule, this t2 price must be less than the marginal bid that the long se-

lects at t0 (because with a downward sloping schedule the marginal bid is

above the marginal revenue).8 Thus, if the short submits bids at different

prices, the marginal price he pays at t0 exceeds the marginal price paid at

t2. As a result, submitting bids at different prices cannot minimize the cost

of liquidating his position.

It can be shown, using the same arguments as in the previous section,

that small shorts desire to free ride, and bid Pc. Thus, the analysis can be

8However, the short may want to use a menu of “all-or-none” bids at different prices
and quantities which require the long to trade the entire quantity at the price selected.
This allows the short to discriminate more effectively among longs with different values
of x. The appendix presents the analysis when such orders are allowed. Most of the
qualitative implications of the analysis are the same as those derived in the main text.
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restricted to the choice of the large short.

If the large short chooses a price P and bids for S contracts at this price,

some large longs accept and some reject. The long’s decision depends on x.

A large long that hits the bid earns a revenue of:

ΠH(x) = SP + Π(x − S)

whereas a long that does not hit the bid receives Π(x). The long hits the

bid if and only if ¶H(x) > Π(x), that is, if Π(x)− Π(x − S) < SP.

For a given P , there exists an x∗ such that:

Π(x∗)− Π(x∗ − S) = SP

Since the left hand side of this expression is increasing in x, any long with

x > x∗ will not hit the short’s bid, but any long with x ≤ x∗ will do so.

Note that Π(x) = Π(x− s) +
∫ S
0 Pm(x− y)dy. Therefore, since Pm(u) =

A + βu:

SP = AS + βx∗S − .5βS2

so:

x∗(P ) =
P −A + .5βS

β

Moreover,
dx∗

dP
=

1
β

The large short chooses P to minimize his expected cost of closing his

position. He pays PS if x ≤ x∗, but must pay Pm(x)S for x > x∗. Therefore,

the short’s expected cost is:

C(P, S) = PSF (x∗(P )) + S

∫ I

x∗(P )
Pm(x)f(x)dx
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where F (.) is the cdf of the distribution of x conditional on the signal the

short receives. The first order condition for the minimum implies:

P = Pm(x∗(P ))− βF (x∗(P ))
f(x∗(P ))

(2)

Recalling that Pm(x) = A + βx, and that x∗ = (P −A)/β + .5S

P = A + β[
P −A

β
+

1
2
S] − βF (x∗(P ))

f(x∗(P ))

Simplifying produces:
1
2
S =

F (x∗)
f(x∗)

(3)

This can be solved for x∗, which in turn implies the large short’s choice of

P. Note that since F (x0) = 0, if F (x)/f(x) is increasing in x (as is the case

for most single-peaked parametric densities), x ∈ (x0, I ].

According to (2), the large short offers a price that is below the price at

which some longs would liquidate their position in the delivery end game.

These longs are willing to liquidate at this lower price nonetheless because

they realize only a fraction of their end game price as a profit (due to dead-

weight losses and the cost of burying the corpse.) Thus, the liquidating long

and large short split some of the gains from trade described above. The

large short must trade-off the benefit of buying some contracts at a price

lower than he would pay during the delivery end game against the cost of

buying some contracts at a price higher than he would pay during the end

game. Due to private information, not all gains from trade are realized, how-

ever. The rent extraction-efficiency trade off typical of problems involving

asymmetric information induces incomplete liquidation.

Thus, the model predicts that in the presence of private information on

positions, some longs liquidate prior to expiration, whereas some abstain

from early liquidation in favor of playing the delivery end game. Big longs

hold out, but some smaller-to-medium sized longs liquidate early.
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The model has implications for the behavior of prices over time.

First, if the large long hits the large short’s bid, P exceeds the post-trade

price. To see this, note that if the large short trades at t0, atomistic shorts

and longs are willing to trade at t1 at a price equal to the expected price

in the delivery end game. This price is max[Pc,A + βE(x|x ≤ x∗) − βS].

Further,

P = A + βx∗ − .5βS > max[Pc,A + βE(x|x ≤ x∗) − βS]

Thus, the price falls after a large long liquidates some or all of his position

before the end game. The fact that the price sometimes declines implies

that the small shorts free ride off the large short.

