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1 Introduction

Commodity price dynamics, the economics of commodity storage, and com-
modity options pricing models have been the subject numerous recent studies,
but the research in these areas has been largely disjoint.! This is unfortu-
nate, because this article demonstrates that these subjects are inextricably

TFor theoretical analyses of commodity price dynamics with applications to option
pricing see Brennan (1986), Brennan and Schwartz (1985), Gibson and Schwartz (1991),
Cortazar and Schwartz (1992), Amin, Ng, and Pirrong (1995), and Schwartz (1997). These
papers take commodity price processes as exogenous. Fama and French (1992), Ng and
Pirrong (1994, 1996) and Duffic and Gray (1995) present empirical evidence on commod-
ity price volatility; Ng-Pirrong and Fama-French document empirically relations between
price volatility and spot-forward spreads. Danthine (1977), Sheinkman and Schectman
(1983), Williams and Wright (1991), Deaton and Laroque (1992, 1996), Chambers and
Bailey (1996), and Routledge, Seppi, and Spatt (1997) analyze the theory of storage and
undertake some empirical tests. These storage theory papers discuss some aspects of com-
modity price dynamics in low frequency data, but not high frequency data. The empirical
tests in the storage-theory articles (especially those by Deaton-Laroque) are primarily
limited to determining whether storage can explain the high autocorrelations observed in
annual commodity price data. Zhou (1997) presents a theory of commodity price volatil-
ity and futures price mean reversion based on incomplete hedging. Zhou’s work is quite
distinct from the storage-theory genre, but has implications for volatility skews and the



linked. Solution of a dynamic recursive model of the market for a storable,
continuously produced commodity demonstrates that the economics of stor-
age and production exert a decisive influence on the short-term dynamics
of commodity prices. When marginal costs are convex and increasing (due,
for instance, to a capacity constraint) and demand is stochastic, commodity
prices exhibit complex dynamics characterized by spot price variances that
vary significantly and systematically with demand conditions and the amount
of inventory on hand. In brief, the prices of storable, continuously produced
commodities are highly volatile when demand and supply conditions are tight
(due to high demand and/or low inventories) but exhibit little volatility when
supply is abundant (due to low demand and/or high inventories). Moreover,
when there are both transitory and persistent demand shocks, spot-forward
price correlations also vary systematically with market conditions.

These results have important implications for derivatives pricing. Tradi-
tional commodity options pricing models (see especially Schwartz, 1997) do
not incorporate state-dependent volatilities and correlations.? In the storage
economy simulated herein, such constant volatility models generate large
options mispricings. The constant volatility models misprice short dated,
out-of-the-money calls by as much as 700 percent. Mispricings are somewhat
smaller in magnitude for in-the-money, longer dated calls. The direction
of the mispricings varies with market conditions. The constant volatility
benchmark model grossly underprices options when demand is high and/or
inventories are very short; this occurs when the commodity price is high.
When demand is low or inventories are abundant, however, the benchmark
model overprices commodity options. Thus, standard commodity option
pricing models generate large, state-dependent pricing errors in the simu-
lated commodity market because commodity price volatility is strongly state-
dependent.

This analysis also implies that options prices for a storable commodity
with stochastic demand and convex increasing marginal costs should exhibit

relation between price levels and price volatility that are similar to those derived below.

2See Brennan (1986), Brennan and Schwartz (1987), Gibson and Schwartz (1991),
Cortazar and Schwartz (1992), Amin, Ng, and Pirrong (1996), and Schwartz (1997) for
multi-factor, constant volatility models of commodity prices. These models use the spot
price and the “convenience yield” as the two factors. Although these multi-factor models
generate a richer set of dynamics for the commodity term structure, they do not permit
the state-dependence in volatilities implied by the storage model.



volatility “skews” or “smiles.”3 Moreover, the shape of the volatility skew
depends on current supply and demand conditions in the market. The re-
lation between implied volatility and strike is strictly increasing for strikes
surrounding the current forward price when this forward price is well above
average. The relation between implied volatility and strike is U-shaped with
a minimum occuring at a strike somewhat below the current forward price
when this forward price is slightly above average or below average. Thus, if
the storage model accurately describes real world pricing processes, diffusion
models that specify a relation between fundamental conditions (as measured
by the spot price or spot-forward spread since the state variables in the stor-
age problem are likely unobservable to the econometrician) and volatility
should produce option pricing results superior to those generated by models
which do not embed these features.

Finally, the storage model has important implications for the hedging
of commodity positions. Because the variance of commodity prices and the
covariance between spot and forward prices are state-dependent, hedge ratios
will also be state-dependent if there is a mis-match between the maturities
of the hedging instrument and the claim being hedged. These variations in
hedge ratios in response to changes in fundamental market conditions can be
very large even if the maturity mismatch is relatively small.

This article focuses commodities that are produced continuously.* It is
thus most relevant for the analysis of goods such as industrial metals (e.g.,
aluminum) or energy products (e.g., crude oil). Given that these are among
the most heavily traded commodities in the world, even this focused analysis
is of considerable import. There is some recent empirical evidence that is
consistent with the basic predictions of the model. For example, as the
theory predicts, energy and industrial metals prices are more volatile when
spot-forward spreads indicate that supply conditions are tight than when

3See Rubenstein (1994), Derman and Kani (1995), and Chriss (1996) for a discussion
of volatility smiles.

4Seasonally produced commodities, such as grains and oilseeds, present additional com-
plexities. In particular, the price functions must vary by season; the pricing function in
the spring differs from that in the fall. This substantially increases the computational
costs. Moreover, expected harvest is likely to be a state variable in the seasonal model.
This increases the dimensionality of the problem and therefore increases the computational
burden even further. Pirrong (1998b) presents ananalysis of price behavior in the market
for a seasonally produced commodity. Interestingly, volatility patterns are considerably
different for seasonal and continuously produced commodities.



spreads indicate abundant supply.®

The remainder of this article is organized as follows. Section 2 presents
a storage equilibrium model that incorporates convex, increasing marginal
production costs and both persistent and transitory demand shocks. Section
3 reviews the main results concerning the relation between fundamental con-
ditions, prices, spreads, volatility, and volatility skews. It also discusses the
properties of volatility estimated using ARCH and GARCH models. Section
4 analyzes the ability of standard option pricing models to value options
accurately in the storage economy. Section 5 summarizes the work.

2 Equilibrium in a Commodity Market with
Storage

This section presents a model of prices and spreads in a competitive market
for a storable commodity. Formally, time is indexed by ¢ € {1,...,00}. To
focus on short-term price dynamics, the model envisions short time intervals
on the order of a month or week, if not less. This model assumes that the
commodity is produced in every time period.

At each point in time, there is a competitive market for a commodity.
The inverse demand for the commodity is given by D(c¢, z,1;) where ¢ is
the amount of the commodity consumed at ¢, Dy(c, z,17) < 0, D11(c, z,m) > 0;
2z is a “persistent” demand shock with Ds(c, z,m) > 0; and 7 is a “transitory”
demand shock, with Ds(c, z,m) > 0, where subscript 7 indicates the partial
derivative with respect to argument 7. All agents observe the demand shocks
prior to trade at t and D(c, z,7) is public information. The persistent demand
disturbances have compact support Z = {z € R| —00 < 2 < 2 < Z < o0}
Z denotes the Borel sets of Z. The sequence of random demand shocks {z}
is a first order Markov process generated by the transition function Q(z, 2’)
on (Z,Z), where Q(z,2') has the Feller property. In the analysis that fol-
lows, it is assumed that () is monotone. Montonicity can be interpreted as
meaning that demand shocks are positively autocorrelated, hence the “persis-
tent” nomenclature (Stokey and Lucas, 1989, Hopenhayn and Prescott, 1992,

®Ng and Pirrong (1994, 1996), Litzenberger and Rabinowitz (1995), Pirrong (1997).