Second, if the large long does not hit the large short’s bid, at t1 the atom-

istic longs and shorts are willing to trade at a price equal to the expected

price in the delivery end game: A + βE(x|x > x∗) > P .9

Third, since the t1 prices are based on the conditional expectation of x,

prices may either rise or fall from t1 to t2 regardless of whether the long hits

the bid at t0 because the actual value of x is revealed at t2 through the large

long’s bid.

Thus, in the model prices fluctuate even though by assumption there are

no fundamental shocks to supply and demand. Prices can exhibit contin-

uations up, continuations down, or reversals. Moreover, supercompetitive

prices can appear prior to the end game, and persist for some time. All of

these fluctuations are merely technical in nature, and unrelated to any sup-

ply and demand changes (i.e., changes in θD, θS , φD , and φS .) These techni-

cal fluctuations, which are purely a consequence of market power, strategic

9If the large long can trade at t1, due to the winner’s curse problem no atomistic short
is willing to trade at t1. Then, the market merely liquidates at t2 at the end game price.
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behavior, and private information about positions, inject noise into futures

prices. Thus, manipulation and pre-manipulation bargaining interfere with

the price discovery functions of the market in the pre-expiration period.

A simple example illustrates some other possible outcomes of the bar-

gaining process with a large short. In the example, x is distributed uni-

formly on the interval [S, I ]. Moreover, S > 2x̂; that is, the short’s position

is more than twice as large as the minimum long position that is required

to squeeze the market. Therefore, by (3), S
2 = x∗ − S, so x∗ = 3

2S, and

P = A + βS > A + βx̂. Thus, the large short liquidates at a supercompet-

itive price. Moreover, though some longs liquidate, those with x ∈ [S, x∗]

do not liquidate entirely, leaving them with a position of x − S. Consider

the post-partial-liquidation position of a long with a position of x∗. Here

x − S = .5S. If .5S > x̂, this long can still squeeze at delivery, although

this squeeze is not as severe as would occur absent a pre-expiry partial liq-

uidation. Given the assumption that the large short’s position is more than

twice as large than the minimum position the long requires to squeeze, this

condition holds. So, one possible outcome of the liquidation process is for

the short to liquidate at a supercompetitive price; for the price to fall sub-

sequent to this liquidation; but for the price at expiration to remain above

the competitive price.

Other assumptions about the distribution of the long’s position implied

by the short’s signal generate other interesting results. For instance, if the

distribution of the long’s position is conditionally normal, with the under-

lying normal distribution having mean 150 and variance 50, and the sup-

port of the conditional normal [S, 600], a large short with S = 120 chooses

x∗ = 168.7. As before, if S > 2x̂, the liquidation occurs at a supercompeti-

tive price; the price falls after the short buys back his position; and there is
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still a squeeze at expiration. It should also be noted that the short’s cost of

liquidating his position is smaller, the smaller the variance of the underlying

normal. Thus, the short has an incentive to buy a more precise signal. This

explains the development of commercial intelligence systems by large shorts,

and their willingness to employ brokers who provide information about the

activities of other market participants.

The examples also demonstrate that the large long’s share of open inter-

est is a misleading measure of his market power. In the normal example, for

instance, if the large long’s true position is actually 165, his market share is

approximately 1/3, but he still successfully liquidates a fraction of his po-

sition at a supercompetitive price by trading with the large short. Indeed,

increasing open interest in the normal example has virtually no impact on

x∗, and hence on P . The irrelevance of market share also obtains at ex-

piration, as the competitive fringe of small longs merely liquidates at the

price the long chooses, and his choice does not depend in any way on the

size of this competitive fringe.10 In the model, the atomistic traders may

liquidate positions after the large long and short have an opportunity to

trade, which means that one outcome in the model is for the long’s share

of open interest to increase as the contract approaches expiration even if he

liquidates a portion of his position prior to expiration. It is the size of the

position–x–that matters, not market share.

It should also be noted in these examples, it is an equilibrium for no

atomistic longs to hit the large short’s bid even if they are guaranteed having

their order executed. Note that under this assumption, the atomistic long

10The Donaldson-Cooper model also implies that market share is irrelevant to the long’s
market power, and that the size of his position relative to deliverable supply is what is
matters.
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receives P if he hits the bid if guaranteed an execution. If he does not hit,

he receives Pm(x) if x > x∗, and Pm(x) − βS for x ≤ x∗. Thus, if

P < E[Pm(x)]− βSF (x∗)

each individual long has no incentive to hit the large short’s bid. Substitut-

ing for P in terms of x∗ implies that this condition holds if:

S(F (x∗) − .5) < E(x)− x∗

In the normal example, E(x) = 172.96, x∗ = 168.7, F (x∗) = .51, and

S = 120, so this condition holds. Note that since each small long faces the

adverse selection problem described above, each might not hit the bid even

if this condition does not hold.

In sum, the model of this section demonstrates that private information

on a large long’s position can lead to rich dynamics in the period leading

up to contract expiration when there is a large short. The large short has

an incentive to bid to buy back his position at lower price than he expects

to pay in the end game, which is still above the competitive price. Some

longs take the large short’s bid even though it is below the price they expect

to extract during the end game because the average revenue per contract

the long receives is lower than the average price that the short pays during

the endgame due to the deadweight losses of manipulation and the effect of

burying the corpse. The large short chooses his bid to trade off rent extrac-

tion against the gains from trade. Due to this trade off, partial liquidation

sometimes, but not always, occurs prior to the end game.

The model predicts that large longs sometimes liquidate portions of their

positions prior to expiration even though this dilutes (and may eliminate)

their market power in the end game. Moreover, the model predicts fluctu-

ations in prices as the contract nears expiration that are driven purely by
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technical factors, and are completely unrelated to fundamentals. The model

also implies that this pre-expiration liquidation mitigates the deadweight

costs of manipulation.

Although the private information in the model relates to positions, one

can imagine other (private) differences in the “types” of longs that lead to

similar results. For instance, some longs may have different costs of mount-

ing a legal defense against manipulation charges (or believe their costs differ);

longs with high costs are willing to liquidate at lower prices than longs with

high defense costs. As another example, the reputational cost of manipula-

tion may differ across traders. For instance, Yasuro Hamanaka, the copper

trader for Sumitomo who manipulated the copper market in 1995-1996, was

facing increasing difficulties of concealing his off-book trading losses, and

needed to make a quick profit to recoup some of these losses; given his short

time horizon, Hamanaka was much more likely to discount the future rep-

utational consequences of manipulating than other traders not facing such

desparate straits. Similarly, traders may have private information about

internal control mechanisms and their compensation structures that make

some more willing to manipulate than others. To the extent that information

on these differences is private, they can influence pre-expiration bargaining

between longs and shorts.

5 Private Information About Delivery Costs

Many would-be manipulators have been the poster children for the old joke:

“Want to make a small fortune trading commodities? Start with a large

one.” One of the most common ways that manipulators have met their

ruin is to be buried in an avalanche of deliveries. Several colorful examples

illustrate the point. In 1892, speculators Coster and Martin demanded $1
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per bushel to liquidate their large long position. Rather than hitting the bid,

grain elevator operators short futures assiduously shipped and conditioned

massive quantities of corn that they dumped on the unsuspecting would-be

cornerers (Taylor, 1917). A few years later, in 1898, P. D. Armour used ice

breaking tugs to bring unexpectedly large supplies of wheat to break Joseph

Leiter’s wheat corner (Taylor, 1917).11 More than 80 years later, the Hunts

were deluged with deliveries of silver, much of it originating in the trousseaus

of Indian brides, which forced them to liquidate huge long silver positions.

These types of events are readily understood when one incorporates pri-

vate information about delivery costs into the basic end game model. Con-

sider a model in which shorts have superior information about delivery costs

than the large, cornering long. This is plausible, inasmuch as shorts are of-

ten large commercial firms with extensive networks of buyers and handlers

of the commodity. A large firm such as Cargill, for instance, has numerous

elevator and processing facilities located throughout the grain belt which

provide the firm with extensive information about supply conditions. The

grain elevator operators who thwarted Coster and Market also had intimate

knowledge of how much corn could be obtained at what price.

Formally, I assume that shorts know the intercept of the supply curve,

θS , but that the cornering long only observes a noisy signal. The density

of the true θS conditional on the long’s signal is g(θS). This density has

support [θSL, θSH ].

During the end game, the long makes an all-or-nothing offer of P for his

position of x contracts. Shorts then decide how many contracts to liquidate

at that price, and how many deliveries to make.