6Stokey and Lucas (1989, p. 237) show that the assumption of a first-order Markov
process results in no loss of generality because any higher order Markov process can be
expressed as a first-order process with an expanded state space.



Chambers and Bailey, 1996.) The existence of a persistent component of de-
mand is plausible for continuously produced industrial commodities (e.g.,
copper) because the documented persistence of real income shocks should
result in persistent demand shocks for such commodities. State-dependent
distributions of demand shocks also provide more interesting time series be-
havior of commodity prices, and are likely needed to explain the high auto-
correlations observed in commodity price data.”

The transitory shocks n have compact support H = {n € R| — o0 <
n <n <7 < oo} H denotes the Borel sets of H. The demand shocks
{n:} are i.i.d. with a probability measure p(n;) on (H,H). The z and 7 are
independent.

Earlier articles in this literature, including Schienkman and Schectman
(1983), Danthine (1977), Deaton and Laroque (1992), and most of Williams
and Wright (1991) assume transitory, i.i.d. demand shocks. More recent pa-
pers, including Chambers and Bailey (1996) and Deaton and Laroque (1996)
include persistent demand shocks. No extant work includes both persistent
and transitory demand shocks. Both permanent and transitory shocks are
included in the model because a single shock model cannot explain salient
features of empirical commodity price behavior. Specifically, a single shock
model cannot explain the relation between spot-forward spreads and the cor-
relation between spot and forward price changes documented by Ng-Pirrong
(1994, 1996) and Pirrong (1997).

The commodity may be produced at each point in time. If the amount
produced at time ¢ is ¢, total production costs are C'(g;), where MC(q;) =
C'"(q¢) > 0, MC'(¢t) = C"(q) > 0, and MC"(q;) = C"(q;) > 0. That is,
marginal costs are increasing and convex in ¢;. This cost structure reflects
limits on production capacity at any point in time. Output is non-negative,
i.e., ¢¢ > 0. This production technology is more general than that analyzed
in the received literature; extant articles typically assume perfectly inelastic
supply.

The commodity is storable and storage is costly. If amount s, is stored in
period ¢, only (1 — §)s; remains at the beginning of period ¢ 4+ 1. Moreover,
storage is non-negative: s; > 0. This non-negativity constraint is crucial to
the understanding the dynamics of storables prices. If s; ; was stored at
t — 1, then the following condition must hold in equilibrium:

(1—=08)st—1 +q: — st = ¢4

"See especially Deaton and Laroque (1996).



In words, consumption at ¢ equals the sum of production and carry-in less
carry-out at t.

All producers and consumers in the market are price takers. That is, the
market is perfectly competitive. Moreover, all market participants are risk
neutral. By the Second Welfare Theorem the competitive equilibrium in this
market is Pareto optimal. Therefore, due to risk neutrality, in a competitive
equilibrium {s;} and {¢} solve:

sup  E{37206°G (e, qr, 5e-1, 26,m0) } (1)

820,94t 20

where § = (1—-10)/(1+ R), R is the riskless rate of interest, and

Gt+(1—6)si_1—s¢
/ ‘D(y7 Zts nt)dy - C(Qt)

G(St;Qt; St—1, Ztﬂ?t) =

That is, G(.) equals the value of consumption net of production costs. It is
readily verified that G(.) is increasing in s; 1 and concave in its first three
arguments.

Expression (1) can be rewritten in functional equation form:

V(2 2¢,M1) = >s&1p>0 G(st: qrs St—1, 2,11 (2)
st2U,qt =2

‘I‘ﬁ// U(mt+17Zt+1a77t+1)Q(Zt7dzt+1)/1'(d77t+1)

where z; = (1 — 6)s;_1.

Given the assumptions made here, there exist an equilibrium value func-
tion v(zy, 2, 1;) and policy functions s(xy, z¢, 7¢) and q(xy, 2¢,1;).5 The first-
order conditions for (2) are useful in solving for the value and policy functions.
Defining P(z, z,n) = D[x + q(x, z,n) — s(x, z,7), z,n] these conditions are:

P(x,z,m) < MClq(x, z,n)] (3)

with equality when ¢(z, z,17) > 0 and

Pla,zn) = 8 [ [ P =0)s(r.2,m), 2 01Q(z d=")u(d) = BFi (2 m)
(4)

8See Pirrong (1998a) for proofs. These proofs exploit the contraction mapping theorem.




with equality when s(z,z,7) > 0. In words, expression (3) states that in
equilibrium price equals marginal cost and expression (4) states that if stor-
age is positive, price equals the discounted expected price (where discounting
encompasses both storage cost ¢ and interest rate R.) When s(z,z,m7) = 0
the “spot” price of the commodity may exceed the discounted expected spot
price for next period. In the risk neutral economy, this expected spot price
is the one-period forward price represented by Fi(x, z,n).

Given these functions, it is possible to determine how spot and forward
prices vary with the state variables. It is not possible to solve for the value
and policy functions in closed-form, so it is not possible to determine the be-
havior of price variances and correlations in closed form. Instead, numerical
methods are required. The next section describes the method employed to
determine the equilibrium in a storage economy. I then proceed to discuss
the implications of the storage equilibrium for commodity price variances
and correlations and commodity option prices.

3 A Numerical Analysis of Short-term Price
Dynamics for Continuously Produced Storable
Commodities

Due to the difficulty of deriving analytically the properties of equilibria in
recursive dynamic systems like that studied here, it is standard to employ
numerical techniques to understand how these systems behave. For example,
numerous studies of stochastic growth models employ numerical techniques.’
Similarly, it is standard to solve storage problems numerically. Williams
and Wright (1991), Deaton and Laroque (1992, 1996), Chambers and Bailey
(1996), and Routledge, Seppi, and Spatt (1997) all utilize numerical tech-
niques to study storage equilibria in models. However, these studies do not
focus on high frequency/short term price dynamics that are of great interest
and which must be understood to price contingent claims on storable com-
modities. In addition, with the exception of Routledge, Seppi, and Spatt they
do not incorporate both transitory and persistent demand shocks. Moreover,
none study the implications of increasing convex marginal costs despite the

9FEleven articles in the January, 1990 issue of the Journal of Business and Economic
Statistics present numerical solutions to a non-linear rational expectations stochastic
growth model. Taylor and Uhlig (1990) summarize these studies.



fact that these cost conditions are plausibly highly relevant for commodi-
ties such as industrial metals (e.g., copper), crude oil, heating oil, gasoline,
and natural gas because capacity constraints are likely to create such cost
structures.!® Finally, they do not analyze the implications of state-dependent
volatility for the option pricing and the implied volatilities of commodity op-
tions.

This section addresses these issues. I first describe briefly the numerical
methodology. I then show how the price functions generated by the solution
of the storage equilibrium value and policy functions can can be employed
to determine spot and forward price variances and spot-forward correlations
as a functions of the state variables. I then discuss numerical results which
show how spot and forward prices structures, spot and forward percentage
price change variances, and the probability distributions of spot and forward
percentage price changes change as demand and initial supply vary.