11The Leiter corner was the model for Frank Norris’s realistic novel, The Pit.
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Knowing θS , shorts deliver to the point that the marginal cost of delivery

equals P . This results in shorts making Q(P , θS) deliveries:

Q(P , θS) =
P − θS

φS

The long chooses P to maximize his expected profit:

V = max
P

∫ θSH

θSL

Π(Q(P , θS),P)g(θS)dθS

where

Π(Q(P , θS),P) = Q(P , θS)[θD − φDQ(P , θS)] + [x − Q(P , θS)]P

The first order condition is:

0 =
∫ θSH

θSL

[
∂Π
∂Q

dQ

dP +
∂Π
∂P ]g(θS)dθS

where ∂Π/∂Q = 1/φS and ∂Π/∂P = −Q.

Given the linearity of the demand and supply functions, it is straight-

forward to show that the profit maximizing P is of the form:

P = BDθD + Bxx + BSE(θS)

where BS > 0. That is, the large long chooses the number of deliveries to

take based on his expectation of the location of the supply curve. It is also

possible to show that the price the large long chooses equals the average price

he would choose given complete information on θS . Evaluated ex post (once

θS is revealed), however, sometimes this price is too high, and sometimes

it is too low. As a result, the profitability of manipulation is lower when

information is incomplete.12

12Pirrong (2008) shows that the profitability of manipulation is a convex function of
θS. Therefore, due to Jensen’s inequality, his profit at the average price in the incomplete
information game is smaller than his average profit when he can vary price with supply
conditions.
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If the large long is overly bullish on supply, that is E(θS) < θS , he

receives more deliveries than he expects. Indeed, if he is very bullish, he

takes far more deliveries than he expects and will suffer large losses because

(a) he liquidates few contracts at the price he demands, and (b) receives

large quantities of deliveries that he must sell at the depressed post-delivery

price (which is less than Pc).

The analysis therefore implies that asymmetric information about supply

conditions is a deterrent to manipulation. It therefore suggests that com-

mercial traders with information about supply conditions similar to that

possessed by commercial shorts are more dangerous cornerers than traders

who lack such knowledge.

6 Step Up Orders

Several manipulation cases involve the use of step up orders at expiration

by a large long. That is, the large long offers contracts at a particular price;

once those orders are filled or rejected, he offers additional contracts at a

higher price; raises his offer again as those orders are filled or rejected, and

so on. Cases involving the use of such orders include Cargill, Great Western,

Indiana Farm Bureau, and British Petroleum. Indeed, courts and regulators

often consider the use of step up orders highly suspicious, manipulative

behavior.13

At first blush, the use of step up orders is hard to understand. If there is

an active, open, and transparent market for the deliverable good, all shorts

13The fact that so many manipulation cases involve step up orders may therefore arise
due to selection bias; if regulators consider step up orders a badge of manipulation, cases
brought are more likely to involve such behavior even though a large long can manipulate
without the use of such orders. Johnson and Hazen (1997) state “it appears that step-up
orders will attract the attention of the reviewing tribunal.”
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should be willing to pay the marginal cost to deliver Q units to liquidate their

positions. That is, under these circumstances all shorts are homogeneous

and market prices communicate information on the marginal cost of delivery.

This makes the use of step up orders problematic. If a manipulating long

sells any contracts at a given price, his market power declines, and his profit

maximizing price for his remaining contracts falls.

To see this, assume that an instant before trading ends, a trader long x

contracts initially chooses a price P ∗ < Pm(x) in the expectation of charging

a higher price at the last instant of trading. If a short actually buys at

this price, the long will only be able to sell at the end of trading at a

price lower than Pm(x). Thus, the long is worse off by choosing an initial

trading price less than Pm(x) and definitely finds it unprofitable to step up

subsequent offers if this initial offer is lifted. Conversely, choosing a price

greater than Pm(x) is not profitable either, as by assumption Pm(x) is the

profit maximizing take-it-or-leave it price.

Introducing some heterogeneity and private information among shorts

can make step up orders rational, however. Assume that short i incurs

marginal cost of delivery Ci; that the number of deliveries one short makes

has no impact on other short’s marginal cost of delivery; and that Ci is

private information to each short. Under these assumptions, the large long

is exactly analogous to a monopoly seller facing customers with different,

and private, reservation prices.

It is well known that the monopoly seller in this case can maximize profits

by discriminating among the different buyers by offering a menu of contracts

(Laffont and Martimort, 2002). These contracts specify a quantity q and a

transfer T (q). Using the revelation principle, there is a direct mechanism

that induces the buyers to reveal their Ci, and choose a q(Ci) and T (q(Ci)).
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The monopolist could offer this menu of contracts using step up orders

(or step down orders, for that matter.) For instance, the long could offer

via open outcry (or on a computer screen) a price-quantity pair that a short

with C = C′ should take. If there is such a short, this offer will be accepted.

Regardless of whether it is accepted or not, the long then offers a price-

quantity pair tailored to screen a short with C = C′′ > C′; this will in

general involve a higher price, so this process produces step up orders.

The linkage of the transfer and the quantity sold is necessary to satisfy

the incentive compatability constraints. The contracts satisfying these con-

straints must satisfy monotonicity constraints. That is, q(C′′) > q(C′) for

C′′ > C′. This is necessary to induce truthful revelation; if it did not hold,

a short with a small delivery cost would like to mimic shorts with higher

delivery costs and thereby liquidate a greater portion of his position than

is desirable for the long. Moreover, shorts with high (low) C’s should pay

high (low) prices. This induces an outcome that mitigates, but does not

eliminate deadweight costs; high delivery cost shorts pay higher prices to

liquidate, but make fewer deliveries, and most deliveries are made by the

more efficient shorts.

There is data from some manipulation cases that permit testing for

this monotonicity condition. In the Cargill case, this grain firm submitted

stepped up offers at the very close of the May, 1971 wheat contract on the

CBOT. The firm offered 200,000 bushels at 227 cents/bu, 200,000 at 227.25,

300,000 at 227.5, 400,000 at 227.75, 500,000 at 228, and 390 at 228.25. Ex-

cept for the second and last orders, these offers did exhibit monotonicity;

higher quantities were offered at higher bids.

Two other cases involving step up orders do not satisfy monotonicity.

In the Indiana Farm Bureau case, the firm offered 100,000 bushels of corn
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at 370 cents/bu, 100,000 at 375, 100,000 at 380, 100,000 at 385, and 90,000

at 390. In British Petroleum’s corner of the propane market, the firm sold

lots of propane at successively higher prices, in increments of a half-cent per

gallon, but each lot was the same size–25,000 gallons.

Thus, although a large long can use step up orders to price discriminate

among shorts with different delivery costs and private information about

those costs, the limited empirical examples of the use of these orders provides

at best mixed support for this interpretation. Moreover, it should be noted

that the assumption of differences in delivery costs across shorts presupposes

some impediment to trade among them. In the standard end game model

with no asymmetric information, trade in the cash markets would ensure

that (a) the cost of delivering Q units is minimized, and hence (b) the

marginal cost of delivery is equalized across shorts. The equation of marginal

costs across shorts is inconsistent with the assumption of the model used

here to rationalize the use of step up orders. One possibility is that the very

information asymmetries that lead to the use of step up orders as a means

of price discrimination impedes trades among shorts.

7 Summary and Conclusions

Corners and squeezes are, and have always been, regular features of deriva-

tives markets. Although research has identified the factors that make mar-

ket power manipulations possible–namely, an upward sloping marginal cost

of delivery in the range of the position held by a large long–and the conse-

quences of manipulation, the received bare-bones models cannot capture the

richness and complexity of trading as a contract nears expiration. Herein I

show that a simple and straightforward addition to these models can gen-

erate interesting trading dynamics and solve some puzzling aspects of his-
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torical corners. Specifically, asymmetric information can greatly affect the

dynamics of trading in derivatives contracts that are vulnerable to a squeeze.

The most important results relate to the effect of private information

concerning the cornerer’s position. The deadweight losses and wealth trans-

fers that occur during the delivery end game provide a motive for longs and

shorts to liquidate prior to expiration and avoid the losses associated with

playing the end game. If shorts do not know the cornering long’s precise

position, however, the information asymmetry can impede these mutually

beneficial trades.

When all shorts are atomistic, the results are stark: free rider and co-

ordination problems preclude the consummation of any mutually beneficial

trades. The presence of a large short can mitigate these problems, however.

The large short is always willing to bid a price to liquidate his positions

that is sufficiently high to induce some longs that would otherwise corner

the market in the end game to sell contracts prior to the end of trading. The

rent extraction-efficiency trade off common to contracting in the presence of

asymmetric information affects the short’s bid, however, meaning that not

all mutually beneficial trades are completed.