3.1 Methodology

The basic contours of the numerical solution of recursive dynamic economic
models are fairly well understood, so only a brief description of the method-
ology is required. There are three state variables: a persistent shock z, a
transitory shock 7, and initial inventory x. The process for the persistent
shock is assumed to be:

Azy = (p—1)z_1 + Awy (5)

where and Awv, is an i.i.d. normal shock with mean zero and variance Af.
Furthermore, 7, is a white noise transitory shock:

Ay = =1 + Awy (6)

where Aw, is another i.i.d. process with zero mean and variance At. Assume
that Av; and Aw, are uncorrelated.

The first step of the analysis is to discretize the problem by establishing
a grid in 2z, 1, and .

The values of the grid in z are bounded by -2.4 and +2.4 and are equally
spaced with increments Az. There are N, points along the grid,

A={-24,-244 Az, —2.4+2Az,...,24— Az, 24}

0Bresnehan and Suslow (1989), Pindyck (1992).

8



Define z; = —2.4 + (j — 1)Az. The transition probability matrix for z is
constructed as follows:

(25, 21) = Prlzip1 = zx|2 = 2] = N(e1) — N(€2) (7)

where
€1 = .5[Zk+1 + Zk] — [)Zj

and
€9 = B[z + 2k—1] — pz;

where € is an i.i.d. unit normal variate. That is, if 2z, = z;, (i.e., the initial
value of z is at the j'th point on the z grid) the probability that the value of
z in the next period is z;.1 = 2 (i.e., is at the k’th point on the grid) equals
the probability that a standard normal variate falls in an interval of length
Az centered on z — pz;. M

The values of 1) are also bounded by -2.4 and +2.4 and are equally spaced
with increments An. There are NNV, points in the 7 dimension of the grid.
Call n; = —2.4 4 (j — 1)An. In the discretization,

p(mj, M) = Pr{nea = mklne = ;] = N(e1) — N(e2) (8)

where
er = .5(Nrs1 + k)

and
ey = .5(Mk + M—1)

That is, the probability that the demand shock will equal 7, given that its
previous value was 7; is equal to the probability that an ii.d. standard
normal variate will fall in an interval of length An centered on 7.

For each value of z and n in the grid, values of x are spread equally along
the interval [0, Zpqe:] Where xp,q, is determined in a trial and error process
that ensures that equilibrium storage never exceeds 2,4, in long simulation
runs.

Demand functions are linear in both consumption and the demand shocks:

Dx+qg—s,z,n)=a—blx+q—3s)+o.24+om.

1See Deaton and Laroque (1996) for a similar discretization of an AR1 process.



The o, and o, are parameters that measure the sensitivity of demand to
persistent and transitory shocks.'? Cost functions are of the form:

Clg) =0+ —2—

7—4q
This cost function exhibits increasing and convex marginal costs for ¢ < 7.
~ represents a production capacity constraint.

Given the grid and demand and cost functions, an initial guess for the
functions P(x, z,n) is formed in three steps. (There is one such function for
each pair {z,n}.) First, for each value of = it is assumed that s(z,z,7n) =
.8x. Second, given this guess, first order condition (3) is solved for ¢q. This
determines the price at each of the x points on the grid. A fourth order
polynomial in z is fit to these prices using OLS, and the resulting polynomial
function P(z, z,m) is used as the initial guess for the pricing function for this
{z,n} pair.

Given an initial guess for the price functions, for each z, 7 and x in the
grid, the following equations are solved (using the Newton-Raphson method)
for s and ¢:

D(r+q—s,2,m) =C(q)
N, Ny
D(x+q—s,2n) =8> > n(z z)pn)Pl(1 = 8)s, z,mi] = BFi(x, z,m).

k=11i=1
The first equation equates price and marginal cost. The second requires price
to equal expected price. If s(z, z;,7;) > 0, then price at this grid point is set
to D[z + q(x, z;,n) — s(x, z;,m)]. If s(x,z;,m) <0, s(x,z;,n) = 0 and price
at this grid point equals D[r + ¢q(z, z;,7)]. After determining prices at each
node of the grid, for each {z,n} a fourth order polynomial in x is fit to these
prices using OLS. These new polynomials are used as the P(z, z,7n) functions
in the next iteration and the process is repeated. The process stops when
the average absolute percentage price change between iterations is small (e.g.,
.001 percent,).

Upon convergence this process defines a spot price surface P*(x,z, 7).
Using this surface, it is possible to study how expected prices, spot and
forward price volatilities, and spot and forward price distributions vary with

12Tt is equivalent to assume that (a) demand is @ — b(z 4+ q — s) + z +n and (b) the
variance of the z process in (5) is 02At and that the variance of the 1 process in (6) is

0,27 At.

10



fundamental supply and demand conditions measured by the state variables
x, z, and 7.

3.2 Price Variances and Correlations in the Storage
Economy

The equilibrium price surface P*(x, z,77) can be used to determine the char-
acteristics of commodity price dynamics. The equilibrium price surface and
transition probabilities also imply a forward price function F(z,z,n,t,T)
that gives the forward price of the commodity as of time ¢ for delivery at any
time 7" > t. This surface can be employed to determine the variance of the
forward price and the correlation between spot and forward prices.

Applying a Taylor expansion to P*(x, z,n) and F(z, z,n,t,T), substitut-
ing from (5) and (6), and ignoring terms of o(At) implies:

AP* = P! (p—1)zi1 — Pyniy + P Av + PyAw, (9)
AF, =F.(p—1)zn_1 — Fynior + FLAv + FyAwy. (10)

The variances of the spot and forward price changes (ignoring terms of
o(At)) are:
E(AP* — EAP*)?

0% = ~ = P>+ P? (11)
E(AF — EAF)?
0l = N =F2+F.. (12)

The covariance between spot and forward price changes is:
cov(AF, AP) = F.P; + F,P;. (13)
The correlation between the spot and forward price changes is therefore:
F.P; + F, Py
V(E2+ F2)(P:2 + P2

corr(AF, AP]) = (14)

Therefore, by taking the partial derivatives of the spot and forward price
functions generated by the solution to the storage problem it is possible to
estimate the variances of spot and forward prices and the correlation between
them.!3

13An examination of (14) shows that multiple shocks are required to generate correla-
tions other than -1, 0, or +1.
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Since spot and forward prices are a function of the state of the economy
(as measured by carry-in x, and demand shocks 7 and z), the foregoing ex-
pressions imply that variances and correlations should be state-dependent as
well. The next section demonstrates that this is indeed the case in the nu-
merical solution of the storage problem. I then show that this has important
implications for derivatives pricing.

3.3 Fundamentals and Commodity Price Dynamics

Figures 1-5 present typical results for a numerical implementation of the
model. The parameters used to construct the Figures were: p = .5, a = 40,
b=20,=.5 0,=2.5,0=14, ¢ = 3, and v = 120. Although the
exact results are unique to these parameters, all of the numerous parameter
combinations studied produce similar qualitative results so those presented
are representative. The parameters are calibrated through a trial-and-error
process to give reasonable weekly volatilities (e.g., weekly volatilies of the
magnitudes observed in the copper and oil markets). Therefore, the values
of R and ¢ are reasonable estimates of weekly interest and storage charges;
specifically, R = .002 and 6 = .001. Computational considerations lead to a
choice of N, = N,, = 9.