The model predicts that some longs sell their cornering interests prior

to the end game; that some longs do not and instead play the end game

despite the costs associated therewith; that some longs sell part of their

positions, but still retain sufficient market power to squeeze during the end

game, though the resulting squeezes are less severe than what would oc-

cur in the absence of the pre-delivery partial liquidation. The model also

predicts the pre-expiration liquidation of large long positions at supercom-

petitive prices, and that prices in pre-delivery trading fluctuate (exhibiting

continuations up, continuations down, and reversals) even in the absence of
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the arrival of fundamental supply and demand information; such “technical

fluctuations” are the result of the interaction of market power and private

information. The model also implies that the structure of the short side

of the market–the sizes and concentration of short positions–influences the

nature and efficiency of trading during a corner, and (perhaps counterin-

tuitively) that the presence of large shorts actually make a cornering long

better off.

Private information on the supply side can also shed light on other noted

features of corners and squeezes. For instance, private information on deliv-

ery costs can explain why some corners result in huge deliveries that impose

large losses on the cornerer. Private information about delivery costs, and

heterogeneity of these costs between shorts, may also motivate the otherwise

puzzling use of “step up” orders near expiration as a means of price discrim-

ination, although it should be noted that the actual use of such orders in

manipulations is not uniformly consistent with the predictions of these price

discrimination models.

In sum, the incorporation of private information into models of market

power in derivatives markets resolves some important questions about the

trading process as a derivatives contract approaches expiration.

A Equilibrium With a Menu of Contracts

The model in the main text assumes that the large short chooses a single

offering price for the S contracts he owns. In general, this trader can do

better with non-linear pricing schemes. For instance, the large short could

offer a menu of contracts {q(x), T (x)}where q(x) is the quantity of contracts

offered the large long with x contracts, and T (x) is the transfer paid from

the large short to this large long. In a derivatives market, the large short
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could offer this menu through a set of all-or-nothing orders, perhaps offered

sequentially in an open outcry or computer auction.

The revelation principle implies that under certain conditions, there

exists a direct mechanism whereby the large longs truthfully report their

“types,” i.e., their positions x. In this direct mechanism, the contracts of-

fered by the short must satisfy the relevant self-selection and participation

constraints. In the present model, since x is continuous, satisfaction of local

self-selection constraints implies the satisfaction of global constraints.

A crucial condition is the so-called single-crossing property, which in this

model describes a property of the utility functions of the large longs. A large

long with position x receiving a contract pair {q, T} receives wealth (i.e.,

utility) over and above his reservation level of:

U(x, q, T ) = Π(x − q) + T (q)− Π(x)

The large long sells q contracts to the short, and receives T (q) in return. In

the end game the long liquidates the position x − q and receives Π(x − q).

Note:
∂U

∂T
= 1

∂U

∂q
= −Π′(x − q) = −Pm(x− q)

Thus, the marginal rate of substitution (the slope of the large long’s indif-

ference curve) is:

MRS = − ∂U/∂q

∂U/∂T
= Pm(x − q)

The single crossing property requires that this marginal rate of substi-

tution increase with x. Note:

∂

∂x
[− ∂U/∂q

∂U/∂T
] =

∂Pm(x − q)
∂x

> 0
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Therefore, the single crossing property holds.

The short’s objective function is to minimize the expected cost of liqui-

dating his S contracts. This is equivalent to maximizing:
∫ I

x0

[−(S − q)Pm(x − q) − T (q)]f(x)dx

The (S − q)Pm(x − q) is the cost that the large short incurs during the

end game if the large long liquidates q contracts at t0, and T (q) is the

consideration the large short pays the large long at t0. Since T (q) = U −
Π(x − q) + Π(x), this is equivalent to:

∫ I

x0

[−(S − q)Pm(x − q) − U + Π(x − q) − Π(x)]f(x)dx

The large short maximizes this objective function subject to the incentive

compatability and participation constraints. Consider the IC constraint. A

long with position x who chooses to report his position as x̃ receives utility:

U(x̃) = T (x̃) + Π(x− q(x̃)) − Π(x)

The first order condition for this problem must hold at x̃ = x:

T ′(x)− Pm(x − q(x))q′(x) = 0 (4)

The second order condition must also hold at x̃ = x:

T ′′(x) + P ′
m(x − q(x))[q′(x)]2 − Pm(x − q(x))q′′(x) ≤ 0 (5)

Differentiating (4) with respect to x produces:

T ′′(x)+P ′
m(x−q(x))[q′(x)]2−Pm(x−q(x))q′′(x)−P ′

m(x−q(x))q′(x) = 0 (6)

Substituting (6) into (5) implies:

P ′
m(x − q(x))q′(x) ≤ 0
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Since P ′
m(x − q(x)) > 0, this implies:

q′(x) ≤ 0

This monotonicity constraint can be incorporated into the relevant optimal

control problem.

Moroever, applying the envelope theorem:

dU

dx
= Pm(x − q) − Pm(x) ≤ 0

This is also relevant for the optimal control problem. In particular, it implies

that the participation constraint U(x) ≥ 0 is binding only for x = I (or, for

the largest x if the upper support of x is strictly less than the open interest.)

Note particularly that U(x0) > 0.

Given the foregoing, the Hamiltonian for this problem is:

H(q, U, μ, x) = μ(x)(Pm(x−q)−Pm(x))+[−(S−q)Pm(x−q)−U+Π(x−q)−Π(x)]f(x)

where μ is the co-state variable. The Pontryagin principle implies:

dμ

dx
= −∂H

∂U
= f(x)

The transversality condition implies:

μ(x0) = 0

Therefore:

μ(x) = F (x)

Since dΠ(x)/dx = Pm(x), the first order condition is:

[Pm(x − q) + (S − q)P ′
m(x − q) − Pm(x − q)]f(x)− μ(x)P ′

m(x− q) = 0

Therefore:

(S − q)P ′
m(x− q) = P ′

m(x − q)
μ(x)
f(x)
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Thus:

q = S − F (x)
f(x)

There are several noteworthy features of this solution. First, when x =

x0 (its lower support), q = S. Second, if F (x)/f(x) is increasing in x (as

is the case for most parametric single peak densities), q is decreasing in

x. Thus, q satisfies the monotonicity condition that is necessary for this

problem.

In this solution, the large short offers a menu of contracts such that all

longs except the largest earn a profit from early liquidation that exceeds the

profit he would have earned by playing the end game. That is, the large

short cannot extract all the rents despite the assumption that he has all

the bargaining power since he offers the menu of all-or-nothing contracts.

The short must leave the long with some rents in order to ensure incentive

compatability; private information prevents the short from extracting all

rents.

There are some implausible implications of this model, however, as com-

pared to those of the model in the main text. Note in particular in the

solution of this problem, it may be the case that q(x) < 0 for some x for

arbitrary S and f(.). Since q > 0 is the number of contracts bought by

the large short, a negative value implies that the short sells additional con-

tracts. This is necessary to ensure incentive compatability. The short is

compensated for these additional sales through a high transfer. Specifically,

consider x = I . The individual rationality constraint implies that U(I) = 0.

Therefore:

T (I) + Π(I − q(I)) = Π(I)

Since Π(I − q(I)) > Π(I) for q(I) < 0, T (I) < 0. This indicates that the

large long pays the short an amount for the additional contracts that just
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equals the additional manipulative profit that these contracts allow him to

extract.

Thus, one outcome of this model is for small-to-medium longs to reduce

their positions, but for large longs to increase them. This further implies that

pre-expiration bargaining with price discrimination makes the deadweight

loss of manipulation worse in those cases where the very large long increases

his position. This does not seem particularly plausible, nor are there any

ready-to-hand historical examples of this conduct. Furthermore, the fact

that the short’s strategic behavior sometimes makes the end game more

severe may affect the behavior of the small shorts. Free riding is no longer

guaranteed because atomistic shorts are sometimes worse off as a result of

the bargain between the large long and short when the latter uses a menu

of contracts, whereas they are always better off waiting for the end game

when the large short makes a single take or leave it offer. This raises the

possibility that this set of contracts is not supportable in the market in the

face of competition from the atomistic shorts.

The price implications of this model are somewhat different from those of

the model in the main text. In particular, the long reveals his type through

his choice of contract. Thus, whereas in the model in the main text, there

may or may not be trade at t0, and prices may fluctuate from t1 to t2 (since

the outcome of trade at t0 does not completely resolve uncertainty about

the long’s type), in this trade occurs almost surely at t0, and price does not

change from t1 to t2 as there is no uncertainty about the long’s type after

t0.
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