Figure 1 illustrates how equilibrium spot prices P* vary with the state
variables. The “Demand Index” axis gives an ordinal measure of the demand
state. The demand index is (7 — 1)N, + ¢ where j < N, is the permanent
demand shock index value and 7 < N, is the transitory demand shock index
value. This structure explains the sawtooth configuration of the graph. As
one moves away from the origin along the demand index axis, the transi-
tory shock value increases while the persistent shock value remains constant
until the transitory shock reaches ny, . The persistent demand shock index
then increases by one and the transitory shock value falls to 7;. The process
repeats until the last point on this axis, which measures prices for the max-
imum values of the persistent and transitory demand shocks. The “Storage
Index” is an ordinal measure of carry-in, with a value of 1 corresponding to
zero carry-in and a value of 12 corresponding to ;4.

The figures show that for given values of n and z, prices are decreasing
and convex in z. Moreover, for given = and z (1) prices are increasing and
convex in 7 (z). Thus, greater scarcity implies higher prices, and an increase
in scarcity (a rise in z or n or a fall in x) raises prices at an increasing rate.
This curvature reflects in large part the convexity of marginal costs.

12



Figure 2 depicts the spread between the spot price and the two-period
forward price. The two-period forward price is determined using iterated
expectations. The solution to the original dynamic program generates both
P(z,z,n) and Fi(x,z,m) where P is the spot price and F; the one-period
forward price. The two-period forward price is the expectation of the one
period forward price one period hence:

Fy(w, 2,1m) = zﬂ )P F(1 = 8)s(x, z,m), 2,7].

Note that the spot-forward spread, defined as F, — P, exhibits what is
sometimes referred to as a “supply of storage” relation between spot-forward
spreads and carry-in. Specifically, for a given z and n, F5,— P is an increasing,
concave function of x. Moreover, this spread is also a decreasing, concave
function of z and 7. This relation is observed in many markets. Figure 3
depicts an empirical supply of storage curve relating the spot-three month
spread and exchange warechouses for lead. There is a clear increasing, con-
cave relation between the spread and carry-in. There is some scatter in the
points. This reflects the fact that demand also influences the spread. As a
consequence, for a given level of carry-in the spread is lower when demand
is low than when it is high.

Figure 4 is the crucial exhibit in the analysis because it depicts the relation
between fundamentals and percentage price change variance. Expression (11)
implies that

APy PP*4 P
Pt* ) - Pt*2 :
The partial derivatives in the expression are evaluated at each point on the
grid using an implicit finite difference approximation.'* That is, for N, >

(15)

var(

14Using partial derivatives to calculate the variances and correlations is substantially
faster computationally than calculating the moments directly from the price function and
the transition probability matrix. Moreover, the partial derivative approach provides some
intuition underlying the results. For instance, it is quite intuitive that prices are more
sensitive to demand shocks when demand is high and/or stocks are low than when demand
is low and/or stocks are high. The partial derivative representation readily translates this
result into an understanding of the effect of demand and supply conditions on variances
and correlations. Direct calculation of moments was performed for several implementations
of the model. These moments were compared to those derived using the partial derivative
approach. The results are virtually identical.

13



J>1,

P*(x ; i) — P*(xy, 2;_1,m;
P;(ﬂ?k,Zjaﬂi) = (Tk72]+1’77) (Tk S 77)'

2Az
For j =1,
* P T,y 24 lani) _ P*(T]ﬁz’,rh)
P2 (g zyo) = T2 ) P 20,
and for j = N,,

P*(wy, 2j,m:) — P* (21, 25-1,mi)
Az

Pz*(mkvzjvni) = :
The partial derivative with respect to n, P,, is similarly defined at each point
on the grid.

Figure 4 shows that the spot return variance increases with n (for given z
and x), declines with = (for given z and ), and increases with z (for given 7
and z). Variance increases at an increasing rate when z or 7 rises and when
x falls. When demand is high and initial supplies low, volatility is very high.
Indeed, volatility is many orders of magnitude larger when x ~ 0, z ~ 2.4,
and n & 2.4 than when r = T, 2 =& —2.4, and n =~ —2.4. The variance
when demand is at its maximum and carry-in is zero is 250 times greater
than when demand is at its minimum and carry-in is larger than its mean in
long simulation runs. Empirical variances for industrial metals presented in
Ng-Pirrong (1994) exhibit such wide variations.

A comparison of Figures 1, 2, and 4 reveals a close relation between
volatility, prices, and spreads. Volatility is high when prices are high and
spot-forward spreads are wide. The relation between spreads and volatil-
ity exhibited in the figures is virtually identical to the empirical pattern
found by Ng and Pirrong for four industrial metals (copper, aluminum, lead,
and zinc, 1995) and refined petroleum products (heating oil and gasoline,
1996). Litzenberger and Rabinowitz (1995) demonstrate that crude oil im-
plied volatility varies closely with backwardation: volatility implied by crude
oil futures options is higher, the greater the backwardation in the market.
This finding is consistent with their theory’s implications, although Litzen-
berger and Rabinowitz’s explanation of the phenomenon differs from that
advanced here.

The numerical analysis also demonstrates that the volatility of the spot
price is never smaller than the volatility of the forward price, that these

14



volatilities are almost identical when x is large, and that the difference be-
tween spot and forward volatility is increasing in price.!®

Finally, Figure 5 shows that the relation between carry-in, demand, and
the correlation between spot and forward returns is consistent with the con-
jectures made in section 3 and some existing empirical evidence. Figure 5
depicts corr(AP*/P*, AFy/F5). As before, the partial derivatives needed to
evaluate this correlation using (13) are approximated using an implicit finite
difference scheme. Note that correlation is nearly 1.00 when carry-in is large,
and/or demand is low. However, when carry-in is low, the correlation tends
to fall as demand rises. Similarly, for a given level of demand, the correla-
tion tends to fall as carry-in declines. This decline in correlation becomes
precipitous as carry-in approaches 0. A comparison of figures 1, 2, and 5 re-
veals that the spot-forward correlation is typically high when prices are low
and backwardation is small. Conversely, the spot-forward correlation is low
when prices are high and backwardation is severe. This is consistent with
the empirical evidence from metals markets presented by Ng-Pirrong (1994),
and for energy markets by Ng-Pirrong (1996) and Pirrong (1997).

The intuition behind the behavior of the correlation is readily understood.
When s (4, 2¢,m:) = 0 (i.e., the optimal solution to the storage problem at
t dictates zero carryover), F, = 0 and P, > 0. F, = 0 when there is no
storage because a purely transitory shock can have no effect on forward prices;
storage is the only link between transitory demand shocks and prices, and
this linkage is broken when there is a stockout. Thus, by (14) the correlation
is less than 1.00 in this case. Conversely, when carry-in is immense, F,/F =
P;/P* =~ F,/F =~ F;/P*. This is true because with storage, the distinction
between transitory and persistent shocks is trivial; storage causes transitory
shocks to have a persistent effect. Moreover, when storage is high, arbitrage
ensures that spot and forward prices tend to move in similar proportions
when demand changes. This generates a spot-forward correlation of nearly
1.00.

Repeated experimentation with the model shows that supply conditions
are crucial in determining the behavior of volatility and spot-forward corre-

13The relevant graphs that illustrate these points are omitted, but are available on
request from the author. By volatility I mean the standard deviation in the percentage
price changes. It is possible that the variance of forward price changes exceeds the variance
of spot price changes because the forward prices sometimes exceed spot prices. Note that
when stocks are very large F' =~ P*/3. Therefore, dF/F ~ dP*/3/P*/3 = dP*/P while
dF = dP*/3 > dP*.
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lations. Holding mean demand and the volatility of demand shocks constant,
the variance and correlation functions depicted in Figures 4 and 6 are very
sensitive to the choice of production capacity 7. Increasing v causes volatil-
ity to fall, and reduces the sensitivity of the volatility function to demand
shocks. That is, the sawtooths in the figures become flatter.'® Not surpris-
ingly, increasing o, and o, also causes volatility to increase.

In sum, this analysis demonstrates that a dynamic storage model pre-
dicts particular relations between inventory, demand, prices, spot-forward
spreads, spot return variances, and spot-forward return correlations. These
predictions are consistent with existing empirical evidence on the dynamics
the prices of continuously produced commodities.

Since variance exerts a decisive influence on options pricing, the foregoing
analysis strongly suggests that models that do not embody the relation be-
tweeen fundamentals and commodity price volatility may severely misprice
commodity options. Section 4 demonstrates that this is indeed the case in
the storage model studied here.

3.4 Hedging

The variances and correlations discussed above have important implications
for hedging. Consider a firm that uses inventories (or a short-dated futures
contract) to hedge a forward delivery commitment.!” Tt is well known that the
variance minimizing hedge ratio in this case is —cov(AP*,AF)/var(AP*).
Since both the numerator and denominator in this expression are state de-
pendent, the hedge ratio will be so as well. Figure 6 depicts the hedge ratio
for a two-period forward delivery commitment as a function of demand and
inventory. For simplicity, the permanent demand shock z is held constant
at its expected value of 0 and the transitory demand shock increases as one
moves down the demand index axis. Note that the hedge ratio is nearly
1.00 when inventories are high, but that the hedge ratio drops sharply when
carry-in falls to near zero. Moreover, for such small values of inventory the
absolute value of the hedge ratio declines as demand increases, i.e., as 7

16 A similar result obtains when holding v constant but increasing the demand intercept
a.

"The actions of Metalgesellschaft present an extreme example of this phenomenon.
This firm hedged oil delivery commitments extending from one month to 10 years forward
using one month futures contracts. See Ross (1995), Pirrong (1996), and Schwartz (1997)
for analysis of the firm’s activities.
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increases. For example, when the transitory demand shock is 1.2 standard
deviations above 0 and inventory is about 1.5 standard deviations below its
average value in long simulations, the hedge ratio is .88. When transitory
demand is 1.2 standard deviations above zero and carry-in is zero, the hedge
ratio falls to a mere .14. In conjunction with figures 1 and 2, this implies that
the hedge ratio is well below 1.00 when prices are high and the spot forward
spread is negative, but is close to 1.00 when prices are low and spot and
forward prices are at full carry. The analysis also implies that holding inven-
tory constant, the hedge ratio declines in absolute value as the permanent
demand shock increases.'®

It should be noted that these deviations from a one-for-one hedging strat-
egy occur in Figure 6 even though the timing mismatch between the hedging
instrument and the thing being hedged is small. Ross (1995) and Schwartz
(1997) show that a one-for-one hedging strategy is typically not variance min-
imizing if the maturity difference is large. This is true because the stationar-
ity of the storage economy causes the variance of the deferred obligation to
fall as its maturity increases. The variance minimizing hedger should there-
fore choose a smaller hedge ratio for longer maturity instruments. Hedge
ratios may fall well below one even if the timing mismatch is small (as is the
case in Figure 6) when inventories are low or demand is very high because
spot and forward prices are not highly correlated under these circumstances.
Thus, even a one- or two-month mismatch should induce a hedger to choose
a hedge ratio well below one when prices are high and the market is inverted
(i.e., P*> F).

The correlation analysis presented in the previous subsection implies that
hedging effectiveness is also state dependent. Hedging effectiveness, that is,
the fraction of variance that a hedger can eliminate through the choice of the
variance minimizing hedge ratio, is equal to the squared correlation between
the spot and forward returns. Since this correlation declines as inventory falls
and demand increases, hedging effectiveness declines in these circumstances
as well.

In sum, the state dependence of commodity price variances and correla-
tions has important implications for hedgers. Hedgers should choose different
hedge ratios when supply/demand conditions are tight than when they are

13 A similar analysis holds when the hedger uses a forward contract to hedge inventory
(or a shorter dated forward delivery commitment). In brief, in these circumstances a
hedger should choose a hedge ratio well above 1.00 when supply/demand conditions are
tight and a hedge ratio of close to 1.00 when supply/demand conditions are slack.
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slack. In particular, this analysis implies that hedging in a high price, in-
verted market is very difficult. In such a market variance minimizing hedge
ratios may change dramatically over short time periods. Moreover, hedging
effectiveness is typically low during these periods.

3.5 Time Series Properties of Commodity Volatility

Neg-Pirrong (1994, 1996) document that after controlling for scarcity (as mea-
sured by price or the squared spot-forward spread), industrial metal and
energy price volatilities still exhibit GARCH effects. That is, when estimat-
ing the following system of equations the parameters 7;, ¥2, and 3 are all
positive and significant:

10

AlnP=ag+ Y ajAlnP_j+oa1lnP i +¢ (16)
j=1

o =w+ 710'?,1 + 726?,1 + 3P (17)

where oy is the standard deviation of the residual return ¢;,. Moreover, v; +
is near 1.00 in these studies. This section examines whether similar results
obtain for the storage economy.

To investigate this issue, I use a random number generator and the so-
lution to the storage model described above to create 1000 series of 2500
observations of the spot price. For each series, I fit the following model:
where the variance of ¢ is given by (18). The inclusion of the lagged log spot
price in the mean equation (19) reflects the fact that the storage model pre-
dicts that the spot price should be mean reverting. Indeed, in the simulations
this coefficient is always negative and significant.

Table 1 presents the mean values of selected coefficients from (18) and
(19). Note that the lagged price coefficient is positive in the variance equa-
tion, as expected given the earlier analysis; it is highly significant in each of
the simulations. That is, the return variance is greater, the higher the price.
Moreover, the ARCH coefficient 5 is also positive. This too is unsurprising
because as noted earlier the spot price does not capture all of the effects
of both state variables on volatility. The ARCH term €2, apparently prox-
ies for the factors affecting scarcity imperfectly measured by price. Finally,
the coefficient on lagged volatility, v, is positive but far less than .9; this
coefficient is sometimes insignificant in the individual simulated estimates.
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This last finding varies from the empirical evidence presented in Ng-
Pirrong, who find values for the lagged variance coefficient on the order of
9. v measures the persistence of volatility disturbances. The coefficient
implied by the dynamic programming model is substantially smaller (and
the ARCH coefficient 7, is larger) than found in real world data. Although
volatility persists in the storage model, this occurs in large part because the
spot price is autocorrelated due to storage and the persistence of demand
shocks. Controlling for price, volatility shocks in the simulations exhibit less
persistence than found in metals data by Ng-Pirrong.*

This last finding is the main deviation between the empirical evidence
on commodity price dynamics and the implications of the storage model.
One possible explanation for this result is that the storage model analyzed
assumes that the volatility of demand shocks is constant over time. If the
demand shocks exhibit GARCH behavior, this may be translated into the
behavior of price volatilities.

Since the nature of demand disturbances affects the economics of the
storage decision, verification of this conjecture requires solution of a modified
storage problem that permits GARCH demand disturbances. This problem
involves more state variables and is therefore substantially more numerically
demanding. Solution of this problem awaits future research.

3.6 Summary

Numerical solution of a recursive dynamic storage model in a market for
a continuously produced good with increasing, convex marginal production
costs makes strong predictions about the relation between the dynamics of
spot and forward prices on the one hand and inventories and demand condi-
tions on the other. Specifically, the model predicts: (a) a “supply of storage”
relation between spot-forward spreads and inventories, (b) a strong relation
between spot price and spot-forward spread levels on the one hand and the
volatility of spot prices on the other, and (c¢) a strong relation between spot
prices and spot-forward spreads and the spot-forward return correlation.
There is some empirical evidence from the industrial metals and energy
markets consistent with these implications. These results therefore have im-

19Given the strong mean reversion in price, volatility shocks dampen out quickly in this
model. This is difficult to reconcile with the evidence of fractional integration of volatility
in metals markets (Teyssiere et al, 1997). Fractional integration of the demand shock
volatility may be necessary to explain this result.
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portant consequences for our understanding of the dynamics of commodity
prices which merit detailed empirical examination. Since volatility is cen-
tral to option pricing, these results also have important implications for the
pricing of commodity contingent claims, as the next section shows.

4 State-dependent Volatility and Derivatives
Pricing

Pricing models based on lognormal diffusion processes are standard in both
the literature and practice on commodity options.?® The analysis in sections
3.1-3.3 suggests that the standard models are severely mis-specified. As
a consequence they will misprice commodity options. This section demon-
strates that these mispricings are likely to be extremely large and to be strike
and maturity dependent.

4.1 A Two Factor Constant Volatility Model of Com-
modity Option Price Dynamics

[ use Model II of Schwartz (1997) as a benchmark options pricing model.
The Schwartz model posits two factors, a spot price S; and a convenience
yield 6;. The stochastic processes for these variables are given by:

dS = (r — 6)Sdt + o1 Sdw, (18)

dé; = k(o — 6) + oadws (19)

where dw; and dws, are standard Brownian motions with correlation pdt. The
volatility parameters o; and oy and the correlation p are constants. Thus,
both the spot price and the convenience yield have constant volatility. This
model does permit “twists” in the term structure of futures prices, but does
not allow the variance of spot or forward prices to depend on the level of
price or convenience yield. This raises the question: Can such a model price
commodity derivatives accurately if commodity prices are generated by a
storage economy like that modeled above?

20See Brennan (1986), Brennan and Schwartz (1987), Gibson and Schwartz (1991),
Cortazar and Schwartz (1992), Amin, Ng, and Pirrong (1996), and Schwartz (1997) for
multi-factor, constant volatility models of commodity prices.
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To answer this question, I estimate the relevant parameters for this model
in a data sample generated by simulation of the storage model solved above,
estimate the parameters of the S and ¢ processes from this sample, and
then compare the prices of options on the commodity generated by these
parameters and Schwartz’s Model II to the “true” prices of these options
in the storage economy; the true option prices are implied by the pricing
function P* and the transition probabilities m(zy, z9) and p(n).

I first simulate a time series of 1000 observations using the numerically
solved pricing function for the storage economy described in sections 3.1-
3.3. For each observation, the spot price, the quantity stored, and forward
prices for delivery in one, two, three, and four periods hence are generated.
Storage induces path-dependence in the spot price, so estimation of forward
prices requires calculation of expected values over all future possible paths.
For example, given an initial carry-in, a four period forward price requires
calculation of the expected value over each path of shocks that can occur over
the next 4 periods. In the discretized framework, with N, possible values of
the demand shock z and N, possible values of the demand shock 7, there
are (N,N,)™ possible paths of demand shocks over 7 periods. The 7 period
forward price is the expected value over these paths of the spot price in 7
periods.

Since the spot price is observable in this synthetic time series, it is
only necessary to estimate one state variable in the sample-the convenience
yield.2! This is done interatively. In the first stage of the process, for each
observation t = 1,...,1000 I estimate the convenience yield as:

& =In(1+R) + 2524:11n§
' . =17 ET

where S; is the simulated spot price at ¢, and F; is the simulated 7 period
forward price as of .22 Given this initial estimate of the convenience yield
series, I estimate the following regression:

Agt =a — bgt_l + e (20)

2n contrast, in Schwartz’s (1997) empirical analysis both the spot price and the con-
venience yield are non-observable. He uses a Kalman filtering technique to extract these
unobserved state variables from the data.

22This is motivated by the following standard definition of the convenience yield: Fy =
e(r=9)7 8, where r is the continuously compounded interest rate r = In(1 + R).
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where a and b are parameters and e; is an error term.  is then set equal to
b and « is then set equal to a/b. Moreover, a3 is set equal to var(e;). Again
using the 5 series, I then calculate vy = Aln.S; — 5 — R and set 02 = var(uy).
Finally, p = corr(es, uy).

Given this set of parameters, the convenience yield is reestimated using
expression (19) in Schwartz. Specifically:

1—e "

InF] —InS, — A(1) = _&’T (21)
where A(7) is a function of 7 that depends on «, k, 01, 09, and p; this function
is given by expression (20) in Schwartz (1997). In the next iteration, for each
t=1,...1000, & is the slope coefficient in a regression of In FJ —In Sy —A(T)
against (1 —exp(—~7))/k. Given the new estimates of the convenience yields
for each ¢, (20) is re-estimated and k, a, and oy are determined as before.
Now 02 = var(u;) where u, = AlnS; — 6 — 502 and p = corr(e, us).2
This process continues until the average absolute percentage change in the
estimated §; between iterations is smaller than .001 percent. The estimates
of o1, 09, K, a, and p are then used to price call options on the commodity.

In the Schwartz model, futures/forward prices with 7 periods to expira-

tion are lognormally distributed with instantaneous variance:

2

1 — e <7 2 1 — e <7
o4 (1) =0i + 037( e ) 7< )

s — 2p0109

(22)

Since the future is a traded asset with a variance that is a function of time
alone, it is possible to price simple options on the commodity using the Black

model with:

0 In(20) + .5 J§ o2 (u)du (23
Jg 0% (u)du

where K is the strike price of a call option. Given the parameters estimated
using the process described above, it is therefore possible to determine the
price of any Furopean call or put option on the commodity.

The “true” value of the option is derived as follows. For given starting
values of z, z, and 7, and thus of spot price P*, the terminal price P, and
the path probability 7, determined for each of the (N, N,)” paths p,. One,

23The o, used to calculate wu, is the value generated in the previous iteration.
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two, and three period options are priced, so 7 = 1,2, 3.2* The value of the
call with strike K equals that expires in 7 periods is:

(NyN=)"
c(r,z,n,K)= Y mymax[P; — K,0]. (24)

p=1
The forward price for maturity in 7 periods is:

(NyN=)™
Fr(x,z,n,K)=(1+R)"" Y mP;. (25)

p=1

Options are priced using (24) and (25) for 9 different strikes for each
expiration. These strikes are spaced evenly around the forward price in
increments of .05. That is, an at-the-money, four out-of-the-money, and
four in-the-money calls are priced for each maturity for a variety of starting
values for x and z.

4.2 Results

A comparison of option prices generated by the two models implies that the
constant volatility model generates serious mis-pricing of options due to the
mis-specifications discussed above. Call C'(K, 7) the “true” price of an option
expiring in 7 periods with strike price K as given by (24). Call Cs(K, ) the
price of the option implied by the Schwartz model. Table 2 reports

C(K,T)

B(K,T)= Ol ) 1 (26)
for several values of initial carry-in and permanent demand shock; for simplic-
ity, the temporary demand shock is assumed to equal 0 in all cases studied.
That is, B(K,7) is a measure of the bias in the option prices generated by
the Schwartz model. B(K,7) > 0 implies that the Schwartz model under-
estimates the option price. B(K,7) < 0 implies that it overestimates the
option price.

Panel A of Table 2 assumes that the economy is in a low price state with
high carry-in and a permanent demand shock 1.2 standard deviations below

24Computational considerations limit 7. The number of computations increases expo-
nentionally with 7.
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its mean. Panel B assumes that the economy is in a medium price state with
carry-in equal to its average in long simulations and a permanent demand
shock equal to its expected value of 0. Panel C assumes a high price state
with zero carry-in and a permanent demand shock 1.2 standard deviations
above the mean. In each panel, the strike price increases as one proceeds
down any column, and time to expiration increases as one proceeds to the
right along any row. Row 5 gives the price of at-the-money calls; rows 6-9
give the prices of out-of-the-money calls and rows 1-4 give the prices of in-
the-money calls. Columns 1, 2, and 3 give the prices of 1 period, 2 period,
and 3 period options, respectively.

An examination of the various panels gives clear evidence of strike price
and time-to-expiration biases. Moreover, the size and sign of these biases
vary depending on whether the economy is in a high price, low price, or
medium price state. In a high price state (Panel C) the Schwartz model
systematically underprices call options. The pricing biases are more severe,
the higher the strike price and the shorter the time to expiration. That
is, the constant volatility model seriously underprices shortest-dated out-
of-the-money calls. The mispricing for the deepest-out-of-the-money, short-
dated calls is over 700 percent. Even the deepest-in-the-money, longest-dated
calls are underpriced by 25 percent. In a medium price state (Panel B),
the Schwartz model tends to overprice short-dated in-the-money and at-the-
money calls and underprice short-dated out-of-the-money calls. The model
underprices longer-dated calls. The pricing bias is increasing in strike for all
maturities. In the low price state (Panel A), the Schwartz model overprices
all calls studied. In this state, the underpricing is more severe, the higher
the strike. For a given strike, mispricing is not always monotonic in time
to expiration, although it does decrease (in absolute value) in maturity for
at-the-money and out-of-the-money strikes.

These mispricings are readily understood based on the analysis of the
behavior of volatility in the storage economy provided in section 3.3. When
applied to the simulated data generated by the storage economy model, the
Schwartz model essentially estimates an average spot volatility. This volatil-
ity is smaller than the true volatility when prices are high, and is larger
than the true volatility when prices are low because volatility generally in-
creases in price. This explains the underpricing of options in the high price
environment and the overpricing in the low price environment.

Moreover, the lognormal distribution underlying the Schwartz model does
not capture the skewness and kurtosis in return distributions in the storage
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economy. These distributions are highly right-skewed and leptokurtotic in
high and medium price environments. Figure 7 presents histograms of the
frequency of Py for high-price and moderate-price initial conditions respec-
tively. Note the highly right-skewed distribution in Figure 8a (corresponding
to a high initial price) and the fat-tailed, somewhat less skewed distribution
in Figure 8b (corresponding to a moderate initial price). The skewness and
kurtosis of the return distributions depend on the initial spot price. Spot
returns exhibit greater skewness and smaller kurtosis when the initial spot
price is high. For instance, when the spot price is high (as illustrated in
Figure 7a), the coefficient of skewness of the return distribution is .5844 and
the coefficient of excess kurtosis of returns is .2755. When the spot price is
moderate (as illustrated in Figure 7b), the coeflicient of skewness of returns is
.5504 and the coefficient of excess kurtosis of returns is .4017. Consequently,
the symmetric distributions implied by the Schwartz model underestimate
the probability of upward price spikes and therefore underestimate the value
of out-of-the-money calls. Biases become smaller as time-to-expiration in-
creases (for at-the-money options) because the mean reversion inherent in the
storage economy (and captured by the estimated parameters of the Schwartz
model) becomes dominant as the pricing horizon increases. Volatility in both
models shrinks monotonically in both models as the horizon increases.

In brief, these results show that neglecting the state-dependent price
volatility leads to serious option pricing biases. The state-dependence in
volatility documented in the analyses of the storage economy in section 3.3
leads to state-dependent pricing biases. Pricing biases are huge for short-
dated, out-of-the-money calls when spot prices are high.

These features are reflected in volatility skews or smiles. Figure 8 depicts
two examples of the resulting volatility skews for 7 = 2. It plots the volatility
that sets the option price given by the Black model to the true option price.
The x-axis in these figures measures strike ordinally; strike 5 is the at-the-
money strike, strikes with numbers greater than 5 are out-of-the-money, and
strikes with numbers less than 5 are in-the-money. Figure 8a depicts the skew
when price is high (i.e., x is low and z is large) and Figure 8b depicts the
skew when price is moderate (i.e., for moderate values of « and z). Note that
there is an increasing relation between implied volatility when price is high,
and a U-shaped relation when price is moderate. The minimum volatility
point in the U-shaped case occurs two strikes out-the-money. The shape of
these “smiles” corresponds to the pricing biases identified in Table 2.

In sum, standard commodity option pricing models fare poorly in the
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storage economy because they are severly mis-specified. The time and state
dependence in volatility causes option prices to differ substantially from the
values implied by a two factor model with constant volatilities with parame-
ters calibrated to simulated data generated by the storage model. Although
the two factor model permits more variation in the shape of the commod-
ity price term structure, it does not capture the state dependent skewness
and kurtosis in terminal price distributions. These pricing biases are es-
pecially severe for short-dated, high-strike call price options in high price
environments. Computational considerations preclude evaluation of pricing
biases for very long-dated options (including real investment options), but
the decline of these biases in high and medium price environments as option
maturities increase suggests that they may not be as severe for long dated
options. Thus, standard constant volatility pricing models may be adequate
for pricing long dated options and investment projects, but are highly ques-
tionable for pricing short dated commodity options, especially in high price
environments.

4.3 Implications for Commodity Option Pricing Mod-
els

The foregoing analysis and the supporting empirical evidence in Ng-Pirrong
(1994, 1996) and Pirrong (1996) imply that even multi-factor models of com-
modity price dynamics are mis-specified if spot price variances are assumed
to be constant, as is typically the case. This implies that such models cannot
price commodity options consistently. This raises the question: Is there an
alternative reduced form model that can do better?

One alternative to a constant-spot variance model is to allow the variance
to depend on the level of the spot price:

% — o(P)dt + o(P)dW

A model of this type can be fit to option quotes using the method of Bodurtha-
Jermakyan (1997).

Although this type of model should outperform constant volatility models
in pricing options on the spot and options on futures (because of its ability to
capture the relation between the level of prices and volatility), its one factor
structure is unsatisfactory for pricing correlation dependent options, such as
options on spreads (e.g., an option on the spread between a one month and
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a three month forward), commodity swaptions, or real options to undertake
investments in commodity production capacity that can produce output for
multiple periods. Multi-factor models are necessary to produce instantaneous
spot-forward correlations that differ from one. Since the storage model im-
plies that the spot-forward correlation is state dependent, at least two factors
are required to generate a model that captures this empirical regularity.

Another alternative is a stochastic volatility model of the form studied
by Heston (1993) with a positive correlation between the Brownian motion
in the spot process and the Brownian motion in the volatility process. This
form of model could capture the skewness and kurtosis of the spot price
distribution. This model cannot generate a spot-forward correlation less
than one, however, because the stochastic component of forward prices in
this model does not depend upon the volatility.

The foregoing suggests that “off-the-shelf” diffusion models fail to capture
salient features of commodity price dynamics. A two-factor model of the
type studied by Schwartz (1997), but with the spot price-convenience yield
variance-covariance matrix dependent upon the spot price may be necessary
to capture fully the features documented herein. Given functions relating the
spot price to (a) the spot price variance, (b) convenience yield variance, and
(¢) the spot price-convenience yield correlation, it is fairly straightforward to
solve the “direct problem” of determining the price of a contingent claim with
given boundary conditions using numerical methods. In theory, the methods
of Bodurtha-Jermakyan can be applied to solution of the “inverse problem,”
i.e., the determination of the variance and correlation functions from a set
of option quotes. Actual solution of this problem faces daunting numerical
problems, however.??

In sum, the analysis demonstrates that conventional constant volatility
option pricing techniques are likely to be inadequate for valuing commodity
options due to the complex, non-linear relations between prices, variances,
and spot-forward correlations. Some more advanced reduced form option
pricing models may prove suitable for pricing non-correlation dependent op-
tions, such as options on forwards or options on the spot. The complex rela-
tion between prices and spot-forward correlations presents difficult challenges
to any attempt to derive a multi-factor diffusion process suitable for pricing
correlation-sensitive contingent claims such as commodity swaptions or real
commodity investment options. If reduced form models are inadequate or im-

25Personal communication with Martin Jermakyan.

27



practical, it may prove necessary to value options using a structural model
of the commodity market along the lines of the analyzed in sections 3.1-3.3.
One difficulty is readily evident in this approach, however. Specifically, the
crucial state variables z and 7, and perhaps x are not observable. Instead
they must be inferred. This requires joint econometric estimation of the state
variables and crucial supply and demand paramters including p, o, oy, a, b,
¢, and 7. Given the inherent non-linearity of the model and the necessity of
solving it numerically this is a forbidding task.

5 Summary and Conclusion

This article demonstrates that storage and the characteristics of produc-
tion cost functions have important implications for the price dynamics of
continuously produced, storable commodities. In particular, if marginal pro-
duction costs are convex, increasing functions of output and there are both
persistent and transitory demand shocks, commodity price volatility varies
markedly with changes in underlying fundamental conditions. When market
conditions are “tight” due to a lack of inventories or high demand, volatility
can be orders of magnitude larger than when market conditions are less con-
strained. Similarly, spot-forward correlations are nearly one when supplies
are abundant, but far below one when market conditions are tight.

These findings have important implications. First, they imply that stan-
dard commodity option pricing models based on mean reverting log normal
spot commodity price processes are likely to generate severe mispricings. In
the simulated storage economy these price biases are strike price and matu-
rity dependent. Moreover, the size and sign of the biases depend on whether
commodity prices are high or low. Standard option pricing models typically
undervalue commodity options when the spot price is high and overvalue
them when the commodity price is low. Second, these results imply that
commodity option implied volatilities should be skewed, and that the shape
of the skew should depend upon the level of prices (which measures the
tightness of market conditions).

This analysis has numerous testable implications, some of which have
already been verified (Ng and Pirrong, 1994, 1996). One empirical finding
at variance from the model’s predictions is the weaker GARCH effect in
simulated storage model prices after controlling for scarcity (as measured by
price) than is found in real world. This disparity may arise because the model
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assumes that the volatility of demand shocks is equal over time, whereas real
world demand shocks may exhibit GARCH effects.

Some predictions of the model are observationally equivalent to those gen-
erated by the model of Zhou (1997). Zhou shows that incomplete hedging in a
commodity market can cause volatility skews. In Zhou’s framework, hedging
considerations produce a systematic relation between market price levels and
risk premia, which in turn creates a systematic relation between price levels
and price volatility. The storage theory and the incomplete hedging model
are completely different in spirit and motivation, so future research should
try to distinguish between their empircal predictions. Some differences are
apparent. Most important, the incomplete hedging approach implies that
futures/forward prices should be mean reverting: the storage approach does
not. It is not clear whether the incomplete hedging approach predicts that
the shape of the volatility skew should depend upon the level of the com-
modity price as is the case in the storage model studied here. It is evident
that the existing incomplete hedging model of Zhou does not predict the
documented relation between commodity price levels (or spread levels) and
the correlation between spot and forward returns because it contains a single
factor. Perhaps multi-factor models of this type can generate such a pattern,
but this has not been proven to date.

Future work in this area should include extension of the analysis to encom-
pass periodically produced commodities (such as agricultural products).?
Allowing investment in productive capacity is also worth exploring. Invest-
ment, like storage, is a way of smoothing out demand shocks. Integration of
a real options investment model like that of Dixit and Pindyck (1995) with
the richer economic environment of this article is an interesting, and cer-
tainly challenging, possibility. Generalizing the demand function to permit
intertemporal substitutability is another possible extension of the model.

In sum, when marginal production costs for continuously produced com-
modities are increasing and convex, the volatilities are time varying. In
particular, volatilities should be high when prices are high and spot-forward
spreads wide. Moreover, options implied volatilities should be skewed, with
the shape of the skew depending upon the existing scarcity in the market.
Empirical data for continuously produced commodities exhibit many of these
features. Consequently, models of commodity price dynamics which omit

26Pirrong (1998b) solves and analyzes a four-season recursive dynamic model of a market
for a seasonally-produced commodity.
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these features are mis-specified and are likely unreliable for pricing commod-
ity options.
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Table 1-Average Simulated GARCH Coefficients

Coeflicient Value
Y .2439
Yo .3059
Y3 00327
qq -.0412
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Table 2

Constant Volatility Model Option Pricing Biases
Panel A-Low Price Environment

Strike Index

Periods to Expiration

1 2 3
1 -.0727 | -.0976 -.1011
2 -.1443 | -.1592 -.2024
3 -.2475 | -.2358 -.2024
4 -.3812 | -.3204 -.2552
5 -.5296 | -.4042 -.3020
6 -.6753 | -.4794 -.3377
7 -.7624 | -.5434 -.3578
8 -.8315 | -.5879 -.3601
9 -.8993 | -.6182 -.3449
Table 2

Constant Volatility Model Option Pricing Biases
Panel B-Moderate Price Environment

Strike Index

Periods to Expiration

1 2 3
1 -.0523 | -.0204 0182
2 -.0691 | -.0121 .0476
3 -.0835 | .0116 .0961
4 -.0991 | .0549 1688
2 -.0788 | .1230 2730
6 -.0537 | .2220 4191
7 -.0207 | .3693 6199
8 1214 | 5779 8972
9 2194 | .8593 1.2816
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Table 2

Constant Volatility Model Option Pricing Biases

Panel C-High Price Environment
Strike Index Periods to Expiration

1 2 3
1 4670 | .3437 2574
2 6837 | .4868 .3600
3 9711 | .6684 4968
4 1.3582 | .9093 6911
5 1.8876 | 1.2563 9420
6 2.6233 | 1.7566 1.2757
7 3.6629 | 2.4391 1.7278
8 5.1567 | 3.3956 2.4010
9 7.3374 | 4.7560 3.3319
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Figure 2-Spot-Forward Spread v. Demand State and Carry-in
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Figure 3
LME Lead Supply of Storage Curve
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Figure 4-Spot Return Variance v. Demand State and Carry-in
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Figure 5-Spot-Forward Correlation v. Demand State and Carry-in
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Figure 6-Hedge Ratios as a Function of Carry-in and Demand
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Figure 7b-Price Distribution with Moderate Spot Price
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